1
|
Marker T, Steimbach RR, Perez-Borrajero C, Luzarowski M, Hartmann E, Schleich S, Pastor-Flores D, Espinet E, Trumpp A, Teleman AA, Gräter F, Simon B, Miller AK, Dick TP. Site-specific activation of the proton pump inhibitor rabeprazole by tetrathiolate zinc centres. Nat Chem 2025:10.1038/s41557-025-01745-8. [PMID: 39979415 DOI: 10.1038/s41557-025-01745-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025]
Abstract
Proton pump inhibitors have become top-selling drugs worldwide. Serendipitously discovered as prodrugs that are activated by protonation in acidic environments, proton pump inhibitors inhibit stomach acid secretion by covalently modifying the gastric proton pump. Despite their widespread use, alternative activation mechanisms and potential target proteins in non-acidic environments remain poorly understood. Employing a chemoproteomic approach, we found that the proton pump inhibitor rabeprazole selectively forms covalent conjugates with zinc-binding proteins. Focusing on DENR, a protein with a C4 zinc cluster (that is, zinc coordinated by four cysteines), we show that rabeprazole is activated by the zinc ion and subsequently conjugated to zinc-coordinating cysteines. Our results suggest that drug binding, activation and conjugation take place rapidly within the zinc coordination sphere. Finally, we provide evidence that other proton pump inhibitors can be activated in the same way. We conclude that zinc acts as a Lewis acid, obviating the need for low pH, to promote the activation and conjugation of proton pump inhibitors in non-acidic environments.
Collapse
Affiliation(s)
- Teresa Marker
- Division of Redox Regulation, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Raphael R Steimbach
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Drug Design Small Molecules Unit, Institute de Recherche Servier, Gif-sur-Yvette, France
| | - Cecilia Perez-Borrajero
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Marcin Luzarowski
- Core Facility for Mass Spectrometry and Proteomics, Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Eric Hartmann
- Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Sibylle Schleich
- Division of Signal Transduction in Cancer and Metabolism, DKFZ, Heidelberg, Germany
| | - Daniel Pastor-Flores
- Division of Redox Regulation, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- KBI Biopharma SA, Plan-les-Ouates, Switzerland
| | - Elisa Espinet
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona and Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, DKFZ and DKFZ-ZMBH Alliance, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Aurelio A Teleman
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Signal Transduction in Cancer and Metabolism, DKFZ, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Max Planck Institute (MPI) for Polymer Research, Mainz, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Aubry K Miller
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Tobias P Dick
- Division of Redox Regulation, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Meurs R, De Matos M, Bothe A, Guex N, Weber T, Teleman AA, Ban N, Gatfield D. MCTS2 and distinct eIF2D roles in uORF-dependent translation regulation revealed by in vitro re-initiation assays. EMBO J 2025; 44:854-876. [PMID: 39748120 PMCID: PMC11790910 DOI: 10.1038/s44318-024-00347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/28/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Ribosomes scanning from the mRNA 5' cap to the start codon may initiate at upstream open reading frames (uORFs), decreasing protein biosynthesis. Termination at a uORF can lead to re-initiation, where 40S subunits resume scanning and initiate another translation event downstream. The noncanonical translation factors MCTS1-DENR participate in re-initiation at specific uORFs, but knowledge of other trans-acting factors or uORF features influencing re-initiation is limited. Here, we establish a cell-free re-initiation assay using HeLa lysates to address this question. Comparing in vivo and in vitro re-initiation on uORF-containing reporters, we validate MCTS1-DENR-dependent re-initiation in vitro. Using this system and ribosome profiling in cells, we found that knockdown of the MCTS1-DENR homolog eIF2D causes widespread gene deregulation unrelated to uORF translation, and thus distinct to MCTS1-DENR-dependent re-initiation regulation. Additionally, we identified MCTS2, encoded by an Mcts1 retrogene, as a DENR partner promoting re-initiation in vitro, providing a plausible explanation for clinical differences associated with DENR vs. MCTS1 mutations in humans.
Collapse
Affiliation(s)
- Romane Meurs
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Mara De Matos
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Adrian Bothe
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093, Zurich, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, 1015, Lausanne, Switzerland
| | - Tobias Weber
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurelio A Teleman
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093, Zurich, Switzerland
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
3
|
Zhu H, Wang Y, Zhang Y, Tian Y, Liu D, Li X, Ji G, Ma C, Li H. Overexpression of C1orf74 predicts poor outcome and promote cervical cancer progression. Heliyon 2024; 10:e40966. [PMID: 39759315 PMCID: PMC11699247 DOI: 10.1016/j.heliyon.2024.e40966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/01/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Cervical cancer (CC), which ranks among the four most common cancers in women, is a leading cause of both illness and death globally. It's urgent to identify a new biomarker to elucidate the potential mechanisms underlying the progression of CC. Here, we screened the differentially expressed genes (DEGs) in the Cancer Genome Atlas database (TCGA) and selected Chromosome 1 open reading frame 74 (C1orf74) for further investigation. C1orf74 levels were elevated, indicating a link to poor prognosis. Higher expression of C1orf74 was significantly related to clinical stage, T stage, histological type and survival status. Functional enrichment analysis indicated that C1orf74 is likely associated with the MAPK signaling pathway. Moreover, we found that C1orf74 was correlated with multifarious immune cell infiltration. Finally, the knockdown of C1orf74 significantly inhibited the growth of CC in vitro. In conclusion, C1orf74 promotes CC proliferation and progression, is closely associated with poor prognosis, and plays a role in the tumor immune microenvironment. The research indicates that C1orf74 is important for treating CC and may help develop new strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Hai Zhu
- Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yaping Wang
- Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Zhengzhou Key Laboratory of Gynecological Oncology, Zhengzhou, 450052, Henan, China
| | - Yu Zhang
- Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yun Tian
- Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Zhengzhou Key Laboratory of Gynecological Oncology, Zhengzhou, 450052, Henan, China
| | - Duan Liu
- Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiabing Li
- Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Gaili Ji
- Zhengzhou Key Laboratory of Gynecological Oncology, Zhengzhou, 450052, Henan, China
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Caixia Ma
- Zhengzhou Key Laboratory of Gynecological Oncology, Zhengzhou, 450052, Henan, China
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Hongyu Li
- Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Zhengzhou Key Laboratory of Gynecological Oncology, Zhengzhou, 450052, Henan, China
| |
Collapse
|
4
|
A Avelar R, Gupta R, Carvette G, da Veiga Leprevost F, Jasti M, Colina J, Teitel J, Nesvizhskii AI, O'Connor CM, Hatzoglou M, Shenolikar S, Arvan P, Narla G, DiFeo A. Integrated stress response plasticity governs normal cell adaptation to chronic stress via the PP2A-TFE3-ATF4 pathway. Cell Death Differ 2024; 31:1761-1775. [PMID: 39349971 PMCID: PMC11618521 DOI: 10.1038/s41418-024-01378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024] Open
Abstract
The integrated stress response (ISR) regulates cell fate during conditions of stress by leveraging the cell's capacity to endure sustainable and efficient adaptive stress responses. Protein phosphatase 2A (PP2A) activity modulation has been shown to be successful in achieving both therapeutic efficacy and safety across various cancer models. However, the molecular mechanisms driving its selective antitumor effects remain unclear. Here, we show for the first time that ISR plasticity relies on PP2A activation to regulate drug response and dictate cellular survival under conditions of chronic stress. We demonstrate that genetic and chemical modulation of the PP2A leads to chronic proteolytic stress and triggers an ISR to dictate whether the cell lives or dies. More specifically, we uncovered that the PP2A-TFE3-ATF4 pathway governs ISR cell plasticity during endoplasmic reticular and cellular stress independent of the unfolded protein response. We further show that normal cells reprogram their genetic signatures to undergo ISR-mediated adaptation and homeostatic recovery thereby avoiding toxicity following PP2A-mediated stress. Conversely, oncogenic specific cytotoxicity induced by chemical modulation of PP2A is achieved by activating chronic and irreversible ISR in cancer cells. Our findings propose that a differential response to chemical modulation of PP2A is determined by intrinsic ISR plasticity, providing a novel biological vulnerability to selectively induce cancer cell death and improve targeted therapeutic efficacy.
