1
|
Cai Z, Jiang Z, Li S, Mo S, Wang S, Liang M, Tan X, Zhong W, Zhang L, Deng J, Zhong C, Lu J. RNA modification Regulators' Co-Expression Score (RMRCoeS) predicts biochemical recurrence and therapy response in prostate cancer: A multi-omics and experimental validation study. Int Immunopharmacol 2024; 139:112723. [PMID: 39053228 DOI: 10.1016/j.intimp.2024.112723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Owing to the heterogeneity of prostate cancer (PCa), the clinical indicators traditionally fall short of meeting the requirements for personalized medicine. The realm of RNA modification has emerged as an increasingly relevant domain, shedding light on its pivotal role in tumor heterogeneity. However, the specific contributions of RNA modification regulators within the context of PCa remain largely unexplored. METHODS In this study, we undertook a literature review to summarize the common 8 types of RNA modifications (ac4c, AI, APA, m1A, m5c, m6A, m7G, Ψ) encompassing a total of 84 regulators. Moreover, we integrated multi-center cohorts with Ridge regression to develop the Regulators' Co-Expression Score (RMRCoeS). Then we assessed the role of RMRCoeS in several clinical aspects such as biochemical recurrence (BCR), responses to chemotherapy, androgen receptor signaling inhibitor (ARSI) therapy and immunotherapy in PCa. Finally, we validated the cancer-promoting performance of five hub genes through immunohistochemistry and in vitro assays. RESULTS Within the mutation landscape of RNA modification regulators, we observed a relatively low overall mutation rate. Remarkably, RMRCoeS, comprising 81 RNA modification regulators, exhibited a notable capability for accurately predicting the prognosis and therapeutic responses in PCa patients subjected to BCR, chemotherapy, ARSI therapy, and immunotherapy. A high RMRCoeS was indicative of a poor prognosis and unfavorable therapy responses. Functional enrichment analysis unveiled that RMRCoeS may exert its influence on PCa progression through various metabolic pathways. Furthermore, a higher RMRCoeS showed a positive correlation with elevated CNV mutations. Lastly, we validated the oncogene effects of CPSF4, WBSCR22, RPUSD3, TRMT61A, and NSUN5-five hub regulators-within the context of PCa. CONCLUSION The function of different RNA modifications is interconnected. Comprising eight distinct RNA modifications' regulators, RMRCoeS exhibits multifaceted roles in various aspects of PCa, including disease progression, prognosis, and responses to multiple therapies. Furthermore, we provide the initial validation of the oncogene effect associated with WBSCR22, RPUSD3, TRMT61A and NSUN5 in PCa. Our findings offer novel insights into the significance of RNA modifications in PCa personalized medicine.
Collapse
Affiliation(s)
- Zhouda Cai
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, China
| | - Zhaojun Jiang
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, China; Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510700, Guangzhou, China; The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510700, Guangzhou, China
| | - Songbo Li
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, China; Department of Urology, The Second People's Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541002, China
| | - Shanshan Mo
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, China
| | - Shuo Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Min Liang
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510700, Guangzhou, China; The Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510700, Guangzhou, China
| | - Xiao Tan
- Department of Urology, School of Clinical Medicine, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 999078, Macau
| | - Le Zhang
- Institute for Integrative Genome Biology, University of California, Riverside 92507, CA, USA
| | - Junhong Deng
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, China.
| | - Chuanfan Zhong
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, China.
| | - Jianming Lu
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, China; Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, China.
| |
Collapse
|
2
|
Chen Q, Ao L, Zhao Q, Tang L, Xiong Y, Yuan Y, Wu X, Xing W, Li Z, Guo W, Liang H, Zheng SG, Lian Q, Lu D, Wan W, Xu X. WTAP/YTHDF1-mediated m 6A modification amplifies IFN-γ-induced immunosuppressive properties of human MSCs. J Adv Res 2024:S2090-1232(24)00256-X. [PMID: 38944238 DOI: 10.1016/j.jare.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
INTRODUCTION The immunosuppressive capacity of mesenchymal stem cells (MSCs) is dependent on the "license" of several pro-inflammatory factors to express immunosuppressive molecular profiles, which determines the therapeutic efficacy of MSCs in immune-mediated inflammatory diseases. Of those, interferon-γ (IFN-γ) is a key inducer for the expression of immunosuppressive molecular profiles; however, the mechanism underlying this effect is unknown. OBJECTIVES To elucidate the regulation mechanism and biological functions of N6-methyladenosine (m6A) modification in the immunosuppressive functions by the IFN-γ-licensing MSCs. METHODS Epitranscriptomic microarray analysis and MeRIP-qPCR assay were performed to identify the regulatory effect of WTAP in the IFN-γ-licensing MSCs. RIP-qPCR, western blot, qRT-PCR and RNA stability assays were used to determine the regulation of WTAP/m6A/YTHDF1 signaling axis in the expression of immunosuppressive molecules. Further, functional capacity of T cells was tested using flow cytometry, and both DSS-induced colitis mice and CIA mice were constructed to clarify the effect of WTAP and YTHDF1 in MSC-mediated immunosuppression. RESULTS We identified that IFN-γ increased the m6A methylation levels of immunosuppressive molecules, while WTAP deficiency abolished the IFN-γ-induced promotion of m6A modification. IFN-γ activated ERK signaling, which induced WTAP phosphorylation. Additionally, the stabilization of WTAP post-transcriptionally increased the mRNA expression of immunosuppressive molecules (IDO1, PD-L1, ICAM1, and VCAM1) in an m6A-YTHDF1-dependent manner; this effect further impacted the immunosuppressive capacity of IFN-γ licensing MSCs on activated T cells. Notably, WTAP/YTHDF1 overexpression enhanced the therapeutic efficacy of IFN-γ licensing MSCs and restructures the ecology of inflammation in both colitis and arthritis models. CONCLUSION Our results showed that m6A modification of IDO1, PD-L1, ICAM1, and VCAM1 mRNA mediated by WTAP-YTHDF1 is involved in the regulation of IFN-γ licensing MSCs immunosuppressive abilities, and shed a light to enhance the clinical therapeutic potential of IFN-γ-licensing MSCs.
