1
|
Kraus F, Ross B, Herrmann B, Obleser J. Neurophysiology of Effortful Listening: Decoupling Motivational Modulation from Task Demands. J Neurosci 2024; 44:e0589242024. [PMID: 39261007 PMCID: PMC11529814 DOI: 10.1523/jneurosci.0589-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
In demanding listening situations, a listener's motivational state may affect their cognitive investment. Here, we aim to delineate how domain-specific sensory processing, domain-general neural alpha power, and pupil size as a proxy for cognitive investment encode influences of motivational state under demanding listening. Participants (male and female) performed an auditory gap-detection task while the pupil size and the magnetoencephalogram were simultaneously recorded. Task demand and a listener's motivational state were orthogonally manipulated through changes in gap duration and monetary-reward prospect, respectively. Whereas task difficulty impaired performance, reward prospect enhanced it. The pupil size reliably indicated the modulatory impact of an individual's motivational state. At the neural level, the motivational state did not affect auditory sensory processing directly but impacted attentional postprocessing of an auditory event as reflected in the late evoked-response field and alpha-power change. Both pregap pupil dilation and higher parietal alpha power predicted better performance at the single-trial level. The current data support a framework wherein the motivational state acts as an attentional top-down neural means of postprocessing the auditory input in challenging listening situations.
Collapse
Affiliation(s)
- Frauke Kraus
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Bernhard Ross
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario M6A 2E1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Björn Herrmann
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Ontario M6A 2E1, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, 23562 Lübeck, Germany
- Center of Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
2
|
Murphy E, Rollo PS, Segaert K, Hagoort P, Tandon N. Multiple dimensions of syntactic structure are resolved earliest in posterior temporal cortex. Prog Neurobiol 2024; 241:102669. [PMID: 39332803 DOI: 10.1016/j.pneurobio.2024.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
How we combine minimal linguistic units into larger structures remains an unresolved topic in neuroscience. Language processing involves the abstract construction of 'vertical' and 'horizontal' information simultaneously (e.g., phrase structure, morphological agreement), but previous paradigms have been constrained in isolating only one type of composition and have utilized poor spatiotemporal resolution. Using intracranial recordings, we report multiple experiments designed to separate phrase structure from morphosyntactic agreement. Epilepsy patients (n = 10) were presented with auditory two-word phrases grouped into pseudoword-verb ('trab run') and pronoun-verb either with or without Person agreement ('they run' vs. 'they runs'). Phrase composition and Person violations both resulted in significant increases in broadband high gamma activity approximately 300 ms after verb onset in posterior middle temporal gyrus (pMTG) and posterior superior temporal sulcus (pSTS), followed by inferior frontal cortex (IFC) at 500 ms. While sites sensitive to only morphosyntactic violations were distributed, those sensitive to both composition types were generally confined to pSTS/pMTG and IFC. These results indicate that posterior temporal cortex shows the earliest sensitivity for hierarchical linguistic structure across multiple dimensions, providing neural resources for distinct windows of composition. This region is comprised of sparsely interwoven heterogeneous constituents that afford cortical search spaces for dissociable syntactic relations.
Collapse
Affiliation(s)
- Elliot Murphy
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, United States; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States.
| | - Patrick S Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, United States; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Katrien Segaert
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK; Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, the Netherlands
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6525 HR, the Netherlands
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, United States; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, United States; Memorial Hermann Hospital, Texas Medical Center, Houston, TX 77030, United States.