Collapse
Affiliation(s)
- Rita A Avelar
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Riya Gupta
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Grace Carvette
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | | | - Medhasri Jasti
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Jose Colina
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Jessica Teitel
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Caitlin M O'Connor
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Shirish Shenolikar
- Duke-NUS Medical School, Singapore, Singapore
- Duke University School of Medicine, Durham, NC, USA
| | - Peter Arvan
- Division of Metabolism Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Goutham Narla
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Analisa DiFeo
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Fernandez SG, Ferguson L, Ingolia NT. Ribosome rescue factor PELOTA modulates translation start site choice for C/EBPα protein isoforms. Life Sci Alliance 2024; 7:e202302501. [PMID: 38803235 PMCID: PMC11109482 DOI: 10.26508/lsa.202302501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Translation initiation at alternative start sites can dynamically control the synthesis of two or more functionally distinct protein isoforms from a single mRNA. Alternate isoforms of the developmental transcription factor CCAAT/enhancer-binding protein α (C/EBPα) produced from different start sites exert opposing effects during myeloid cell development. This choice between alternative start sites depends on sequence features of the CEBPA transcript, including a regulatory uORF, but the molecular basis is not fully understood. Here, we identify the factors that affect C/EBPα isoform choice using a sensitive and quantitative two-color fluorescent reporter coupled with CRISPRi screening. Our screen uncovered a role of the ribosome rescue factor PELOTA (PELO) in promoting the expression of the longer C/EBPα isoform by directly removing inhibitory unrecycled ribosomes and through indirect effects mediated by the mechanistic target of rapamycin kinase. Our work uncovers further links between ribosome recycling and translation reinitiation that regulate a key transcription factor, with implications for normal hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Samantha G Fernandez
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Lucas Ferguson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| |
Collapse
|
6
|
Avelar RA, Gupta R, Carvette G, da Veiga Leprevost F, Colina J, Teitel J, Nesvizhskii AI, O’Connor CM, Hatzoglou M, Shenolikar S, Arvan P, Narla G, DiFeo A. Integrated stress response plasticity governs normal cell adaptation to chronic stress via the PP2A-TFE3-ATF4 pathway. RESEARCH SQUARE 2024:rs.3.rs-4013396. [PMID: 38585734 PMCID: PMC10996823 DOI: 10.21203/rs.3.rs-4013396/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The integrated stress response (ISR) regulates cell fate during conditions of stress by leveraging the cell's capacity to endure sustainable and efficient adaptive stress responses. Protein phosphatase 2A (PP2A) activity modulation has been shown to be successful in achieving both therapeutic efficacy and safety across various cancer models; however, the molecular mechanisms driving its selective antitumor effects remain unclear. Here, we show for the first time that ISR plasticity relies on PP2A activation to regulate drug response and dictate cellular fate under conditions of chronic stress. We demonstrate that genetic and chemical modulation of the PP2A leads to chronic proteolytic stress and triggers an ISR to dictate cell fate. More specifically, we uncovered that the PP2A-TFE3-ATF4 pathway governs ISR cell plasticity during endoplasmic reticular and cellular stress independent of the unfolded protein response. We further show that normal cells reprogram their genetic signatures to undergo ISR-mediated adaptation and homeostatic recovery thereby successfully avoiding toxicity following PP2A-mediated stress. Conversely, oncogenic specific cytotoxicity induced by chemical modulation of PP2A is achieved by activating chronic and irreversible ISR in cancer cells. Our findings propose that a differential response to chemical modulation of PP2A is determined by intrinsic ISR plasticity, providing a novel biological vulnerability to selectively induce cancer cell death and improve targeted therapeutic efficacy.