Collapse
Affiliation(s)
- Quan Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Luoquan Ao
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qing Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Lu Tang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yanli Xiong
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China; Cancer Center, Daping Hospital, Army Medical University, Chongqing, China, No.10 Changjiang Zhi Rd, Yuzhong District, Chongqing 400042, China
| | - Yuchuan Yuan
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiaofeng Wu
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Xing
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhan Li
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Guo
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Huaping Liang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Song Guo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Qizhou Lian
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510000, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Di Lu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Weijun Wan
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Xiang Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China; Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Lee K, Ku J, Ku D, Kim Y. Inverted Alu repeats: friends or foes in the human transcriptome. Exp Mol Med 2024; 56:1250-1262. [PMID: 38871814 PMCID: PMC11263572 DOI: 10.1038/s12276-024-01177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 06/15/2024] Open
Abstract
Alu elements are highly abundant primate-specific short interspersed nuclear elements that account for ~10% of the human genome. Due to their preferential location in gene-rich regions, especially in introns and 3' UTRs, Alu elements can exert regulatory effects on the expression of both host and neighboring genes. When two Alu elements with inverse orientations are positioned in close proximity, their transcription results in the generation of distinct double-stranded RNAs (dsRNAs), known as inverted Alu repeats (IRAlus). IRAlus are key immunogenic self-dsRNAs and post-transcriptional cis-regulatory elements that play a role in circular RNA biogenesis, as well as RNA transport and stability. Recently, IRAlus dsRNAs have emerged as regulators of transcription and activators of Z-DNA-binding proteins. The formation and activity of IRAlus can be modulated through RNA editing and interactions with RNA-binding proteins, and misregulation of IRAlus has been implicated in several immune-associated disorders. In this review, we summarize the emerging functions of IRAlus dsRNAs, the regulatory mechanisms governing IRAlus activity, and their relevance in the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Keonyong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jayoung Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doyeong Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea.
- KAIST Institute for BioCentury (KIB), Daejeon, 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology (KIHST), Daejeon, 34141, Republic of Korea.
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Min YH, Shao WX, Hu QS, Xie NB, Zhang S, Feng YQ, Xing XW, Yuan BF. Simultaneous Detection of Adenosine-to-Inosine Editing and N6-Methyladenosine at Identical RNA Sites through Deamination-Assisted Reverse Transcription Stalling. Anal Chem 2024; 96:8730-8739. [PMID: 38743814 DOI: 10.1021/acs.analchem.4c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Adenosine-to-inosine (A-to-I) editing and N6-methyladenosine (m6A) modifications are pivotal RNA modifications with widespread functional significance in physiological and pathological processes. Although significant effort has been dedicated to developing methodologies for identifying and quantifying these modifications, traditional approaches have often focused on each modification independently, neglecting the potential co-occurrence of A-to-I editing and m6A modifications at the same adenosine residues. This limitation has constrained our understanding of the intricate regulatory mechanisms governing RNA function and the interplay between different types of RNA modifications. To address this gap, we introduced an innovative technique called deamination-assisted reverse transcription stalling (DARTS), specifically designed for the simultaneous quantification of A-to-I editing and m6A at the same RNA sites. DARTS leverages the selective deamination activity of the engineered TadA-TadA8e protein, which converts adenosine residues to inosine, in combination with the unique property of Bst 2.0 DNA polymerase, which stalls when encountering inosine during reverse transcription. This approach enables the accurate quantification of A-to-I editing, m6A, and unmodified adenosine at identical RNA sites. The DARTS method is remarkable for its ability to directly quantify two distinct types of RNA modifications simultaneously, a capability that has remained largely unexplored in the field of RNA biology. By facilitating a comprehensive analysis of the co-occurrence and interaction between A-to-I editing and m6A modifications, DARTS opens new avenues for exploring the complex regulatory networks modulated by different RNA modifications.
