1
|
Kong L, Hu H, Li P, Qu M. Tissue-specific alternative splicing and the functional differentiation of LmLPMO15-1 in Locusta migratoria. INSECT SCIENCE 2024. [PMID: 39543942 DOI: 10.1111/1744-7917.13469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Insect lytic polysaccharide monooxygenases (LPMO15s) are newly discovered copper-dependent enzymes that promote chitin degradation in insect through oxidative cleavage of glycosidic bonds. They are potential pesticide targets due to their critical role for chitin turnover in the integument, trachea, and peritrophic matrix of the midgut during insect molting. However, the knowledge about whether and how LPMO15s participate in chitin turnover in other tissues is still insufficient. Here, using the orthopteran pest Locusta migratoria as a model, a novel alternative splicing site of LmLPMO15-1 was discovered and it produces 2 variants, LmLPMO15-1a and LmLPMO15-1b. The transcripts of LmLPMO15-1a and LmLPMO15-1b were specifically expressed in the trachea and foregut, respectively. RNA interference targeting LmLPMO15-1 (a common fragment shared by both LmLPMO15-1a and LmLPMO15-1b), a specific region of LmLPMO15-1a or LmLPMO15-1b all significantly reduced survival rate of nymphs and induced lethal phenotypes with developmental stasis or molt failure. Ultrastructure analysis demonstrated that LmLPMO15-1b was specifically involved in foregut old cuticle degradation, while LmLPMO15-1a was exclusively responsible for the degradation of the tracheal old cuticle. This study revealed LmLPMO15-1 achieved tissue-specific functional differentiation through alternative splicing, and proved the significance of the spliced variants during insect growth and development. It provides new strategies for pest control targeting LPMO15-1.
Collapse
Affiliation(s)
- Lin Kong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Huiying Hu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Pengfei Li
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Mingbo Qu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning Province, China
| |
Collapse
|
2
|
Liu Q, Wang X, Chen H, Cai X, Tang Z, Liu X, Zhao D, Zhao P, Xia Q. Nature's loom: How to design a spinning tool using chitin-protein based composite material. Int J Biol Macromol 2024; 280:135980. [PMID: 39322169 DOI: 10.1016/j.ijbiomac.2024.135980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Silk-producing animals use spigots to generate natural silk fibers for various purposes. These natural looms must be able to withstand prolonged silk extrusion. To gain insight into the functional basis of spigots, we report on the structural design of the spigot of the silkworm Bombyx mori. The B. mori spigot exhibits a unique triple-ridged strip surface structure, consisting of cuticle proteins, resilin, chitin, and metal ions (such as K and Ca). This multi-microstructure endows the spigot with superior hierarchical mechanical properties, enabling it to function as a spinning tool for silk formation, thereby influencing the structure and performance of the silk. These findings demonstrate new pathways for achieving specialized functions in confined spaces, providing theoretical support for understanding the natural spinning mechanism and inspiring new directions for developing innovative biomimetic materials.
Collapse
Affiliation(s)
- Qingsong Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xin Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Hao Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xiangyu Cai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Zhangchen Tang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xiao Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China.
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Wu T, Dong Q, Tang X, Zhu X, Deng D, Ding Y, Ahmad S, Zhang W, Mao Z, Zhao X, Ge L. CYP303A1 regulates molting and metamorphosis through 20E signaling in Nilaparvata lugens Stål (Hemiptera: Delphacidae). Int J Biol Macromol 2024; 281:136234. [PMID: 39366602 DOI: 10.1016/j.ijbiomac.2024.136234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Cytochrome P450s play a crucial role in the breakdown of external substances and perform important activities in the hormone system of insects. It has been understood that P450s were essential in the metabolism of ecdysteroids. CYP303A1 is a highly conserved CYP in most insects, but its specific physiological functions remain poorly understood in Nilaparvata lugens Stål. In this study, NlCYP303A1 was identified and highly expressed in the pre-molt stages, predominantly in the cuticle-producing tissues. Silencing of NlCYP303A1 caused a lethal phenotype with a molting defect. Moreover, the 20E titers, the expression levels of Halloween genes, and critical genes associated with the 20E signaling pathway in N. lugens nymphs were significantly decreased with the silencing NlCYP303A1. We further performed additional backfilling of 20E to rescue the RNAi effects on NlCYP303A1. The gene expression levels that were previously reduced caused by silencing NlCYP303A1 were significantly elevated. However, the molting defects of nymphs were not effectively improved. The results demonstrated NlCYP303A1 plays a crucial role in the molting and metamorphosis of N. lugens by regulating the 20E signaling pathway and cuticular formation, enhances the understanding of the functional role of CYP 2 clans, and identifies candidate gene for RNAi-based control of N. lugens.