Collapse
Affiliation(s)
- Rita A. Avelar
- Department of Pathology, The University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Riya Gupta
- Department of Pathology, The University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Gracie Carvette
- Department of Pathology, The University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Jose Colina
- Department of Pathology, The University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Jessica Teitel
- Department of Pathology, The University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexey I. Nesvizhskii
- Department of Pathology, The University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Caitlin M. O’Connor
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shirish Shenolikar
- Emeritus Professor, Duke-NUS Medical School, Singapore
- Professor Emeritus, Duke University School of Medicine, USA
| | - Peter Arvan
- Division of Metabolism Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Goutham Narla
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Analisa DiFeo
- Department of Pathology, The University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Haq ATA, Yang PP, Jin C, Shih JH, Chen LM, Tseng HY, Chen YA, Weng YS, Wang LH, Snyder MP, Hsu HL. Immunotherapeutic IL-6R and targeting the MCT-1/IL-6/CXCL7/PD-L1 circuit prevent relapse and metastasis of triple-negative breast cancer. Theranostics 2024; 14:2167-2189. [PMID: 38505617 PMCID: PMC10945351 DOI: 10.7150/thno.92922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Rationale: Multiple copies in T-cell malignancy 1 (MCT-1) is a prognostic biomarker for aggressive breast cancers. Overexpressed MCT-1 stimulates the IL-6/IL-6R/gp130/STAT3 axis, which promotes epithelial-to-mesenchymal transition and cancer stemness. Because cancer stemness largely contributes to the tumor metastasis and recurrence, we aimed to identify whether the blockade of MCT-1 and IL-6R can render these effects and to understand the underlying mechanisms that govern the process. Methods: We assessed primary tumor invasion, postsurgical local recurrence and distant metastasis in orthotopic syngeneic mice given the indicated immunotherapy and MCT-1 silencing (shMCT-1). Results: We found that shMCT-1 suppresses the transcriptomes of the inflammatory response and metastatic signaling in TNBC cells and inhibits tumor recurrence, metastasis and mortality in xenograft mice. IL-6R immunotherapy and shMCT-1 combined further decreased intratumoral M2 macrophages and T regulatory cells (Tregs) and avoided postsurgical TNBC expansion. shMCT-1 also enhances IL-6R-based immunotherapy effectively in preventing postsurgical TNBC metastasis, recurrence and mortality. Anti-IL-6R improved helper T, cytotoxic T and natural killer (NK) cells in the lymphatic system and decreased Tregs in the recurrent and metastatic tumors. Combined IL-6R and PD-L1 immunotherapies abridged TNBC cell stemness and M2 macrophage activity to a greater extent than monotherapy. Sequential immunotherapy of PD-L1 and IL-6R demonstrated the best survival outcome and lowest postoperative recurrence and metastasis compared with synchronized therapy, particularly in the shMCT-1 context. Multiple positive feedforward loops of the MCT-1/IL-6/IL-6R/CXCL7/PD-L1 axis were identified in TNBC cells, which boosted metastatic niches and immunosuppressive microenvironments. Clinically, MCT-1high/PD-L1high/CXCL7high and CXCL7high/IL-6high/IL-6Rhigh expression patterns predict worse prognosis and poorer survival of breast cancer patients. Conclusion: Systemic targeting the MCT-1/IL-6/IL-6R/CXCL7/PD-L1 interconnections enhances immune surveillance that inhibits the aggressiveness of TNBC.
Collapse
Affiliation(s)
- Aushia Tanzih Al Haq
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pao-Pao Yang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Christopher Jin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jou-Ho Shih
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Li-Mei Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hong-Yu Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yen-An Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yueh-Shan Weng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Lu-Hai Wang
- Institute of Integrated Medicine and Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hsin-Ling Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
8
|
Harris MT, Marr MT. The intrinsically disordered region of eIF5B stimulates IRES usage and nucleates biological granule formation. Cell Rep 2023; 42:113283. [PMID: 37862172 PMCID: PMC10680144 DOI: 10.1016/j.celrep.2023.113283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/22/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Cells activate stress response pathways to survive adverse conditions. Such responses involve the inhibition of global cap-dependent translation. This inhibition is a block that essential transcripts must escape via alternative methods of translation initiation, e.g., an internal ribosome entry site (IRES). IRESs have distinct structures and generally require a limited repertoire of translation factors. Cellular IRESs have been identified in many critical cellular stress response transcripts. We previously identified cellular IRESs in the murine insulin receptor (Insr) and insulin-like growth factor 1 receptor (Igf1r) transcripts and demonstrated their resistance to eukaryotic initiation factor 4F (eIF4F) inhibition. Here, we find that eIF5B preferentially promotes Insr, Igf1r, and hepatitis C virus IRES activity through a non-canonical mechanism that requires its highly charged and disordered N terminus. We find that the N-terminal region of eIF5B can drive cytoplasmic granule formation. This eIF5B granule is triggered by cellular stress and is sufficient to specifically promote IRES activity.
Collapse
Affiliation(s)
- Meghan T Harris
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - Michael T Marr
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
9
|
Sun L, Xing G, Wang W, Ma X, Bu X. Proliferation-associated 2G4 P48 is stabilized by malignant T-cell amplified sequence 1 and promotes the proliferation of head and neck squamous cell carcinoma. J Dent Sci 2023; 18:1588-1597. [PMID: 37799877 PMCID: PMC10548002 DOI: 10.1016/j.jds.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/19/2023] [Indexed: 03/09/2023] Open
Abstract
Background/purpose Proliferation-associated protein 2G4 (PA2G4) has alternative transcriptional and translational initiation. One dominant transcript ENST00000303305 could be translated into two protein isoforms (PA2G4-P42 and PA2G4-P48). In this study, we aimed to explore the effects of PA2G4-P42 and PA2G4-P48 on the proliferation of head and neck squamous cell carcinoma (HNSCC) and the mechanisms regulating PA2G4-P48 stability. Materials and methods HNSCC cell lines HSC2 and SCC25 with relatively low PA2G4 expression were used for in-vitro cell studies. PA2G4-P42 and PA2G4-P48 overexpression lentiviruses were generated. In vitro cell proliferation was assessed by CCK-8 and colony formation. In vivo tumor cell proliferation was assessed by HSC2 cell-derived xenograft tumors. Liquid chromatography-mass spectrometry (LC-MS)/MS and co-immunoprecipitation (co-IP) assays were applied to check PA2G4-P48 interacting partners. Cycloheximide (CHX) chase and ubiquitin-based co-IP assays were also performed. Results PA2G4-P48 was the dominant isoform, with substantially higher expression than PA2G4-P42 in HNSCC. PA2G4-P48 overexpression enhanced HNSCC cell proliferation, but PA2G4-P42 overexpression slowed the proliferation. MCTS1 interacted with PA2G4-P48, but not PA2G4-P42. PA2G4 protein but not its mRNA expression was decreased in cells with MCTS1 knockdown. MG132 treatment abrogated this alteration. MCTS1 overexpression significantly elevated the half-life of PA2G4-P48, while its knockdown drastically reduced the half-life compared with the control cells. In addition, MCTS1 overexpression significantly decreased the polyubiquitination of exogenous flag-tagged PA2G4-P48. MCTS1 overexpression-induced cell proliferation was hampered by knocking down of PA2G4-P48. Conclusion PA2G4-P42 and PA2G4-P48 exert growth-suppressive and growth-promoting effects in HNSCC, respectively. MCTS1 can interact with PA2G4-P48 and prolong its half-life by reducing its poly-ubiquitination.