Collapse
Affiliation(s)
- Yi-Hao Min
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wen-Xuan Shao
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Qiu-Shuang Hu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Neng-Bin Xie
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| | - Shan Zhang
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xi-Wen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bi-Feng Yuan
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
5
|
De Jesus DF, Zhang Z, Brown NK, Li X, Xiao L, Hu J, Gaffrey MJ, Fogarty G, Kahraman S, Wei J, Basile G, Rana TM, Mathews C, Powers AC, Parent AV, Atkinson MA, Dhe-Paganon S, Eizirik DL, Qian WJ, He C, Kulkarni RN. Redox regulation of m 6A methyltransferase METTL3 in β-cells controls the innate immune response in type 1 diabetes. Nat Cell Biol 2024; 26:421-437. [PMID: 38409327 PMCID: PMC11042681 DOI: 10.1038/s41556-024-01368-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Type 1 diabetes (T1D) is characterized by the destruction of pancreatic β-cells. Several observations have renewed the interest in β-cell RNA sensors and editors. Here, we report that N 6-methyladenosine (m6A) is an adaptive β-cell safeguard mechanism that controls the amplitude and duration of the antiviral innate immune response at T1D onset. m6A writer methyltransferase 3 (METTL3) levels increase drastically in β-cells at T1D onset but rapidly decline with disease progression. m6A sequencing revealed the m6A hyper methylation of several key innate immune mediators, including OAS1, OAS2, OAS3 and ADAR1 in human islets and EndoC-βH1 cells at T1D onset. METTL3 silencing enhanced 2'-5'-oligoadenylate synthetase levels by increasing its mRNA stability. Consistently, in vivo gene therapy to prolong Mettl3 overexpression specifically in β-cells delayed diabetes progression in the non-obese diabetic mouse model of T1 D. Mechanistically, the accumulation of reactive oxygen species blocked upregulation of METTL3 in response to cytokines, while physiological levels of nitric oxide enhanced METTL3 levels and activity. Furthermore, we report that the cysteines in position C276 and C326 in the zinc finger domains of the METTL3 protein are sensitive to S-nitrosylation and are important to the METTL3-mediated regulation of oligoadenylate synthase mRNA stability in human β-cells. Collectively, we report that m6A regulates the innate immune response at the β-cell level during the onset of T1D in humans.
Collapse
Affiliation(s)
- Dario F De Jesus
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Zijie Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Natalie K Brown
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Xiaolu Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ling Xiao
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Jiang Hu
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Garrett Fogarty
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Sevim Kahraman
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
- Department of Chemistry and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Giorgio Basile
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Tariq M Rana
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Clayton Mathews
- Department of Pathology, The University of Florida College of Medicine, Gainesville, FL, USA
| | - Alvin C Powers
- Department of Medicine, and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Audrey V Parent
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Mark A Atkinson
- Department of Pathology, The University of Florida College of Medicine, Gainesville, FL, USA
| | - Sirano Dhe-Paganon
- Department of Biological Chemistry, and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Shen S, Zhang LS. The regulation of antiviral innate immunity through non-m 6A RNA modifications. Front Immunol 2023; 14:1286820. [PMID: 37915585 PMCID: PMC10616867 DOI: 10.3389/fimmu.2023.1286820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
The post-transcriptional RNA modifications impact the dynamic regulation of gene expression in diverse biological and physiological processes. Host RNA modifications play an indispensable role in regulating innate immune responses against virus infection in mammals. Meanwhile, the viral RNAs can be deposited with RNA modifications to interfere with the host immune responses. The N6-methyladenosine (m6A) has boosted the recent emergence of RNA epigenetics, due to its high abundance and a transcriptome-wide widespread distribution in mammalian cells, proven to impact antiviral innate immunity. However, the other types of RNA modifications are also involved in regulating antiviral responses, and the functional roles of these non-m6A RNA modifications have not been comprehensively summarized. In this Review, we conclude the regulatory roles of 2'-O-methylation (Nm), 5-methylcytidine (m5C), adenosine-inosine editing (A-to-I editing), pseudouridine (Ψ), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), and N4-acetylcytidine (ac4C) in antiviral innate immunity. We provide a systematic introduction to the biogenesis and functions of these non-m6A RNA modifications in viral RNA, host RNA, and during virus-host interactions, emphasizing the biological functions of RNA modification regulators in antiviral responses. Furthermore, we discussed the recent research progress in the development of antiviral drugs through non-m6A RNA modifications. Collectively, this Review conveys knowledge and inspiration to researchers in multiple disciplines, highlighting the challenges and future directions in RNA epitranscriptome, immunology, and virology.
Collapse
Affiliation(s)
- Shenghai Shen
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| | - Li-Sheng Zhang
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| |
Collapse
|
7
|
Ribeiro DR, Nunes A, Ribeiro D, Soares AR. The hidden RNA code: implications of the RNA epitranscriptome in the context of viral infections. Front Genet 2023; 14:1245683. [PMID: 37614818 PMCID: PMC10443596 DOI: 10.3389/fgene.2023.1245683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Emerging evidence highlights the multifaceted roles of the RNA epitranscriptome during viral infections. By modulating the modification landscape of viral and host RNAs, viruses enhance their propagation and elude host surveillance mechanisms. Here, we discuss how specific RNA modifications, in either host or viral RNA molecules, impact the virus-life cycle and host antiviral responses, highlighting the potential of targeting the RNA epitranscriptome for novel antiviral therapies.
