1
|
Kim J, Song B, Kim KH, Moon Y. Ribosomal proteins mediate non-canonical regulation of gut inflammatory signature by crop contaminant deoxynivalenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117645. [PMID: 39788032 DOI: 10.1016/j.ecoenv.2024.117645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Deoxynivalenol (DON), a prevalent mycotoxin produced by Fusarium species, contaminates global agricultural products and poses significant health risks, particularly to the gastrointestinal (GI) system. DON exposure disrupts ribosomal function, inducing stress responses linked to various inflammatory diseases, including inflammatory bowel disease (IBD). In this study, we elucidate a novel regulatory mechanism involving ribosomal proteins (RPs) RPL13A and RPS3, which mediate proinflammatory chemokine production in DON-exposed gut epithelial cells. Through a combination of transcriptomic analysis and experimental models, we demonstrate that while RPL13A negatively regulates inflammation by enhancing the anti-inflammatory transcription factor ATF3, RPS3 acts as a proinflammatory driver, promoting chemokine production via activation of MAPK pathways, transcriptional upregulation of EGR-1, and stabilization of mRNA through cytosolic translocation of HuR. Our findings reveal a dynamic interplay between RPL13A and RPS3, wherein RPL13A counteracts the proinflammatory effects of RPS3, offering a finely tuned regulatory axis in the inflammatory response to environmental toxins. These insights provide potential molecular targets for therapeutic intervention in toxin-induced inflammatory diseases of the gut, highlighting the non-canonical roles of ribosomal proteins in modulating immune responses to environmental stressors.
Collapse
Affiliation(s)
- Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea; Department of Obstetrics and Gynecology, College of Medicine, Pusan National University, Pusan National University, Busan, Republic of Korea; Program of Total Foodtech and PNU-Korea Maritime Institute (KMI) Collaborative Research Center, Busan, Republic of Korea
| | - BoGyoung Song
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
| | - Ki-Hyung Kim
- Department of Obstetrics and Gynecology, College of Medicine, Pusan National University, Pusan National University, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University, Busan, Republic of Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea; Biomedical Research Institute, Pusan National University, Busan, Republic of Korea; Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, Republic of Korea; Program of Total Foodtech and PNU-Korea Maritime Institute (KMI) Collaborative Research Center, Busan, Republic of Korea.
| |
Collapse
|
2
|
Zhang X, Li Z, Zhang X, Yuan Z, Zhang L, Miao P. ATF family members as therapeutic targets in cancer: From mechanisms to pharmacological interventions. Pharmacol Res 2024; 208:107355. [PMID: 39179052 DOI: 10.1016/j.phrs.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The activating transcription factor (ATF)/ cAMP-response element binding protein (CREB) family represents a large group of basic zone leucine zip (bZIP) transcription factors (TFs) with a variety of physiological functions, such as endoplasmic reticulum (ER) stress, amino acid stress, heat stress, oxidative stress, integrated stress response (ISR) and thus inducing cell survival or apoptosis. Interestingly, ATF family has been increasingly implicated in autophagy and ferroptosis in recent years. Thus, the ATF family is important for homeostasis and its dysregulation may promote disease progression including cancer. Current therapeutic approaches to modulate the ATF family include direct modulators, upstream modulators, post-translational modifications (PTMs) modulators. This review summarizes the structural domain and the PTMs feature of the ATF/CREB family and comprehensively explores the molecular regulatory mechanisms. On this basis, their pathways affecting proliferation, metastasis, and drug resistance in various types of cancer cells are sorted out and discussed. We then systematically summarize the status of the therapeutic applications of existing ATF family modulators and finally look forward to the future prospect of clinical applications in the treatment of tumors by modulating the ATF family.