Collapse
Affiliation(s)
- Legang Sun
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Guoyi Xing
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wenlong Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiangrui Ma
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiangbin Bu
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
10
|
Wek RC, Anthony TG, Staschke KA. Surviving and Adapting to Stress: Translational Control and the Integrated Stress Response. Antioxid Redox Signal 2023; 39:351-373. [PMID: 36943285 PMCID: PMC10443206 DOI: 10.1089/ars.2022.0123] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/23/2023]
Abstract
Significance: Organisms adapt to changing environments by engaging cellular stress response pathways that serve to restore proteostasis and enhance survival. A primary adaptive mechanism is the integrated stress response (ISR), which features phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2). Four eIF2α kinases respond to different stresses, enabling cells to rapidly control translation to optimize management of resources and reprogram gene expression for stress adaptation. Phosphorylation of eIF2 blocks its guanine nucleotide exchange factor, eIF2B, thus lowering the levels of eIF2 bound to GTP that is required to deliver initiator transfer RNA (tRNA) to ribosomes. While bulk messenger RNA (mRNA) translation can be sharply lowered by heightened phosphorylation of eIF2α, there are other gene transcripts whose translation is unchanged or preferentially translated. Among the preferentially translated genes is ATF4, which directs transcription of adaptive genes in the ISR. Recent Advances and Critical Issues: This review focuses on how eIF2α kinases function as first responders of stress, the mechanisms by which eIF2α phosphorylation and other stress signals regulate the exchange activity of eIF2B, and the processes by which the ISR triggers differential mRNA translation. To illustrate the synergy between stress pathways, we describe the mechanisms and functional significance of communication between the ISR and another key regulator of translation, mammalian/mechanistic target of rapamycin complex 1 (mTORC1), during acute and chronic amino acid insufficiency. Finally, we discuss the pathological conditions that stem from aberrant regulation of the ISR, as well as therapeutic strategies targeting the ISR to alleviate disease. Future Directions: Important topics for future ISR research are strategies for modulating this stress pathway in disease conditions and drug development, molecular processes for differential translation and the coordinate regulation of GCN2 and other stress pathways during physiological and pathological conditions. Antioxid. Redox Signal. 39, 351-373.
Collapse
Affiliation(s)
- Ronald C. Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - Tracy G. Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Kirk A. Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Sherlock ME, Baquero Galvis L, Vicens Q, Kieft JS, Jagannathan S. Principles, mechanisms, and biological implications of translation termination-reinitiation. RNA (NEW YORK, N.Y.) 2023; 29:865-884. [PMID: 37024263 PMCID: PMC10275272 DOI: 10.1261/rna.079375.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
The gene expression pathway from DNA sequence to functional protein is not as straightforward as simple depictions of the central dogma might suggest. Each step is highly regulated, with complex and only partially understood molecular mechanisms at play. Translation is one step where the "one gene-one protein" paradigm breaks down, as often a single mature eukaryotic mRNA leads to more than one protein product. One way this occurs is through translation reinitiation, in which a ribosome starts making protein from one initiation site, translates until it terminates at a stop codon, but then escapes normal recycling steps and subsequently reinitiates at a different downstream site. This process is now recognized as both important and widespread, but we are only beginning to understand the interplay of factors involved in termination, recycling, and initiation that cause reinitiation events. There appear to be several ways to subvert recycling to achieve productive reinitiation, different types of stresses or signals that trigger this process, and the mechanism may depend in part on where the event occurs in the body of an mRNA. This perspective reviews the unique characteristics and mechanisms of reinitiation events, highlights the similarities and differences between three major scenarios of reinitiation, and raises outstanding questions that are promising avenues for future research.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Laura Baquero Galvis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
12
|
Carmona-Mora P, Knepp B, Jickling GC, Zhan X, Hakoupian M, Hull H, Alomar N, Amini H, Sharp FR, Stamova B, Ander BP. Monocyte, neutrophil, and whole blood transcriptome dynamics following ischemic stroke. BMC Med 2023; 21:65. [PMID: 36803375 PMCID: PMC9942321 DOI: 10.1186/s12916-023-02766-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 12/21/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND After ischemic stroke (IS), peripheral leukocytes infiltrate the damaged region and modulate the response to injury. Peripheral blood cells display distinctive gene expression signatures post-IS and these transcriptional programs reflect changes in immune responses to IS. Dissecting the temporal dynamics of gene expression after IS improves our understanding of immune and clotting responses at the molecular and cellular level that are involved in acute brain injury and may assist with time-targeted, cell-specific therapy. METHODS The transcriptomic profiles from peripheral monocytes, neutrophils, and whole blood from 38 ischemic stroke patients and 18 controls were analyzed with RNA-seq as a function of time and etiology after stroke. Differential expression analyses were performed at 0-24 h, 24-48 h, and >48 h following stroke. RESULTS Unique patterns of temporal gene expression and pathways were distinguished for monocytes, neutrophils, and whole blood with enrichment of interleukin signaling pathways for different time points and stroke etiologies. Compared to control subjects, gene expression was generally upregulated in neutrophils and generally downregulated in monocytes over all times for cardioembolic, large vessel, and small vessel strokes. Self-organizing maps identified gene clusters with similar trajectories of gene expression over time for different stroke causes and sample types. Weighted Gene Co-expression Network Analyses identified modules of co-expressed genes that significantly varied with time after stroke and included hub genes of immunoglobulin genes in whole blood. CONCLUSIONS Altogether, the identified genes and pathways are critical for understanding how the immune and clotting systems change over time after stroke. This study identifies potential time- and cell-specific biomarkers and treatment targets.
Collapse
Affiliation(s)
- Paulina Carmona-Mora
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA.
| | - Bodie Knepp
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA
| | - Glen C Jickling
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, 87 Avenue & 114 Street, Edmonton, AB, T6G 2J7, Canada
| | - Xinhua Zhan
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA
| | - Marisa Hakoupian
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA
| | - Heather Hull
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA
| | - Noor Alomar
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA
| | - Hajar Amini
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA
| | - Frank R Sharp
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA
| | - Boryana Stamova
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA
| | - Bradley P Ander
- Department of Neurology and M.I.N.D, Institute, M.I.N.D. Institute Bioscience Labs, School of Medicine, University of California at Davis, 2805 50th St, Room 2434, Sacramento, CA, 95817, USA
| |
Collapse
|
13
|
Reyes CJF, Asano K. Between Order and Chaos: Understanding the Mechanism and Pathology of RAN Translation. Biol Pharm Bull 2023; 46:139-146. [PMID: 36724941 DOI: 10.1248/bpb.b22-00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Repeat-associated non-AUG (RAN) translation is a pathogenic mechanism in which repetitive sequences are translated into aggregation-prone proteins from multiple reading frames, even without a canonical AUG start codon. Since its discovery in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1), RAN translation is now known to occur in the context of 12 disease-linked repeat expansions. This review discusses recent advances in understanding the regulatory mechanisms controlling RAN translation and its contribution to the pathophysiology of repeat expansion diseases. We discuss the key findings in the context of Fragile X Tremor Ataxia Syndrome (FXTAS), a neurodegenerative disorder caused by a CGG repeat expansion in the 5' untranslated region of FMR1.