Collapse
|
8
|
Bukhari SIA, Truesdell SS, Datta C, Choudhury P, Wu KQ, Shrestha J, Maharjan R, Plotsker E, Elased R, Laisa S, Bhambhani V, Lin Y, Kreuzer J, Morris R, Koh SB, Ellisen LW, Haas W, Ly A, Vasudevan S. Regulation of RNA methylation by therapy treatment, promotes tumor survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.540602. [PMID: 37292633 PMCID: PMC10245743 DOI: 10.1101/2023.05.19.540602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Our data previously revealed that chemosurviving cancer cells translate specific genes. Here, we find that the m6A-RNA-methyltransferase, METTL3, increases transiently in chemotherapy-treated breast cancer and leukemic cells in vitro and in vivo. Consistently, m6A increases on RNA from chemo-treated cells, and is needed for chemosurvival. This is regulated by eIF2α phosphorylation and mTOR inhibition upon therapy treatment. METTL3 mRNA purification reveals that eIF3 promotes METTL3 translation that is reduced by mutating a 5'UTR m6A-motif or depleting METTL3. METTL3 increase is transient after therapy treatment, as metabolic enzymes that control methylation and thus m6A levels on METTL3 RNA, are altered over time after therapy. Increased METTL3 reduces proliferation and anti-viral immune response genes, and enhances invasion genes, which promote tumor survival. Consistently, overriding phospho-eIF2α prevents METTL3 elevation, and reduces chemosurvival and immune-cell migration. These data reveal that therapy-induced stress signals transiently upregulate METTL3 translation, to alter gene expression for tumor survival.
Collapse
Affiliation(s)
- Syed IA Bukhari
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Samuel S Truesdell
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Chandreyee Datta
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Pritha Choudhury
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Keith Q Wu
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Jitendra Shrestha
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Ruby Maharjan
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Ethan Plotsker
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Ramzi Elased
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Sadia Laisa
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Vijeta Bhambhani
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Yue Lin
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Siang-Boon Koh
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Leif W. Ellisen
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
9
|
Abstract
Characterization of RNA modifications has identified their distribution features and molecular functions. Dynamic changes in RNA modification on various forms of RNA are essential for the development and function of the immune system. In this review, we discuss the value of innovative RNA modification profiling technologies to uncover the function of these diverse, dynamic RNA modifications in various immune cells within healthy and diseased contexts. Further, we explore our current understanding of the mechanisms whereby aberrant RNA modifications modulate the immune milieu of the tumor microenvironment and point out outstanding research questions.
Collapse
Affiliation(s)
- Dali Han
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Meng Michelle Xu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China;
| |
Collapse
|
10
|
Chen L, Gao Y, Xu S, Yuan J, Wang M, Li T, Gong J. N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms. Front Immunol 2023; 14:1162607. [PMID: 36999016 PMCID: PMC10043241 DOI: 10.3389/fimmu.2023.1162607] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
As the most abundant and conserved internal modification in eukaryote RNAs, N6-methyladenosine (m6A) is involved in a wide range of physiological and pathological processes. The YT521-B homology (YTH) domain-containing family proteins (YTHDFs), including YTHDF1, YTHDF2, and YTHDF3, are a class of cytoplasmic m6A-binding proteins defined by the vertebrate YTH domain, and exert extensive functions in regulating RNA destiny. Distinct expression patterns of the YTHDF family in specific cell types or developmental stages result in prominent differences in multiple biological processes, such as embryonic development, stem cell fate, fat metabolism, neuromodulation, cardiovascular effect, infection, immunity, and tumorigenesis. The YTHDF family mediates tumor proliferation, metastasis, metabolism, drug resistance, and immunity, and possesses the potential of predictive and therapeutic biomarkers. Here, we mainly summary the structures, roles, and mechanisms of the YTHDF family in physiological and pathological processes, especially in multiple cancers, as well as their current limitations and future considerations. This will provide novel angles for deciphering m6A regulation in a biological system.
Collapse
Affiliation(s)
- Lin Chen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simiao Xu
- Division of Endocrinology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Branch of National Clinical Research Center for Metabolic Disease, Wuhan, China
| | - Jinxiong Yuan
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Gong,
| |
Collapse
|
11
|
Anreiter I, Tian YW, Soller M. The cap epitranscriptome: Early directions to a complex life as mRNA. Bioessays 2023; 45:e2200198. [PMID: 36529693 DOI: 10.1002/bies.202200198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Animal, protist and viral messenger RNAs (mRNAs) are most prominently modified at the beginning by methylation of cap-adjacent nucleotides at the 2'-O-position of the ribose (cOMe) by dedicated cap methyltransferases (CMTrs). If the first nucleotide of an mRNA is an adenosine, PCIF1 can methylate at the N6 -position (m6 A), while internally the Mettl3/14 writer complex can methylate. These modifications are introduced co-transcriptionally to affect many aspects of gene expression including localisation to synapses and local translation. Of particular interest, transcription start sites of many genes are heterogeneous leading to sequence diversity at the beginning of mRNAs, which together with cOMe and m6 Am could constitute an extensive novel layer of gene expression control. Given the role of cOMe and m6 A in local gene expression at synapses and higher brain functions including learning and memory, such code could be implemented at the transcriptional level for lasting memories through local gene expression at synapses.
