1
|
Xiang Y, Jia M, Xu R, Xu J, He L, Peng H, Sun W, Wang D, Xiong W, Yang Z. Carbamazepine facilitated horizontal transfer of antibiotic resistance genes by enhancing microbial communication and aggregation. BIORESOURCE TECHNOLOGY 2024; 391:129983. [PMID: 37931760 DOI: 10.1016/j.biortech.2023.129983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Antimicrobial resistance is a global health security issue of widespread concern. Recent studies have unveiled the potential contribution of non-antibiotics to the emergence of antimicrobial resistance. This study investigated the effect of carbamazepine, a non-antibiotic pharmaceutical, on the fate of antibiotic resistance genes (ARGs) during anaerobic digestion. The results, as revealed by both metagenomic sequencing and absolute quantification, demonstrated that carbamazepine induced the enrichment of ARGs and increased the abundance of ARGs hosts by 1.2-2.1 times. Carbamazepine facilitated microbial aggregation and intercellular communication by upregulating functional genes associated with two-component systems, quorum sensing and type IV secretion systems, thereby increasing the frequency of ARGs conjugation. Furthermore, carbamazepine induced the acquisition of ARGs by pathogens and elevated the overall pathogenic abundance. This study revealed the mechanisms of microbial self-regulation and ARGs transmission under carbamazepine stress, highlighting the potential health risks posed by non-antibiotic pharmaceuticals during the safe disposal of sludge.
Collapse
Affiliation(s)
- Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Meiying Jia
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jialu Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lele He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haihao Peng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weimin Sun
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou 510650, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
2
|
Shi S, Cheng Y, Wang S, Zhang X, Han F, Li X, Dong H. Improvement of the conjugation transfer of N. gerenzanensis based on the synergistic effect of quorum sensing and antibiotic interference. AMB Express 2023; 13:133. [PMID: 38006456 PMCID: PMC10676335 DOI: 10.1186/s13568-023-01641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023] Open
Abstract
Nonomuraea gerenzanensis (N. gerenzanensis) is known for its ability to biosynthesize A40926, the precursor of the glycopeptide antibiotic (GPA) Dalbavancin. However, challenges and uncertainties related to the genetic manipulation of the rare actinomycetes remain. In order to improve the conjugation transfer of N. gerenzanensis, the crucial factors affecting conjugal transfer were evaluated, including agar medium, mycelial state, donor-recipient ratio, magnesium ion concentration, and antibiotic coverage time firstly. Additionally, γ-butyrolactone (GBL) for quorum sensing (QS) and antibiotics targeting bacterial walls were applied to evaluate their effects on conjugation transfer. As a result, the optimal conditions of 5%TSB of liquid medium, 24 h of the period time, V0.1 of agar medium, 30 mM of magnesium ion, the ratio 10:1 of donor-to-recipient, and 27 h of the overlaying time of antibiotic were determined. Furthermore, the results showed that autoinducer GBL and GPA teicoplanin had a synergetic effect on the conjugation transfer of N. gerenzanensis at a working concentration of 60 µM and 0.5 µg mL-1, respectively. The highest conjugation efficiency could reach about 1.3 depending on the optimal process conditions and the interference of QS and antibiotics.
Collapse
Affiliation(s)
- Shi Shi
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Yutong Cheng
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Shuai Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Xiangmei Zhang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Fubo Han
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Xiaojing Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Huijun Dong
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, People's Republic of China.
| |
Collapse
|
3
|
Irby I, Brown SP. The social lives of viruses and other mobile genetic elements: a commentary on Leeks et al. 2023. J Evol Biol 2023; 36:1582-1586. [PMID: 37975503 PMCID: PMC10805371 DOI: 10.1111/jeb.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023]
Abstract
Illustration of life-histories of phages and plasmids through horizontal and vertical transmission (see Figure 1 for more information).
Collapse
Affiliation(s)
- Iris Irby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Dimitriu T. Evolution of horizontal transmission in antimicrobial resistance plasmids. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35849537 DOI: 10.1099/mic.0.001214] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mobile genetic elements (MGEs) are one of the main vectors for the spread of antimicrobial resistance (AMR) across bacteria, due to their ability to move horizontally between bacterial lineages. Horizontal transmission of AMR can increase AMR prevalence at multiple scales, from increasing the prevalence of infections by resistant bacteria to pathogen epidemics and worldwide spread of AMR across species. Among MGEs, conjugative plasmids are the main contributors to the spread of AMR. This review discusses the selective pressures acting on MGEs and their hosts to promote or limit the horizontal transmission of MGEs, the mechanisms by which transmission rates can evolve, and their implications for limiting the spread of AMR, with a focus on AMR plasmids.