Collapse
Affiliation(s)
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University.,Laboratory of Translational Control Study, Graduate School of Integrated Sciences for Life, Hiroshima University.,Hiroshima Research Center for Healthy Aging, Hiroshima University
| |
Collapse
|
14
|
Green KM, Miller SL, Malik I, Todd PK. Non-canonical initiation factors modulate repeat-associated non-AUG translation. Hum Mol Genet 2022; 31:2521-2534. [PMID: 35220421 PMCID: PMC9618161 DOI: 10.1093/hmg/ddac021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/28/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Repeat-associated non-AUG (RAN) translation of expanded repeat-mutation mRNA produces toxic peptides in neurons of patients suffering from neurodegenerative diseases. Recent findings indicate that RAN translation in diverse model systems is not inhibited by cellular stressors that impair global translation through phosphorylation of the alpha subunit of eIF2, the essential eukaryotic translation initiation factor that brings the initiator tRNA to the 40S ribosome. Using in vitro, cell-based and Drosophila models, we examined the role of alternative ternary complex factors that may function in place of eIF2, including eIF2A, eIF2D, DENR and MCTS1. Among these factors, DENR knockdown had the greatest inhibitory effect on RAN translation of expanded GGGGCC and CGG repeat reporters and its reduction improved the survival of Drosophila expressing expanded GGGGCC repeats. Taken together, these data support a role for alternative initiation factors in RAN translation and suggest these may serve as novel therapeutic targets in neurodegenerative disease.
Collapse
Affiliation(s)
- Katelyn M Green
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Shannon L Miller
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Pimkova K, Jassinskaja M, Munita R, Ciesla M, Guzzi N, Cao Thi Ngoc P, Vajrychova M, Johansson E, Bellodi C, Hansson J. Quantitative analysis of redox proteome reveals oxidation-sensitive protein thiols acting in fundamental processes of developmental hematopoiesis. Redox Biol 2022; 53:102343. [PMID: 35640380 PMCID: PMC9157258 DOI: 10.1016/j.redox.2022.102343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/22/2022] Open
Abstract
Fetal and adult hematopoietic stem and progenitor cells (HSPCs) are characterized by distinct redox homeostasis that may influence their differential cellular behavior in normal and malignant hematopoiesis. In this work, we have applied a quantitative mass spectrometry-based redox proteomic approach to comprehensively describe reversible cysteine modifications in primary mouse fetal and adult HSPCs. We defined the redox state of 4,438 cysteines in fetal and adult HSPCs and demonstrated a higher susceptibility to oxidation of protein thiols in fetal HSPCs. Our data identified ontogenic changes to oxidation state of thiols in proteins with a pronounced role in metabolism and protein homeostasis. Additional redox proteomic analysis identified oxidation changes to thiols acting in mitochondrial respiration as well as protein homeostasis to be triggered during onset of MLL-ENL leukemogenesis in fetal HSPCs. Our data has demonstrated that redox signaling contributes to the regulation of fundamental processes of developmental hematopoiesis and has pinpointed potential targetable redox-sensitive proteins in in utero-initiated MLL-rearranged leukemia.
Collapse
Affiliation(s)
- K Pimkova
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden; BIOCEV, 1st Medical Faculty, Charles University, Vestec, Czech Republic.
| | - M Jassinskaja
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - R Munita
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - M Ciesla
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - N Guzzi
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - P Cao Thi Ngoc
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - M Vajrychova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - E Johansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - C Bellodi
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - J Hansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden.
| |
Collapse
|
16
|
DENR controls JAK2 translation to induce PD-L1 expression for tumor immune evasion. Nat Commun 2022; 13:2059. [PMID: 35440133 PMCID: PMC9018773 DOI: 10.1038/s41467-022-29754-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/31/2022] [Indexed: 12/31/2022] Open
Abstract
RNA-binding proteins (RBPs) can recognize thousands of RNAs that help to maintain cell homeostasis, and RBP dysfunction is frequently observed in various cancers. However, whether specific RBPs are involved in tumor immune evasion by regulating programmed death ligand-1 (PD-L1) is unclear. Here, we perform targeted RBP CRISPR/Cas9 screening and identify density regulated re-initiation and release factor (DENR) as a PD-L1 regulator. DENR-depleted cancer cells exhibit reduced PD-L1 expression in vitro and in vivo. DENR depletion significantly suppresses tumor growth and enhances the tumor-killing activity of CD8+ T cells. Mechanistically, DENR antagonizes the translational repression of three consecutive upstream open reading frames (uORFs) upstream of Janus kinase 2 (Jak2); thus, DENR deficiency impairs JAK2 translation and the IFNγ-JAK-STAT signaling pathway, resulting in reduced PD-L1 expression in tumors. Overall, we discover an RBP DENR that could regulate PD-L1 expression for tumor immune evasion, and highlight the potential of DENR as a therapeutic target for immunotherapy.
Collapse
|
17
|
Deng M, Xiong C, He ZK, Bin Q, Song JZ, Li W, Qin J. MCTS1 as a Novel Prognostic Biomarker and Its Correlation With Immune Infiltrates in Breast Cancer. Front Genet 2022; 13:825901. [PMID: 35295953 PMCID: PMC8918534 DOI: 10.3389/fgene.2022.825901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 01/22/2023] Open
Abstract
Multiple copies in T‐cell lymphoma‐1 (MCTS1) plays an important role in various cancers; however, its effects on patient prognosis and immune infiltration in breast cancer remain unclear. In this study, the expression profiles and clinical information of patients with breast cancer were obtained from the Cancer Genome Atlas (TCGA) database. Using the Wilcoxon rank-sum test, the MCTS1 expression levels were compared between breast cancer and normal breast tissues. Functional enrichment analyses were performed to explore the potential signaling pathways and biological functions that are involved. Immune cell infiltration was assessed using single-sample gene set enrichment analysis. The UALCAN and MethSurv databases were used to analyze the methylation status of the MCTS1. The Kaplan-Meier method and Cox regression analysis were used to identify the prognostic value of MCTS1. A nomogram was constructed to predict the overall survival (OS) rates at one-, three-, and five-years post-cancer diagnosis. MCTS1 was overexpressed in breast cancer and significantly associated with the M pathological stage, histological type, PAM50, and increased age. MCTS1 overexpression contributes to a significant decline in OS and disease-specific survival. Multivariate Cox analysis identified MCTS1 as an independent negative prognostic marker of OS. The OS nomogram was generated with a concordance index of 0.715. Similarly, the hypomethylation status of MCTS1 is also associated with poor prognosis. Functional enrichment analysis indicated that the enriched pathways included the reactive oxygen species signaling pathway, MYC targets, interferon alpha response, immune response regulating signaling pathway, and leukocyte migration. Moreover, the overexpression of MCTS1 was negatively correlated with the levels of immune cell infiltration of natural killer cells, CD8+ T cells, effector memory T cells, and plasmacytoid dendritic cells. Therefore, MCTS1 maybe a novel prognostic biomarker.