Collapse
Affiliation(s)
- Ina Anreiter
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Yuan W Tian
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Matthias Soller
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
De Jesus DF, Zhang Z, Brown NK, Li X, Gaffrey MJ, Kahraman S, Wei J, Hu J, Basile G, Xiao L, Rana TM, Mathews C, Powers AC, Atkinson MA, Eizirik DL, Dhe-Paganon S, Parent AV, Qian WJ, He C, Kulkarni RN. Redox Regulation of m 6 A Methyltransferase METTL3 in Human β-cells Controls the Innate Immune Response in Type 1 Diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528701. [PMID: 36824909 PMCID: PMC9948953 DOI: 10.1101/2023.02.16.528701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Type 1 Diabetes (T1D) is characterized by autoimmune-mediated destruction of insulin-producing β-cells. Several observations have renewed interest in the innate immune system as an initiator of the disease process against β-cells. Here, we show that N 6 -Methyladenosine (m 6 A) is an adaptive β-cell safeguard mechanism that accelerates mRNA decay of the 2'-5'-oligoadenylate synthetase (OAS) genes to control the antiviral innate immune response at T1D onset. m 6 A writer methyltransferase 3 (METTL3) levels increase drastically in human and mouse β-cells at T1D onset but rapidly decline with disease progression. Treatment of human islets and EndoC-βH1 cells with pro-inflammatory cytokines interleukin-1 β and interferon α mimicked the METTL3 upregulation seen at T1D onset. Furthermore, m 6 A-sequencing revealed the m 6 A hypermethylation of several key innate immune mediators including OAS1, OAS2, and OAS3 in human islets and EndoC-βH1 cells challenged with cytokines. METTL3 silencing in human pseudoislets or EndoC-βH1 cells enhanced OAS levels by increasing its mRNA stability upon cytokine challenge. Consistently, in vivo gene therapy, to prolong Mettl3 overexpression specifically in β-cells, delayed diabetes progression in the non-obese diabetic (NOD) mouse model of T1D by limiting the upregulation of Oas pointing to potential therapeutic relevance. Mechanistically, the accumulation of reactive oxygen species blocked METTL3 upregulation in response to cytokines, while physiological levels of nitric oxide promoted its expression in human islets. Furthermore, for the first time to our knowledge, we show that the cysteines in position C276 and C326 in the zinc finger domain of the METTL3 protein are sensitive to S-nitrosylation (SNO) and are significant for the METTL3 mediated regulation of OAS mRNA stability in human β-cells in response to cytokines. Collectively, we report that m 6 A regulates human and mouse β-cells to control the innate immune response during the onset of T1D and propose targeting METTL3 to prevent β-cell death in T1D.
Collapse
|
13
|
Orsolic I, Carrier A, Esteller M. Genetic and epigenetic defects of the RNA modification machinery in cancer. Trends Genet 2023; 39:74-88. [PMID: 36379743 DOI: 10.1016/j.tig.2022.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/25/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
Cancer was initially considered to be an exclusively genetic disease, but an interplay of dysregulated genetic and epigenetic mechanisms is now known to contribute to the cancer phenotype. More recently, chemical modifications of RNA molecules - the so-called epitranscriptome - have been found to regulate various aspects of RNA function and homeostasis. Specific enzymes, known as RNA-modifying proteins (RMPs), are responsible for depositing, removing, and reading chemical modifications in RNA. Intensive investigations in the epitranscriptomic field in recent years, in conjunction with great technological advances, have revealed the critical role of RNA modifications in regulating numerous cellular pathways. Furthermore, growing evidence has revealed that RNA modification machinery is often altered in human cancers, highlighting the enormous potential of RMPs as pharmacological targets or diagnostic markers.
Collapse
Affiliation(s)
- Ines Orsolic
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Arnaud Carrier
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), 28029 Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
14
|
Endogenous retroelements as alarms for disruptions to cellular homeostasis. Trends Cancer 2023; 9:55-68. [PMID: 36216729 DOI: 10.1016/j.trecan.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022]
Abstract
Endogenous retroelements are DNA sequences which can duplicate and move to new locations in the genome. Actively moving endogenous retroelements can be disruptive to the host, and their expression is therefore often repressed. Interestingly, drugs that disrupt the repression of endogenous retroelements show promise for treating cancer. Expressed endogenous retroelements can activate innate immune receptors that activate the antiviral response, potentially leading to the death of cancer cells. We discuss disruptions to cellular processes which can lead to activation of the antiviral state from endogenous retroelements, and present the 'fire alarm hypothesis', where we argue that endogenous retroelements act as alarms for disruptions to these cellular processes. Furthermore, we discuss the properties of endogenous retroelements which make them suitable as alarms.