Collapse
Affiliation(s)
- Xueyao Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaochun Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Peng Miao
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
De Florian Fania R, Bellazzo A, Collavin L. An update on the tumor-suppressive functions of the RasGAP protein DAB2IP with focus on therapeutic implications. Cell Death Differ 2024; 31:844-854. [PMID: 38902547 PMCID: PMC11239834 DOI: 10.1038/s41418-024-01332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
The dynamic crosstalk between tumor and stromal cells is a major determinant of cancer aggressiveness. The tumor-suppressor DAB2IP (Disabled homolog 2 interacting protein) plays an important role in this context, since it modulates cell responses to multiple extracellular inputs, including inflammatory cytokines and growth factors. DAB2IP is a RasGAP and negatively controls Ras-dependent mitogenic signals. In addition, it modulates other major oncogenic pathways, including TNFα/NF-κB, WNT/β-catenin, PI3K/AKT, and androgen receptor signaling. In line with its tumor-suppressive role, DAB2IP is frequently inactivated in cancer by transcriptional and post-transcriptional mechanisms, including promoter methylation, microRNA-mediated downregulation, and protein-protein interactions. Intriguingly, some observations suggest that downregulation of DAB2IP in cells of the tumor stroma could foster establishment of a pro-metastatic microenvironment. This review summarizes recent insights into the tumor-suppressive functions of DAB2IP and the consequences of its inactivation in cancer. In particular, we explore potential approaches aimed at reactivating DAB2IP, or augmenting its expression levels, as a novel strategy in cancer treatment. We suggest that reactivation or upregulation of DAB2IP would concurrently attenuate multiple oncogenic pathways in both cancer cells and the tumor microenvironment, with implications for improved treatment of a broad spectrum of tumors.
Collapse
Affiliation(s)
| | - Arianna Bellazzo
- Unit of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Via Franco Gallini, 2, 33081, Aviano, Italy
| | - Licio Collavin
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy.
| |
Collapse
|
4
|
Ni Y, Shi M, Liu L, Lin D, Zeng H, Ong C, Wang Y. G9a in Cancer: Mechanisms, Therapeutic Advancements, and Clinical Implications. Cancers (Basel) 2024; 16:2175. [PMID: 38927881 PMCID: PMC11201431 DOI: 10.3390/cancers16122175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
G9a, also named EHMT2, is a histone 3 lysine 9 (H3K9) methyltransferase responsible for catalyzing H3K9 mono- and dimethylation (H3K9me1 and H3K9me2). G9a contributes to various aspects of embryonic development and tissue differentiation through epigenetic regulation. Furthermore, the aberrant expression of G9a is frequently observed in various tumors, particularly in prostate cancer, where it contributes to cancer pathogenesis and progression. This review highlights the critical role of G9a in multiple cancer-related processes, such as epigenetic dysregulation, tumor suppressor gene silencing, cancer lineage plasticity, hypoxia adaption, and cancer progression. Despite the increased research on G9a in prostate cancer, there are still significant gaps, particularly in understanding its interactions within the tumor microenvironment and its broader epigenetic effects. Furthermore, this review discusses the recent advancements in G9a inhibitors, including the development of dual-target inhibitors that target G9a along with other epigenetic factors such as EZH2 and HDAC. It aims to bring together the existing knowledge, identify gaps in the current research, and suggest future directions for research and treatment strategies.
Collapse
Affiliation(s)
- Yuchao Ni
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China;
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Mingchen Shi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Liangliang Liu
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Dong Lin
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Hao Zeng
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Christopher Ong
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (M.S.); (L.L.); (D.L.); (Y.W.)
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
5
|
He P, Yu H, Deng X, Xin L, Xu B, Zhou HB, Dong C. Novel estrogen receptor β/histone deacetylase dual-targeted near-infrared fluorescent probes as theranostic agents for imaging and treatment of prostate cancer. Eur J Med Chem 2024; 268:116236. [PMID: 38367494 DOI: 10.1016/j.ejmech.2024.116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Estrogen receptor (ER) β and histone deacetylases (HDACs), when overexpressed, are associated closely with the occurrence and development of prostate cancer and are, therefore, considered important targets and biomarkers used in the clinical treatment of prostate cancer. The present study involved the design and synthesis of the first ERβ and HDAC dual-target near-infrared fluorescent probe with both imaging capacity and antitumor activity for prostate cancer. Both P1 and P2 probes exhibited excellent ERβ selectivity, with P1 being almost exclusively selective for ERβ compared to ERα. In addition, P1 exhibited good optical properties, such as strong near-infrared emission, large Stokes shift, and better anti-interference ability, along with excellent imaging ability for living cells. P1 also exhibited potent inhibitory activity against HDAC6 and DU-145 cells, with IC50 values of 52 nM and 0.96 μM, respectively. Further, P1 was applied successfully for the in vivo imaging of prostate cancer in a mouse model, and significant in vivo antitumor efficacy was achieved. The developed dual-target NIR fluorescent probe is expected to serve as an effective tool in the research on prostate cancer, leading to novel insights for the theranostic study of diseases related to ERβ and HDACs.