Collapse
Affiliation(s)
- Mei Deng
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, China
- *Correspondence: Mei Deng,
| | - Chao Xiong
- Department of Information, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zhuo-Kai He
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qiong Bin
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jing-Zhi Song
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wei Li
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jie Qin
- Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
18
|
Clemm von Hohenberg K, Müller S, Schleich S, Meister M, Bohlen J, Hofmann TG, Teleman AA. Cyclin B/CDK1 and Cyclin A/CDK2 phosphorylate DENR to promote mitotic protein translation and faithful cell division. Nat Commun 2022; 13:668. [PMID: 35115540 PMCID: PMC8813921 DOI: 10.1038/s41467-022-28265-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
DENR and MCTS1 have been identified as oncogenes in several different tumor entities. The heterodimeric DENR·MCTS1 protein complex promotes translation of mRNAs containing upstream Open Reading Frames (uORFs). We show here that DENR is phosphorylated on Serine 73 by Cyclin B/CDK1 and Cyclin A/CDK2 at the onset of mitosis, and then dephosphorylated as cells exit mitosis. Phosphorylation of Ser73 promotes mitotic stability of DENR protein and prevents its cleavage at Asp26. This leads to enhanced translation of mRNAs involved in mitosis. Indeed, we find that roughly 40% of all mRNAs with elevated translation in mitosis are DENR targets. In the absence of DENR or of Ser73 phosphorylation, cells display elevated levels of aberrant mitoses and cell death. This provides a mechanism how the cell cycle regulates translation of a subset of mitotically relevant mRNAs during mitosis.
Collapse
Affiliation(s)
- Katharina Clemm von Hohenberg
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Heidelberg University, 69120, Heidelberg, Germany
- CellNetworks-Cluster of Excellence, Heidelberg University, Heidelberg, Germany
- Department of Medicine III, Universitätsmedizin Mannheim, 68167, Mannheim, Germany
| | - Sandra Müller
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Heidelberg University, 69120, Heidelberg, Germany
| | - Sibylle Schleich
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Heidelberg University, 69120, Heidelberg, Germany
| | - Matthias Meister
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonathan Bohlen
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Heidelberg University, 69120, Heidelberg, Germany
- CellNetworks-Cluster of Excellence, Heidelberg University, Heidelberg, Germany
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center Mainz at the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Heidelberg University, 69120, Heidelberg, Germany.
- CellNetworks-Cluster of Excellence, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
19
|
Alghoul F, Laure S, Eriani G, Martin F. Translation inhibitory elements from Hoxa3 and Hoxa11 mRNAs use uORFs for translation inhibition. eLife 2021; 10:e66369. [PMID: 34076576 PMCID: PMC8172242 DOI: 10.7554/elife.66369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/20/2021] [Indexed: 01/20/2023] Open
Abstract
During embryogenesis, Hox mRNA translation is tightly regulated by a sophisticated molecular mechanism that combines two RNA regulons located in their 5'UTR. First, an internal ribosome entry site (IRES) enables cap-independent translation. The second regulon is a translation inhibitory element or TIE, which ensures concomitant cap-dependent translation inhibition. In this study, we deciphered the molecular mechanisms of mouse Hoxa3 and Hoxa11 TIEs. Both TIEs possess an upstream open reading frame (uORF) that is critical to inhibit cap-dependent translation. However, the molecular mechanisms used are different. In Hoxa3 TIE, we identify an uORF which inhibits cap-dependent translation and we show the requirement of the non-canonical initiation factor eIF2D for this process. The mode of action of Hoxa11 TIE is different, it also contains an uORF but it is a minimal uORF formed by an uAUG followed immediately by a stop codon, namely a 'start-stop'. The 'start-stop' sequence is species-specific and in mice, is located upstream of a highly stable stem loop structure which stalls the 80S ribosome and thereby inhibits cap-dependent translation of Hoxa11 main ORF.
Collapse
Affiliation(s)
- Fatima Alghoul
- Institut de Biologie Moléculaire et Cellulaire, “Architecture et Réactivité de l’ARN” CNRS UPR9002, Université de StrasbourgStrasbourgFrance
| | - Schaeffer Laure
- Institut de Biologie Moléculaire et Cellulaire, “Architecture et Réactivité de l’ARN” CNRS UPR9002, Université de StrasbourgStrasbourgFrance
| | - Gilbert Eriani
- Institut de Biologie Moléculaire et Cellulaire, “Architecture et Réactivité de l’ARN” CNRS UPR9002, Université de StrasbourgStrasbourgFrance
| | - Franck Martin
- Institut de Biologie Moléculaire et Cellulaire, “Architecture et Réactivité de l’ARN” CNRS UPR9002, Université de StrasbourgStrasbourgFrance
| |
Collapse
|
20
|
Huang Z, Su Q, Li W, Ren H, Huang H, Wang A. MCTS1 promotes invasion and metastasis of oral cancer by modifying the EMT process. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:997. [PMID: 34277797 PMCID: PMC8267330 DOI: 10.21037/atm-21-2361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
Background The oncogene, malignant T-cell-amplified sequence 1 (MCTS1), has been found to be highly expressed in a variety of cancer cell lines. It has been shown to be involved in cell cycle progression and to confer a growth advantage for lymphomas and breast cancer. Nevertheless, the role of MCTS1 in contributing to the development of oral cancer remains elusive. Methods We analyzed the gene expression profiles of MCTS1 in normal oral keratinocytes and cancerous cells. Cellular proliferation, invasion, and migration experiments were performed to detect the effect of MCTS1 on the biological evolution of oral cancer. The in vitro results were verified by the in vivo lymphatic metastasis test. The underlying mechanism of MCTS1 in promoting oral cancer invasion and metastasis correlated with the epithelial-mesenchymal transition (EMT) process as revealed by western blotting. Results The results showed that MCTS1 was aberrantly expressed in oral cancer cells. MCTS1 overexpression significantly promoted tumor cell growth, proliferation, migration, and invasion. MCTS1-mediated lymphatic metastasis was verified in vivo using an intraplantar tumor model. Biomarkers associated with EMT progression were positively or negatively regulated upon knockdown or overexpression of MCTS1, respectively. Conclusions Higher MCTS1 expression in oral cancer may be connected with an unfavorable prognosis due to involvement of MCTS1. MCTS1 potentiates the growth and proliferation of oral cancer cells and subsequent metastasis by regulating cell cycle and modifying the EMT process. Keywords Oral cancer; oncogene; malignant T-cell-amplified sequence 1 (MCTS1); metastasis; invasion.