Collapse
|
15
|
Huang Y, Liao J, Wu S, Ye Y, Zeng H, Liang F, Yin X, Jiang Y, Ouyang N, Han P, Huang X. Upregulated YTHDF1 associates with tumor immune microenvironment in head and neck squamous cell carcinomas. Transl Cancer Res 2022; 11:3986-3999. [PMID: 36523307 PMCID: PMC9745380 DOI: 10.21037/tcr-22-503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/25/2022] [Indexed: 02/19/2024]
Abstract
BACKGROUND The nature of the tumor immune microenvironment (TME) is essential for the head and neck squamous cell carcinomas (HNSCC) initiation, prognosis, and response to immunotherapy. However, its gene regulatory network remains to be elucidated. METHODS To identify N6-methyladenosine (m6A) regulators that are involved in regulating the HNSCC TME, a computational screen was applied to The Cancer Genome Atlas (TCGA) HNSCC patient samples. The effects of mutation, copy number variation (CNV), and transcriptional regulation on YTHDF1 expression were analyzed. We analyzed the TME infiltration, cancer-immunity cycle activities, and YTHDF1-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. RESULTS Among the 24 m6A regulators, 3 factors (YTHDF1, ELAVL1, and METTL3) were highly correlated with TME infiltration. As the top candidate, YTHDF1 was up-regulated and amplified in HNSCC. YTHDF1 promoter gains active histone marks and high chromatin accessibility, which might be transcriptionally activated by SOX2 and TP63. Moreover, YTHDF1 expression significantly associates with tumor malignant phenotype in HNSCC, which has a positive correlation with CD4+ T cells and a negative correlation with CD8+ T cells infiltration. Specifically, YTHDF1 expression is negatively associated with the cancer-immunity cycle and immune checkpoint inhibitors. In terms of the underlying biological mechanisms, YTHDF1 may interact with YTHDF2/3 to regulate several vital immune-related pathways. CONCLUSIONS We identify YTHDF1 associated with TME and elucidate an underlying mechanism of immune escape in HNSCC, which might be used as a predictive marker in guiding immunotherapy.
Collapse
Affiliation(s)
- Yongsheng Huang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianwei Liao
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sangqing Wu
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuchu Ye
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haicang Zeng
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Faya Liang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinke Yin
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanling Jiang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nengtai Ouyang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping Han
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoming Huang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Li Y, Ruan GX, Chen W, Huang H, Zhang R, Wang J, Li Y, Xu S, Ou X. RNA-Editing Enzyme ADAR1 p150 Isoform Is Critical for Germinal Center B Cell Response. THE JOURNAL OF IMMUNOLOGY 2022; 209:1071-1082. [DOI: 10.4049/jimmunol.2200149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/11/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Adenosine deaminase acting on RNA (ADAR)1 is the principal enzyme for adenosine-to-inosine editing, an RNA modification–avoiding cytosolic nucleic acid sensor’s activation triggered by endogenous dsRNAs. Two ADAR1 isoforms exist in mammals, a longer IFN-inducible and mainly cytoplasm-localized p150 isoform and a shorter constitutively expressed and primarily nucleus-localized p110 isoform. Studies of ADAR1 mutant mice have demonstrated that ADAR1 is essential for multiple physiological processes, including embryonic development, innate immune response, and B and T lymphocyte development. However, it remained unknown whether ADAR1 plays a role in the humoral immune response. In this study, we conditionally delete Adar1 in activated B cells and show that ADAR1-deficient mice have a defective T cell–dependent Ab response and diminished germinal center (GC) B cells. Using various double mutant mice concurrently deficient in ADAR1 and different downstream dsRNA sensors, we demonstrate that ADAR1 regulates the GC response by preventing hyperactivation of the melanoma differentiation-associated protein 5 (MDA5) but not the protein kinase R or RNase L pathway. We also show that p150 is exclusively responsible for ADAR1’s function in the GC response, and the p110 isoform cannot substitute for the p150’s role, even when p110 is constitutively expressed in the cytoplasm. We further demonstrated that the dsRNA-binding but not the RNA-editing activity is required for ADAR1’s function in the GC response. Thus, our data suggest that the ADAR1 p150 isoform plays a crucial role in regulating the GC B cell response.