Collapse
Affiliation(s)
- Tao Wu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, 225009 Yangzhou, Jiangsu Province, PR China
| | - Qiaoqiao Dong
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xingyu Tang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xuhui Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, 225009 Yangzhou, Jiangsu Province, PR China
| | - Di Deng
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Yuting Ding
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Sheraz Ahmad
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Wen Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Ziyue Mao
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Xudong Zhao
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| | - Linquan Ge
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| |
Collapse
|
4
|
Finet C. Developmental genetics of cuticular micro- and nano-structures in insects. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101254. [PMID: 39182719 DOI: 10.1016/j.cois.2024.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Insect cuticle exhibits a wide array of micro- and nano-structures in terms of size, form, and function. However, the investigation of cellular mechanisms of morphogenesis has centered around a small number of structure types and organisms. The recent expansion of the taxa studied, and subsequent discoveries prompt us to revisit well-known models, like the one for bristle morphogenesis. In addition, common themes are emerging in the morphogenesis of cuticular structures, such as the polyploidy of precursor cells, the role of pigments and cuticular proteins in controlling chitin deposition in space and time, and the role of the apical extracellular matrix in defining the shape of the developing structure. Understanding how these structures are synthesized in biological systems holds promise for bioinspired design.
Collapse
Affiliation(s)
- Cédric Finet
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
5
|
Ghosh N, Treisman JE. Apical cell expansion maintained by Dusky-like establishes a scaffold for corneal lens morphogenesis. SCIENCE ADVANCES 2024; 10:eado4167. [PMID: 39167639 PMCID: PMC11338227 DOI: 10.1126/sciadv.ado4167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
The Drosophila corneal lens is entirely composed of chitin and other apical extracellular matrix components, and it is not known how it acquires the biconvex shape that enables it to focus light onto the retina. We show here that the zona pellucida domain-containing protein Dusky-like is essential for normal corneal lens morphogenesis. Dusky-like transiently localizes to the expanded apical surfaces of the corneal lens-secreting cells and prevents them from undergoing apical constriction and apicobasal contraction. Dusky-like also controls the arrangement of two other zona pellucida domain proteins, Dumpy and Piopio, external to the developing corneal lens. Loss of either dusky-like or dumpy delays chitin accumulation and disrupts the outer surface of the corneal lens. We find that artificially inducing apical constriction by activating myosin contraction is sufficient to similarly alter chitin deposition and corneal lens morphology. These results demonstrate the importance of cell shape in controlling the morphogenesis of overlying apical extracellular matrix structures such as the corneal lens.
Collapse
Affiliation(s)
- Neha Ghosh
- Department of Cell Biology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
6
|
Zeng MZ, Zhou W, Wen SS, Wu H, Zhang Q, Fu KY, Guo WC, Shi JF. Identification and Functional Insights of Knickkopf Genes in the Larval Cuticle of Leptinotarsa decemlineata. INSECTS 2024; 15:623. [PMID: 39194827 DOI: 10.3390/insects15080623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
The Colorado potato beetle (Leptinotarsa decemlineata) is a major pest of potato crops. While Knickkopf (Knk) genes are essential for insect cuticle formation, their roles in pests like L. decemlineata remain unclear. This study aims to identify and characterize Knk genes in L. decemlineata and explore their functions in larval development and cuticle integrity. We used genomic and transcriptomic databases to identify LdKnk-family genes, validated through RT-PCR and RACE. Gene expression was analyzed at various developmental stages and tissues using qRT-PCR. RNA interference (RNAi) and Transmission electron microscopy (TEM) were applied to determine the functional roles of these genes. Four LdKnk-family genes were identified. Spatio-temporal expression analysis indicated significant gene expression during larval molting and pupal stages, especially in the epidermis. RNAi experiments showed that silencing LdKnk and LdKnk3-5' led to reduced larval weight, cuticle thinning, and increased mortality, while LdKnk3-FL knockdown caused abnormal cuticle thickening and molting disruptions. LdKnk2 knockdown increased epicuticle and endocuticle thickness without visible phenotypic changes. The study highlights the essential roles of LdKnk-family genes in maintaining cuticle structure and integrity, suggesting their potential as targets for RNAi-based pest control.