Collapse
Affiliation(s)
- Zhexun Huang
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiao Su
- Animal Experiment Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wuguo Li
- Animal Experiment Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Ren
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiqiang Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Shyrokova EY, Prassolov VS, Spirin PV. The Role of the MCTS1 and DENR Proteins in Regulating the Mechanisms Associated with Malignant Cell Transformation. Acta Naturae 2021; 13:98-105. [PMID: 34377560 PMCID: PMC8327141 DOI: 10.32607/actanaturae.11181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
The mutations associated with malignant cell transformation are believed to disrupt the expression of a significant number of normal, non-mutant genes. The proteins encoded by these genes are involved in the regulation of many signaling pathways that are responsible for differentiation and proliferation, as well as sensitivity to apoptotic signals, growth factors, and cytokines. Abnormalities in the balance of signaling pathways can lead to the transformation of a normal cell, which results in tumor formation. Detection of the target genes and the proteins they encode and that are involved in the malignant transformation is one of the major evolutions in anti-cancer biomedicine. Currently, there is an accumulation of data that shed light on the role of the MCTS1 and DENR proteins in oncogenesis.
Collapse
Affiliation(s)
- E. Y. Shyrokova
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, 119991 Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701 Russia
| | - V. S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, 119991 Russia
| | - P. V. Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, 119991 Russia
| |
Collapse
|
22
|
DENR promotes translation reinitiation via ribosome recycling to drive expression of oncogenes including ATF4. Nat Commun 2020; 11:4676. [PMID: 32938922 PMCID: PMC7494916 DOI: 10.1038/s41467-020-18452-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
Translation efficiency varies considerably between different mRNAs, thereby impacting protein expression. Translation of the stress response master-regulator ATF4 increases upon stress, but the molecular mechanisms are not well understood. We discover here that translation factors DENR, MCTS1 and eIF2D are required to induce ATF4 translation upon stress by promoting translation reinitiation in the ATF4 5'UTR. We find DENR and MCTS1 are only needed for reinitiation after upstream Open Reading Frames (uORFs) containing certain penultimate codons, perhaps because DENR•MCTS1 are needed to evict only certain tRNAs from post-termination 40S ribosomes. This provides a model for how DENR and MCTS1 promote translation reinitiation. Cancer cells, which are exposed to many stresses, require ATF4 for survival and proliferation. We find a strong correlation between DENR•MCTS1 expression and ATF4 activity across cancers. Furthermore, additional oncogenes including a-Raf, c-Raf and Cdk4 have long uORFs and are translated in a DENR•MCTS1 dependent manner.
Collapse
|
23
|
Tian C, Zeng S, Luo J. MCTS1 Directly Binds to TWF1 and Synergistically Modulate Cyclin D1 and C-Myc Translation in Luminal A/B Breast Cancer Cells. Onco Targets Ther 2020; 13:5353-5361. [PMID: 32606753 PMCID: PMC7293984 DOI: 10.2147/ott.s255675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/14/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose MCTS1 re-initiation and release factor (MCTS1) is a ribosome-binding protein and shows multiple oncogenic properties in multiple cancers. This study aimed to investigate the expression, prognostic significance and transcription profile of MCTS1 in the PAM50 subtypes of breast cancer, as well as proteins with functional interactions with MCTS1 in luminal A/B breast cancer cells. Materials and Methods Data from The Cancer Genome Atlas (TCGA)-Breast Carcinoma (BRCA) and Gene Expression Omnibus (GEO) and normal breast epithelial tissue data from the Genotype-Tissue Expression (GTEx) project were extracted and integrated for bioinformatic analysis. BT-474 and MCF-7 cells were used for in-vitro studies. Results MCTS1 expression varied significantly among PAM50 subtypes. Its expression might independently predict unfavorable overall survival (OS) in luminal A and B cases, but not in other subtypes. ENST00000371317.9 is the dominant isoform of MCTS1 transcripts and showed a step increase from normal, adjacent normal to breast cancer tissues. The protein encoded by this isoform directly bound to TWF1 and synergistically modulated cyclin D1 and C-Myc translation in BT-474 and MCF-7 cells. Conclusion MCTS1 expression might serve as a potential prognostic biomarker of unfavorable OS in luminal A and luminal B cases. The novel direct interaction between MCTS1 and TWF1 might be necessary for the translation of some downstream genes in common in luminal A/B breast cancer cells.
Collapse
Affiliation(s)
- Chao Tian
- Department of Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, Sichuan, People's Republic of China
| | - Shiyan Zeng
- Department of Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, Sichuan, People's Republic of China
| | - Jing Luo
- Department of Breast Surgery, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, People's Republic of China
| |
Collapse
|
24
|
Lomakin IB, De S, Wang J, Borkar AN, Steitz TA. Crystal structure of the C-terminal domain of DENR. Comput Struct Biotechnol J 2020; 18:696-704. [PMID: 32257053 PMCID: PMC7114459 DOI: 10.1016/j.csbj.2020.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/04/2023] Open
Abstract
The density regulated protein (DENR) forms a stable heterodimer with malignant T-cell-amplified sequence 1 (MCT-1). DENR-MCT-1 heterodimer then participates in regulation of non-canonical translation initiation and ribosomal recycling. The N-terminal domain of DENR interacts with MCT-1 and carries a classical tetrahedral zinc ion-binding site, which is crucial for the dimerization. DENR-MCT-1 binds the small (40S) ribosomal subunit through interactions between MCT-1 and helix h24 of the 18S rRNA, and through interactions between the C-terminal domain of DENR and helix h44 of the 18S rRNA. This later interaction occurs in the vicinity of the P site that is also the binding site for canonical translation initiation factor eIF1, which plays the key role in initiation codon selection and scanning. Sequence homology modeling and a low-resolution crystal structure of the DENR-MCT-1 complex with the human 40S subunit suggests that the C-terminal domain of DENR and eIF1 adopt a similar fold. Here we present the crystal structure of the C-terminal domain of DENR determined at 1.74 Å resolution, which confirms its resemblance to eIF1 and advances our understanding of the mechanism by which DENR-MCT-1 regulates non-canonical translation initiation and ribosomal recycling.