Collapse
Affiliation(s)
- Yuxing Li
- *Harbin Institute of Technology, Harbin, China
- †Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Gui-Xin Ruan
- †Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wenjing Chen
- †Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hengjun Huang
- †Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Rui Zhang
- †Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jing Wang
- †Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yan Li
- †Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shengli Xu
- ‡Singapore Immunology Network, Agency for Science, Technology and Research, Singapore; and
- §Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xijun Ou
- †Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
17
|
RNA Editing Enzyme ADAR1 Regulates METTL3 in an Editing Dependent Manner to Promote Breast Cancer Progression via METTL3/ARHGAP5/YTHDF1 Axis. Int J Mol Sci 2022; 23:ijms23179656. [PMID: 36077054 PMCID: PMC9456332 DOI: 10.3390/ijms23179656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
A-to-I RNA editing and m6A modification are two of the most prevalent types of RNA modifications controlling gene expression in mammals and play very important roles in tumorigenesis and tumor progression. However, the functional roles and correlations of these two RNA modifications remain to be further investigated in cancer. Herein, we show that ADAR1, an A-to-I RNA-editing enzyme, interacts with METTL3 and increases its protein level to promote the proliferation, migration and invasion of breast cancer cells through a mechanism connecting ADAR1, METTL3 and YTHDF1. We show that both ADAR1 and METTL3 are upregulated in breast cancer samples, and ADAR1 positively correlates with METTL3; ADAR1 edits METTL3 mRNA and changes its binding site to miR532-5p, leading to increased METTL3 protein, which further targets ARHGAP5, recognized by YTHDF1. Additionally, we show that loss of ADAR1 significantly inhibits breast cancer growth in vivo. Collectively, our findings identify the ADAR1–METTL3 axis as a novel, important pathway that connects A-to-I editing and m6A RNA modifications during breast cancer progression.
Collapse
|
18
|
del Valle-Morales D, Le P, Saviana M, Romano G, Nigita G, Nana-Sinkam P, Acunzo M. The Epitranscriptome in miRNAs: Crosstalk, Detection, and Function in Cancer. Genes (Basel) 2022; 13:1289. [PMID: 35886072 PMCID: PMC9316458 DOI: 10.3390/genes13071289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
The epitranscriptome encompasses all post-transcriptional modifications that occur on RNAs. These modifications can alter the function and regulation of their RNA targets, which, if dysregulated, result in various diseases and cancers. As with other RNAs, miRNAs are highly modified by epitranscriptomic modifications such as m6A methylation, 2'-O-methylation, m5C methylation, m7G methylation, polyuridine, and A-to-I editing. miRNAs are a class of small non-coding RNAs that regulates gene expression at the post-transcriptional level. miRNAs have gathered high clinical interest due to their role in disease, development, and cancer progression. Epitranscriptomic modifications alter the targeting, regulation, and biogenesis of miRNAs, increasing the complexity of miRNA regulation. In addition, emerging studies have revealed crosstalk between these modifications. In this review, we will summarize the epitranscriptomic modifications-focusing on those relevant to miRNAs-examine the recent crosstalk between these modifications, and give a perspective on how this crosstalk expands the complexity of miRNA biology.
Collapse
Affiliation(s)
- Daniel del Valle-Morales
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Patricia Le
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Michela Saviana
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Giovanni Nigita
- Comprehensive Cancer Center, Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA;
| | - Patrick Nana-Sinkam
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| |
Collapse
|
19
|
Zhai J, Koh JH, Soong TW. RNA editing of ion channels and receptors in physiology and neurological disorders. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac010. [PMID: 38596706 PMCID: PMC11003377 DOI: 10.1093/oons/kvac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/14/2022] [Accepted: 05/15/2022] [Indexed: 04/11/2024]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a post-transcriptional modification that diversifies protein functions by recoding RNA or alters protein quantity by regulating mRNA level. A-to-I editing is catalyzed by adenosine deaminases that act on RNA. Millions of editing sites have been reported, but they are mostly found in non-coding sequences. However, there are also several recoding editing sites in transcripts coding for ion channels or transporters that have been shown to play important roles in physiology and changes in editing level are associated with neurological diseases. These editing sites are not only found to be evolutionary conserved across species, but they are also dynamically regulated spatially, developmentally and by environmental factors. In this review, we discuss the current knowledge of A-to-I RNA editing of ion channels and receptors in the context of their roles in physiology and pathological disease. We also discuss the regulation of editing events and site-directed RNA editing approaches for functional study that offer a therapeutic pathway for clinical applications.
Collapse
Affiliation(s)
- Jing Zhai
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Joanne Huifen Koh
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore,
Singapore 117456, Singapore
| |
Collapse
|
20
|
Control of animal virus replication by RNA adenosine methylation. Adv Virus Res 2022; 112:87-114. [PMID: 35840182 DOI: 10.1016/bs.aivir.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Methylation at the N6-position of either adenosine (m6A) or 2'-O-methyladenosine (m6Am) represents two of the most abundant internal modifications of coding and non-coding RNAs, influencing their maturation, stability and function. Additionally, although less abundant and less well-studied, monomethylation at the N1-position (m1A) can have profound effects on RNA folding. It has been known for several decades that RNAs produced by both DNA and RNA viruses can be m6A/m6Am modified and the list continues to broaden through advances in detection technologies and identification of the relevant methyltransferases. Recent studies have uncovered varied mechanisms used by viruses to manipulate the m6A pathway in particular, either to enhance virus replication or to antagonize host antiviral defenses. As such, RNA modifications represent an important frontier of exploration in the broader realm of virus-host interactions, and this new knowledge already suggests exciting opportunities for therapeutic intervention. In this review we summarize the principal mechanisms by which m6A/m6Am can promote or hinder viral replication, describe how the pathway is actively manipulated by biomedically important viruses, and highlight some remaining gaps in understanding how adenosine methylation of RNA controls viral replication and pathogenesis.