Collapse
Affiliation(s)
- Mu-Zi Zeng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Wei Zhou
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Shan-Shan Wen
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Hao Wu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qing Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Kai-Yun Fu
- Institute of Plant Protection Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China
| | - Wen-Chao Guo
- Institute of Plant Protection Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China
| | - Ji-Feng Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Rabadiya D, Behr M. The biology of insect chitinases and their roles at chitinous cuticles. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104071. [PMID: 38184175 DOI: 10.1016/j.ibmb.2024.104071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Chitin is one of the most prevalent biomaterials in the natural world. The chitin matrix formation and turnover involve several enzymes for chitin synthesis, maturation, and degradation. Sequencing of the Drosophila genome more than twenty years ago revealed that insect genomes contain a number of chitinases, but why insects need so many different chitinases was unclear. Here, we focus on insect GH18 family chitinases and discuss their participation in chitin matrix formation and degradation. We describe their variations in terms of temporal and spatial expression patterns, molecular function, and physiological consequences at chitinous cuticles. We further provide insight into the catalytic mechanisms by discussing chitinase protein domain structures, substrate binding, and enzymatic activities with respect to structural analysis of the enzymatic GH18 domain, substrate-binding cleft, and characteristic TIM-barrel structure.
Collapse
Affiliation(s)
- Dhyeykumar Rabadiya
- Cell & Developmental Biology, Institute for Biology, Leipzig University, Philipp-Rosenthal-Str. 55, 04103, Leipzig, Germany
| | - Matthias Behr
- Cell & Developmental Biology, Institute for Biology, Leipzig University, Philipp-Rosenthal-Str. 55, 04103, Leipzig, Germany.
| |
Collapse
|
8
|
Yu A, Beck M, Merzendorfer H, Yang Q. Advances in understanding insect chitin biosynthesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104058. [PMID: 38072083 DOI: 10.1016/j.ibmb.2023.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Chitin, a natural polymer of N-acetylglucosamine chains, is a principal component of the apical extracellular matrix in arthropods. Chitin microfibrils serve as structural components of natural biocomposites present in the extracellular matrix of a variety of invertebrates including sponges, molluscs, nematodes, fungi and arthropods. In this review, we summarize the frontier advances of insect chitin synthesis. More specifically, we focus on the chitin synthase (CHS), which catalyzes the key biosynthesis step. CHS is also known as an attractive insecticidal target in that this enzyme is absent in mammals, birds or plants. As no insect chitin synthase structure have been reported so far, we review recent studies on glycosyltransferase domain structures derived from fungi and oomycetes, which are conserved in CHS from all species containing chitin. Auxiliary proteins, which coordinate with CHS in chitin biosynthesis and assembly, are also discussed.
Collapse
Affiliation(s)
- Ailing Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Marius Beck
- Department of Chemistry-Biology, University of Siegen, Siegen, Germany
| | - Hans Merzendorfer
- Department of Chemistry-Biology, University of Siegen, Siegen, Germany.
| | - Qing Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
9
|
Nakazato Y, Otaki JM. Live Detection of Intracellular Chitin in Butterfly Wing Epithelial Cells In Vivo Using Fluorescent Brightener 28: Implications for the Development of Scales and Color Patterns. INSECTS 2023; 14:753. [PMID: 37754721 PMCID: PMC10532232 DOI: 10.3390/insects14090753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
Chitin is the major component of the extracellular cuticle and plays multiple roles in insects. In butterflies, chitin builds wing scales for structural colors. Here, we show that intracellular chitin in live cells can be detected in vivo with fluorescent brightener 28 (FB28), focusing on wing epithelial cells of the small lycaenid butterfly Zizeeria maha immediately after pupation. A relatively small number of cells at the apical surface of the epithelium were strongly FB28-positive in the cytosol and seemed to have extensive ER-Golgi networks, which may be specialized chitin-secreting cells. Some cells had FB28-positive tadpole-tail-like or rod-like structures relative to the nucleus. We detected FB28-positive hexagonal intracellular objects and their associated structures extending toward the apical end of the cell, which may be developing scale bases and shafts. We also observed FB28-positive fibrous intracellular structures extending toward the basal end. Many cells were FB28-negative in the cytosol, which contained FB28-positive dots or discs. The present data are crucial to understanding the differentiation of the butterfly wing epithelium, including scale formation and color pattern determination. The use of FB28 in probing intracellular chitin in live cells may be applicable to other insect systems.
Collapse
Affiliation(s)
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
| |
Collapse
|