Collapse
|
5
|
Li X, Liu H, Cao S, Cheng P, Li F, Ishfaq M, Sun J, Zhang X. Resistance Detection and Transmission Risk Analysis of Pig-Derived Pathogenic Escherichia coli in East China. Front Vet Sci 2021; 8:614651. [PMID: 33996956 PMCID: PMC8119771 DOI: 10.3389/fvets.2021.614651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Antibiotics play an essential role in the treatment and prevention of diseases in pig farms. However, the irrational use of antibiotics leads to the emergence of multi-drug resistance of bacteria, which poses a critical threat to the efficacy of antibiotic treatments. Therefore, the study is designed to analyze the drug resistance of pathogenic Escherichia coli isolated from large-scale pig farms in East China, which provides a theoretical basis for precisely targeted clinical drugs in swine farms. Method: The pathogenic E. coli were isolated and identified from clinical samples of swine farms, and the drug resistance of pathogenic E. coli was detected by antimicrobial susceptibility test (AST) and minimum inhibitory concentration test (MIC). Moreover, the prevalence of plasmid-mediated β-lactam resistance genes was analyzed by PCR. Results: A total of 67 pathogenic E. coli were isolated from 152 samples collected from 20 large-scale pig farms in East China. All isolated pathogenic E. coli are associated with severe drug resistance. Moreover, 70% of isolated pathogenic E. coli is resistant to more than four antibiotics. Besides, there were 19 serotypes including O2, O4, O5, O6, O14, O26, O38, O42, O49, O57, O92, O93, O95, O101, O121, O131, O143, O158, and O161, of which the O4 and O92 serotype were the main serotypes in swine farms. The main extended-spectrum beta-lactamases (ESBLs)-encoding genes in East China were bla CTX-M, bla TEM, and bla OXA by the detection of the ESBLs encoding genes of porcine pathogenic E. coli. The conjugation assays showed that a total of 30 transconjugants were obtained by conjugation, which indicated that drug resistance genes could be transmitted horizontally through conjugative plasmids. Conclusion: The isolated pathogenic E. coli were all multi-drug resistant, and especially O4 and O92 were the main serotypes. The β-lactam resistance genes were prevalent in large-scale pig farms in East China, which provided a theoretical basis for the prevention and control of pig-derived pathogenic E. coli in the future.
Collapse
Affiliation(s)
- Xiaoting Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haibin Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Sai Cao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ping Cheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fulei Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jichao Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
van Gestel J, Bareia T, Tenennbaum B, Dal Co A, Guler P, Aframian N, Puyesky S, Grinberg I, D’Souza GG, Erez Z, Ackermann M, Eldar A. Short-range quorum sensing controls horizontal gene transfer at micron scale in bacterial communities. Nat Commun 2021; 12:2324. [PMID: 33875666 PMCID: PMC8055654 DOI: 10.1038/s41467-021-22649-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023] Open
Abstract
In bacterial communities, cells often communicate by the release and detection of small diffusible molecules, a process termed quorum-sensing. Signal molecules are thought to broadly diffuse in space; however, they often regulate traits such as conjugative transfer that strictly depend on the local community composition. This raises the question how nearby cells within the community can be detected. Here, we compare the range of communication of different quorum-sensing systems. While some systems support long-range communication, we show that others support a form of highly localized communication. In these systems, signal molecules propagate no more than a few microns away from signaling cells, due to the irreversible uptake of the signal molecules from the environment. This enables cells to accurately detect micron scale changes in the community composition. Several mobile genetic elements, including conjugative elements and phages, employ short-range communication to assess the fraction of susceptible host cells in their vicinity and adaptively trigger horizontal gene transfer in response. Our results underscore the complex spatial biology of bacteria, which can communicate and interact at widely different spatial scales.
Collapse
Affiliation(s)
- Jordi van Gestel
- grid.5801.c0000 0001 2156 2780Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland ,grid.418656.80000 0001 1551 0562Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland ,grid.7400.30000 0004 1937 0650Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland ,grid.419765.80000 0001 2223 3006Swiss Institute of Bioinformatics, Lausanne, Switzerland ,grid.266102.10000 0001 2297 6811Present Address: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA USA
| | - Tasneem Bareia
- grid.12136.370000 0004 1937 0546The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel-Aviv, Israel
| | - Bar Tenennbaum
- grid.12136.370000 0004 1937 0546The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel-Aviv, Israel
| | - Alma Dal Co
- grid.5801.c0000 0001 2156 2780Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland ,grid.418656.80000 0001 1551 0562Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland ,grid.38142.3c000000041936754XSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
| | - Polina Guler
- grid.12136.370000 0004 1937 0546The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel-Aviv, Israel
| | - Nitzan Aframian
- grid.12136.370000 0004 1937 0546The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel-Aviv, Israel
| | - Shani Puyesky
- grid.12136.370000 0004 1937 0546The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel-Aviv, Israel
| | - Ilana Grinberg
- grid.12136.370000 0004 1937 0546The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel-Aviv, Israel
| | - Glen G. D’Souza
- grid.5801.c0000 0001 2156 2780Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland ,grid.418656.80000 0001 1551 0562Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Zohar Erez
- grid.13992.300000 0004 0604 7563Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Martin Ackermann
- grid.5801.c0000 0001 2156 2780Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland ,grid.418656.80000 0001 1551 0562Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Avigdor Eldar
- grid.12136.370000 0004 1937 0546The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
7
|
Autonomous and Assisted Control for Synthetic Microbiology. Int J Mol Sci 2020; 21:ijms21239223. [PMID: 33287299 PMCID: PMC7731081 DOI: 10.3390/ijms21239223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
The control of microbes and microbial consortia to achieve specific functions requires synthetic circuits that can reliably cope with internal and external perturbations. Circuits that naturally evolved to regulate biological functions are frequently robust to alterations in their parameters. As the complexity of synthetic circuits increases, synthetic biologists need to implement such robust control "by design". This is especially true for intercellular signaling circuits for synthetic consortia, where robustness is highly desirable, but its mechanisms remain unclear. Cybergenetics, the interface between synthetic biology and control theory, offers two approaches to this challenge: external (computer-aided) and internal (autonomous) control. Here, we review natural and synthetic microbial systems with robustness, and outline experimental approaches to implement such robust control in microbial consortia through population-level cybergenetics. We propose that harnessing natural intercellular circuit topologies with robust evolved functions can help to achieve similar robust control in synthetic intercellular circuits. A "hybrid biology" approach, where robust synthetic microbes interact with natural consortia and-additionally-with external computers, could become a useful tool for health and environmental applications.
Collapse
|