Collapse
Affiliation(s)
- Ivan B. Lomakin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
25
|
Castelo-Szekely V, De Matos M, Tusup M, Pascolo S, Ule J, Gatfield D. Charting DENR-dependent translation reinitiation uncovers predictive uORF features and links to circadian timekeeping via Clock. Nucleic Acids Res 2019; 47:5193-5209. [PMID: 30982898 PMCID: PMC6547434 DOI: 10.1093/nar/gkz261] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 02/05/2023] Open
Abstract
The non-canonical initiation factor DENR promotes translation reinitiation on mRNAs harbouring upstream open reading frames (uORFs). Moreover, DENR depletion shortens circadian period in mouse fibroblasts, suggesting involvement of uORF usage and reinitiation in clock regulation. To identify DENR-regulated translation events transcriptome-wide and, in particular, specific core clock transcripts affected by this mechanism, we have used ribosome profiling in DENR-deficient NIH3T3 cells. We uncovered 240 transcripts with altered translation rate, and used linear regression analysis to extract 5' UTR features predictive of DENR dependence. Among core clock genes, we identified Clock as a DENR target. Using Clock 5' UTR mutants, we mapped the specific uORF through which DENR acts to regulate CLOCK protein biosynthesis. Notably, these experiments revealed an alternative downstream start codon, likely representing the bona fide CLOCK N-terminus. Our findings provide insights into uORF-mediated translational regulation that can regulate the mammalian circadian clock and gene expression at large.
Collapse
Affiliation(s)
- Violeta Castelo-Szekely
- Center for Integrative Genomics, University of Lausanne, Genopode, 1015 Lausanne, Switzerland
| | - Mara De Matos
- Center for Integrative Genomics, University of Lausanne, Genopode, 1015 Lausanne, Switzerland
| | - Marina Tusup
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
| | - Jernej Ule
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, Genopode, 1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Sanz MA, Almela EG, García-Moreno M, Marina AI, Carrasco L. A viral RNA motif involved in signaling the initiation of translation on non-AUG codons. RNA (NEW YORK, N.Y.) 2019; 25:431-452. [PMID: 30659060 PMCID: PMC6426287 DOI: 10.1261/rna.068858.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Noncanonical translation, and particularly initiation on non-AUG codons, are frequently used by viral and cellular mRNAs during virus infection and disease. The Sindbis virus (SINV) subgenomic mRNA (sgRNA) constitutes a unique model system to analyze the translation of a capped viral mRNA without the participation of several initiation factors. Moreover, sgRNA can initiate translation even when the AUG initiation codon is replaced by other codons. Using SINV replicons, we examined the efficacy of different codons in place of AUG to direct the synthesis of the SINV capsid protein. The substitution of AUG by CUG was particularly efficient in promoting the incorporation of leucine or methionine in similar percentages at the amino terminus of the capsid protein. Additionally, valine could initiate translation when the AUG is replaced by GUG. The ability of sgRNA to initiate translation on non-AUG codons was dependent on the integrity of a downstream stable hairpin (DSH) structure located in the coding region. The structural requirements of this hairpin to signal the initiation site on the sgRNA were examined in detail. Of interest, a virus bearing CUG in place of AUG in the sgRNA was able to infect cells and synthesize significant amounts of capsid protein. This virus infects the human haploid cell line HAP1 and the double knockout variant that lacks eIF2A and eIF2D. Collectively, these findings indicate that leucine-tRNA or valine-tRNA can participate in the initiation of translation of sgRNA by a mechanism dependent on the DSH. This mechanism does not involve the action of eIF2, eIF2A, or eIF2D.
Collapse
MESH Headings
- Capsid Proteins/biosynthesis
- Capsid Proteins/genetics
- Cell Line, Tumor
- Codon, Initiator/genetics
- Codon, Initiator/metabolism
- Eukaryotic Initiation Factor-2/deficiency
- Eukaryotic Initiation Factor-2/genetics
- Fibroblasts/metabolism
- Fibroblasts/virology
- Gene Expression Regulation
- Haploidy
- Host-Pathogen Interactions/genetics
- Humans
- Inverted Repeat Sequences
- Leucine/genetics
- Leucine/metabolism
- Methionine/genetics
- Methionine/metabolism
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Leu/metabolism
- RNA, Transfer, Val/genetics
- RNA, Transfer, Val/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Replicon
- Signal Transduction/genetics
- Sindbis Virus/genetics
- Sindbis Virus/metabolism
- Valine/genetics
- Valine/metabolism
Collapse
Affiliation(s)
- Miguel Angel Sanz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Esther González Almela
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Manuel García-Moreno
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Ana Isabel Marina
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| |
Collapse
|
27
|
Crystal structure of the DENR-MCT-1 complex revealed zinc-binding site essential for heterodimer formation. Proc Natl Acad Sci U S A 2018; 116:528-533. [PMID: 30584092 DOI: 10.1073/pnas.1809688116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The density-regulated protein (DENR) and the malignant T cell-amplified sequence 1 (MCT-1/MCTS1) oncoprotein support noncanonical translation initiation, promote translation reinitiation on a specific set of mRNAs with short upstream reading frames, and regulate ribosome recycling. DENR and MCT-1 form a heterodimer, which binds to the ribosome. We determined the crystal structure of the heterodimer formed by human MCT-1 and the N-terminal domain of DENR at 2.0-Å resolution. The structure of the heterodimer reveals atomic details of the mechanism of DENR and MCT-1 interaction. Four conserved cysteine residues of DENR (C34, C37, C44, C53) form a classical tetrahedral zinc ion-binding site, which preserves the structure of the DENR's MCT-1-binding interface that is essential for the dimerization. Substitution of all four cysteines by alanine abolished a heterodimer formation. Our findings elucidate further the mechanism of regulation of DENR-MCT-1 activities in unconventional translation initiation, reinitiation, and recycling.
Collapse
|
28
|
Sriram A, Bohlen J, Teleman AA. Translation acrobatics: how cancer cells exploit alternate modes of translational initiation. EMBO Rep 2018; 19:embr.201845947. [PMID: 30224410 DOI: 10.15252/embr.201845947] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/09/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
Recent work has brought to light many different mechanisms of translation initiation that function in cells in parallel to canonical cap-dependent initiation. This has important implications for cancer. Canonical cap-dependent translation initiation is inhibited by many stresses such as hypoxia, nutrient limitation, proteotoxic stress, or genotoxic stress. Since cancer cells are often exposed to these stresses, they rely on alternate modes of translation initiation for protein synthesis and cell growth. Cancer mutations are now being identified in components of the translation machinery and in cis-regulatory elements of mRNAs, which both control translation of cancer-relevant genes. In this review, we provide an overview on the various modes of non-canonical translation initiation, such as leaky scanning, translation re-initiation, ribosome shunting, IRES-dependent translation, and m6A-dependent translation, and then discuss the influence of stress on these different modes of translation. Finally, we present examples of how these modes of translation are dysregulated in cancer cells, allowing them to grow, to proliferate, and to survive, thereby highlighting the importance of translational control in cancer.
Collapse
Affiliation(s)
- Ashwin Sriram
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Jonathan Bohlen
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany .,Heidelberg University, Heidelberg, Germany
| |
Collapse
|