| |
Collapse
|
3
|
Alavash M, Obleser J. Brain Network Interconnectivity Dynamics Explain Metacognitive Differences in Listening Behavior. J Neurosci 2024; 44:e2322232024. [PMID: 38839303 PMCID: PMC11293451 DOI: 10.1523/jneurosci.2322-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Complex auditory scenes pose a challenge to attentive listening, rendering listeners slower and more uncertain in their perceptual decisions. How can we explain such behaviors from the dynamics of cortical networks that pertain to the control of listening behavior? We here follow up on the hypothesis that human adaptive perception in challenging listening situations is supported by modular reconfiguration of auditory-control networks in a sample of N = 40 participants (13 males) who underwent resting-state and task functional magnetic resonance imaging (fMRI). Individual titration of a spatial selective auditory attention task maintained an average accuracy of ∼70% but yielded considerable interindividual differences in listeners' response speed and reported confidence in their own perceptual decisions. Whole-brain network modularity increased from rest to task by reconfiguring auditory, cinguloopercular, and dorsal attention networks. Specifically, interconnectivity between the auditory network and cinguloopercular network decreased during the task relative to the resting state. Additionally, interconnectivity between the dorsal attention network and cinguloopercular network increased. These interconnectivity dynamics were predictive of individual differences in response confidence, the degree of which was more pronounced after incorrect judgments. Our findings uncover the behavioral relevance of functional cross talk between auditory and attentional-control networks during metacognitive assessment of one's own perception in challenging listening situations and suggest two functionally dissociable cortical networked systems that shape the considerable metacognitive differences between individuals in adaptive listening behavior.
Collapse
Affiliation(s)
- Mohsen Alavash
- Department of Psychology, University of Lübeck, Lübeck 23562, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck 23562, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck 23562, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck 23562, Germany
| |
Collapse
|
4
|
Tune S, Obleser J. Neural attentional filters and behavioural outcome follow independent individual trajectories over the adult lifespan. eLife 2024; 12:RP92079. [PMID: 38470243 DOI: 10.7554/elife.92079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Preserved communication abilities promote healthy ageing. To this end, the age-typical loss of sensory acuity might in part be compensated for by an individual's preserved attentional neural filtering. Is such a compensatory brain-behaviour link longitudinally stable? Can it predict individual change in listening behaviour? We here show that individual listening behaviour and neural filtering ability follow largely independent developmental trajectories modelling electroencephalographic and behavioural data of N = 105 ageing individuals (39-82 y). First, despite the expected decline in hearing-threshold-derived sensory acuity, listening-task performance proved stable over 2 y. Second, neural filtering and behaviour were correlated only within each separate measurement timepoint (T1, T2). Longitudinally, however, our results raise caution on attention-guided neural filtering metrics as predictors of individual trajectories in listening behaviour: neither neural filtering at T1 nor its 2-year change could predict individual 2-year behavioural change, under a combination of modelling strategies.
Collapse
Affiliation(s)
- Sarah Tune
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Jonas Obleser
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- Department of Psychology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Hardy SM, Jensen O, Wheeldon L, Mazaheri A, Segaert K. Modulation in alpha band activity reflects syntax composition: an MEG study of minimal syntactic binding. Cereb Cortex 2023; 33:497-511. [PMID: 35311899 PMCID: PMC9890467 DOI: 10.1093/cercor/bhac080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Successful sentence comprehension requires the binding, or composition, of multiple words into larger structures to establish meaning. Using magnetoencephalography, we investigated the neural mechanisms involved in binding at the syntax level, in a task where contributions from semantics were minimized. Participants were auditorily presented with minimal sentences that required binding (pronoun and pseudo-verb with the corresponding morphological inflection; "she grushes") and pseudo-verb wordlists that did not require binding ("cugged grushes"). Relative to no binding, we found that syntactic binding was associated with a modulation in alpha band (8-12 Hz) activity in left-lateralized language regions. First, we observed a significantly smaller increase in alpha power around the presentation of the target word ("grushes") that required binding (-0.05 to 0.1 s), which we suggest reflects an expectation of binding to occur. Second, during binding of the target word (0.15-0.25 s), we observed significantly decreased alpha phase-locking between the left inferior frontal gyrus and the left middle/inferior temporal cortex, which we suggest reflects alpha-driven cortical disinhibition serving to strengthen communication within the syntax composition neural network. Altogether, our findings highlight the critical role of rapid spatial-temporal alpha band activity in controlling the allocation, transfer, and coordination of the brain's resources during syntax composition.
Collapse
Affiliation(s)
- Sophie M Hardy
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- Department of Psychology, University of Warwick, Coventry CV4 7AL, UK
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Linda Wheeldon
- Department of Foreign Languages and Translations, University of Agder, Kristiansand 4630, Norway
| | - Ali Mazaheri
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Katrien Segaert
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|