Collapse
Affiliation(s)
- Pei He
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Huiguang Yu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaofei Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lilan Xin
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Bin Xu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hai-Bing Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Virology, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatiorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China.
| | - Chune Dong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
6
|
Kouroukli O, Bravou V, Giannitsas K, Tzelepi V. Tissue-Based Diagnostic Biomarkers of Aggressive Variant Prostate Cancer: A Narrative Review. Cancers (Basel) 2024; 16:805. [PMID: 38398199 PMCID: PMC10887410 DOI: 10.3390/cancers16040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Prostate cancer (PC) is a common malignancy among elderly men, characterized by great heterogeneity in its clinical course, ranging from an indolent to a highly aggressive disease. The aggressive variant of prostate cancer (AVPC) clinically shows an atypical pattern of disease progression, similar to that of small cell PC (SCPC), and also shares the chemo-responsiveness of SCPC. The term AVPC does not describe a specific histologic subtype of PC but rather the group of tumors that, irrespective of morphology, show an aggressive clinical course, dictated by androgen receptor (AR) indifference. AR indifference represents an adaptive response to androgen deprivation therapy (ADT), driven by epithelial plasticity, an inherent ability of tumor cells to adapt to their environment by changing their phenotypic characteristics in a bi-directional way. The molecular profile of AVPC entails combined alterations in the tumor suppressor genes retinoblastoma protein 1 (RB1), tumor protein 53 (TP53), and phosphatase and tensin homolog (PTEN). The understanding of the biologic heterogeneity of castration-resistant PC (CRPC) and the need to identify the subset of patients that would potentially benefit from specific therapies necessitate the development of prognostic and predictive biomarkers. This review aims to discuss the possible pathophysiologic mechanisms of AVPC development and the potential use of emerging tissue-based biomarkers in clinical practice.
Collapse
Affiliation(s)
- Olga Kouroukli
- Department of Pathology, Evaggelismos General Hospital, 10676 Athens, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, 26504 Patras, Greece;
| | | | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
7
|
Huang ZG, Chen Y, Wu T, Yin BT, Feng X, Li SH, Li DM, Chen G, Cheng JW, He J. What should be the future direction of development in the field of prostate cancer with lung metastasis? World J Clin Oncol 2023; 14:420-439. [PMID: 37970109 PMCID: PMC10631347 DOI: 10.5306/wjco.v14.i10.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Since the start of the 21st century, prostate cancer with lung metastasis (PCLM) has accumulated significant scientific research output. However, a systematic knowledge framework for PCLM is still lacking. AIM To reconstruct the global knowledge system in the field of PCLM, sort out hot research directions, and provide reference for the clinical and mechanism research of PCLM. METHODS We retrieved 280 high-quality papers from the Web of Science Core Collection and conducted a bibliometric analysis of keywords, publication volume, and citation frequency. Additionally, we selected differentially expressed genes from global high-throughput datasets and performed enrichment analysis and protein-protein interaction analysis to further summarize and explore the mechanisms of PCLM. RESULTS PCLM has received extensive attention over the past 22 years, but there is an uneven spatial distribution in PCLM research. In the clinical aspect, the treatment of PCLM is mainly based on chemotherapy and immunotherapy, while diagnosis relies on methods such as prostate-specific membrane antigen positron emission tomography/computed tomography. In the basic research aspect, the focus is on cell adhesion molecules and signal transducer and activator of transcription 3, among others. Traditional treatments, such as chemotherapy, remain the mainstay of PCLM treatment, while novel approaches such as immunotherapy have limited effectiveness in PCLM. This study reveals for the first time that pathways related to coronavirus disease 2019, cytokine-cytokine receptor interaction, and ribosome are closely associated with PCLM. CONCLUSION Future research should focus on exploring and enhancing mechanisms such as cytokine-cytokine receptor interaction and ribosome and improve existing mechanisms like cadherin binding and cell adhesion molecules.
Collapse
Affiliation(s)
- Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yi Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Tong Wu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Bin-Tong Yin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao Feng
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Sheng-Hua Li
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Dong-Ming Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ji-Wen Cheng
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Juan He
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
8
|
Coulter JB, Easwaran H. Combining EZH2 and HDAC inhibitors to target castration-resistant prostate cancers. PLoS Biol 2023; 21:e3002081. [PMID: 37104249 PMCID: PMC10138788 DOI: 10.1371/journal.pbio.3002081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Development of resistance in castration-resistant prostate cancer (CRPC) involves epigenetic pathways. A new study in PLOS Biology demonstrates that combined therapy targeting enhancer of zeste homolog 2 (EZH2) and histone deacetylases (HDACs) may sensitize CRPC to both epigenetic and standard therapies.
Collapse
Affiliation(s)
- Jonathan B. Coulter
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hariharan Easwaran
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|