Collapse
|
21
|
Liu Q. Current Advances in N6-Methyladenosine Methylation Modification During Bladder Cancer. Front Genet 2022; 12:825109. [PMID: 35087575 PMCID: PMC8787278 DOI: 10.3389/fgene.2021.825109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
N6-methyladenosine (m6A) is a dynamic, reversible post-transcriptional modification, and the most common internal modification of eukaryotic messenger RNA (mRNA). Considerable evidence now shows that m6A alters gene expression, thereby regulating cell self-renewal, differentiation, invasion, and apoptotic processes. M6A methylation disorders are directly related to abnormal RNA metabolism, which may lead to tumor formation. M6A methyltransferase is the dominant catalyst during m6A modification; it removes m6A demethylase, promotes recognition by m6A binding proteins, and regulates mRNA metabolic processes. Bladder cancer (BC) is a urinary system malignant tumor, with complex etiology and high incidence rates. A well-differentiated or moderately differentiated pathological type at initial diagnosis accounts for most patients with BC. For differentiated superficial bladder urothelial carcinoma, the prognosis is normally good after surgery. However, due to poor epithelial cell differentiation, BC urothelial cell proliferation and infiltration may lead to invasive or metastatic BC, which lowers the 5-years survival rate and significantly affects clinical treatments in elderly patients. Here, we review the latest progress in m6A RNA methylation research and investigate its regulation on BC occurrence and development.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
22
|
Worpenberg L, Paolantoni C, Roignant JY. Functional interplay within the epitranscriptome: Reality or fiction? Bioessays 2021; 44:e2100174. [PMID: 34873719 DOI: 10.1002/bies.202100174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/11/2022]
Abstract
RNA modifications have recently emerged as an important regulatory layer of gene expression. The most prevalent and reversible modification on messenger RNA (mRNA), N6-methyladenosine, regulates most steps of RNA metabolism and its dysregulation has been associated with numerous diseases. Other modifications such as 5-methylcytosine and N1-methyladenosine have also been detected on mRNA but their abundance is lower and still debated. Adenosine to inosine RNA editing is widespread on coding and non-coding RNA and can alter mRNA decoding as well as protect against autoimmune diseases. 2'-O-methylation of the ribose and pseudouridine are widespread on ribosomal and transfer RNA and contribute to proper RNA folding and stability. While the understanding of the individual role of RNA modifications has now reached an unprecedented stage, still little is known about their interplay in the control of gene expression. In this review we discuss the examples where such interplay has been observed and speculate that with the progress of mapping technologies more of those will rapidly accumulate.
Collapse
Affiliation(s)
- Lina Worpenberg
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Chiara Paolantoni
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jean-Yves Roignant
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
23
|
Lisy S, Rothamel K, Ascano M. RNA Binding Proteins as Pioneer Determinants of Infection: Protective, Proviral, or Both? Viruses 2021; 13:2172. [PMID: 34834978 PMCID: PMC8625426 DOI: 10.3390/v13112172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022] Open
Abstract
As the first intracellular host factors that directly interact with the genomes of RNA viruses, RNA binding proteins (RBPs) have a profound impact on the outcome of an infection. Recent discoveries brought about by new methodologies have led to an unprecedented ability to peer into the earliest events between viral RNA and the RBPs that act upon them. These discoveries have sparked a re-evaluation of current paradigms surrounding RBPs and post-transcriptional gene regulation. Here, we highlight questions that have bloomed from the implementation of these novel approaches. Canonical RBPs can impact the fates of both cellular and viral RNA during infection, sometimes in conflicting ways. Noncanonical RBPs, some of which were first characterized via interactions with viral RNA, may encompass physiological roles beyond viral pathogenesis. We discuss how these RBPs might discriminate between an RNA of either cellular or viral origin and thus exert either pro- or antiviral effects-which is a particular challenge as viruses contain mechanisms to mimic molecular features of cellular RNA.
Collapse
Affiliation(s)
- Samantha Lisy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (S.L.); (K.R.)
| | - Katherine Rothamel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (S.L.); (K.R.)
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (S.L.); (K.R.)
| |
Collapse
|
24
|
Snider DL, Horner SM. RNA modification of an RNA modifier prevents self-RNA sensing. PLoS Biol 2021; 19:e3001342. [PMID: 34329302 PMCID: PMC8323910 DOI: 10.1371/journal.pbio.3001342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This Primer explores a new study in PLOS Biology which finds that interferon-induced ADAR1 mRNA is m6A-modified to promote its translation, enabling ADAR1 to modify self-dsRNAs generated during the interferon response; this prevents recognition of these self RNAs and erroneous activation of the MDA5-mediated host antiviral response.
Collapse
Affiliation(s)
- Daltry L. Snider
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Stacy M. Horner
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|