1
|
Mutz P, Camargo AP, Sahakyan H, Neri U, Butkovic A, Wolf YI, Krupovic M, Dolja VV, Koonin EV. The protein structurome of Orthornavirae and its dark matter. mBio 2024:e0320024. [PMID: 39714180 DOI: 10.1128/mbio.03200-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 12/24/2024] Open
Abstract
Metatranscriptomics is uncovering more and more diverse families of viruses with RNA genomes comprising the viral kingdom Orthornavirae in the realm Riboviria. Thorough protein annotation and comparison are essential to get insights into the functions of viral proteins and virus evolution. In addition to sequence- and hmm profile‑based methods, protein structure comparison adds a powerful tool to uncover protein functions and relationships. We constructed an Orthornavirae "structurome" consisting of already annotated as well as unannotated ("dark matter") proteins and domains encoded in viral genomes. We used protein structure modeling and similarity searches to illuminate the remaining dark matter in hundreds of thousands of orthornavirus genomes. The vast majority of the dark matter domains showed either "generic" folds, such as single α-helices, or no high confidence structure predictions. Nevertheless, a variety of lineage-specific globular domains that were new either to orthornaviruses in general or to particular virus families were identified within the proteomic dark matter of orthornaviruses, including several predicted nucleic acid-binding domains and nucleases. In addition, we identified a case of exaptation of a cellular nucleoside monophosphate kinase as an RNA-binding protein in several virus families. Notwithstanding the continuing discovery of numerous orthornaviruses, it appears that all the protein domains conserved in large groups of viruses have already been identified. The rest of the viral proteome seems to be dominated by poorly structured domains including intrinsically disordered ones that likely mediate specific virus-host interactions. IMPORTANCE Advanced methods for protein structure prediction, such as AlphaFold2, greatly expand our capability to identify protein domains and infer their likely functions and evolutionary relationships. This is particularly pertinent for proteins encoded by viruses that are known to evolve rapidly and as a result often cannot be adequately characterized by analysis of the protein sequences. We performed an exhaustive structure prediction and comparative analysis for uncharacterized proteins and domains ("dark matter") encoded by viruses with RNA genomes. The results show the dark matter of RNA virus proteome consists mostly of disordered and all-α-helical domains that cannot be readily assigned a specific function and that likely mediate various interactions between viral proteins and between viral and host proteins. The great majority of globular proteins and domains of RNA viruses are already known although we identified several unexpected domains represented in individual viral families.
Collapse
Affiliation(s)
- Pascal Mutz
- Division of Intramural Research, Computational Biology Branch, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Antonio Pedro Camargo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Harutyun Sahakyan
- Division of Intramural Research, Computational Biology Branch, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Uri Neri
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Anamarija Butkovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Yuri I Wolf
- Division of Intramural Research, Computational Biology Branch, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Eugene V Koonin
- Division of Intramural Research, Computational Biology Branch, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Wu CF, Okada R, Neri U, Chang YC, Ogawara T, Kitaura K, Komatsu K, Moriyama H. Identification of a novel mycovirus belonging to the "flexivirus"-related family with icosahedral virion. Virus Evol 2024; 10:veae093. [PMID: 39697687 PMCID: PMC11654247 DOI: 10.1093/ve/veae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
The order Tymovirales currently comprises five viral families with positive-sense RNA [(+)RNA] genomes that infect plants, fungi, and insects. Virion morphologies within the order Tymovirales differ between families, with icosahedral virions in the Tymoviridae and filamentous virions in the other "flexi"viridae families. Despite their different morphologies, these viruses are placed in the same order based on phylogenetic analyses of replicase-associated polyproteins. However, one of the families in the Tymovirales, Deltaflexiviridae, is considered to be capsidless because there have been no published reports of virion isolation. Here, we report that a new "flexivirus"-related (+)RNA virus, prospectively named Fusarium oxysporum icosahedral virus 1 (FoIV1), is icosahedral and that most deltaflexiviruses may have icosahedral virions. Phylogenetic analyses based on replicase-associated polyproteins indicated that FoIV1 forms a distinct group in the Tymovirales with some viruses originally assigned to the Deltaflexiviridae. Electron microscopy, protein analysis, and protein structure predictions indicate that FoIV1 open reading frame 4 encodes a single jelly-roll (SJR)-like coat protein (CP) that constitutes the icosahedral virions. Results of clustering analyses based on amino acid sequences and predicted CP structures suggested that most of the deltaflexiviruses have icosahedral virions composed of SJR-like CPs as in FoIV1, rather than having filamentous virions or capsidless. These results challenge the conventional understanding of viruses in the order Tymovirales, with important implications for revising its taxonomic framework and providing insights into the evolutionary relationships within this diverse and broad host range group of (+)RNA viruses.
Collapse
Affiliation(s)
- Chien-Fu Wu
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Ryo Okada
- Horticultural Research Institute, Ibaraki Agricultural Center, 3165-1 Ago, Kasama 319-0292, Japan
| | - Uri Neri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Chaim Levanon St 55, Tel Aviv 6997801, Israel
| | - Yi-Cheng Chang
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Takashi Ogawara
- Horticultural Research Institute, Ibaraki Agricultural Center, 3165-1 Ago, Kasama 319-0292, Japan
| | - Kentaro Kitaura
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
- Institute of Global Innovation Research (GIR), Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
3
|
Ros-Moner E, Jiménez-Góngora T, Villar-Martín L, Vogrinec L, González-Miguel VM, Kutnjak D, Rubio-Somoza I. Conservation of molecular responses upon viral infection in the non-vascular plant Marchantia polymorpha. Nat Commun 2024; 15:8326. [PMID: 39333479 PMCID: PMC11436993 DOI: 10.1038/s41467-024-52610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
After plants transitioned from water to land around 450 million years ago, they faced novel pathogenic microbes. Their colonization of diverse habitats was driven by anatomical innovations like roots, stomata, and vascular tissue, which became central to plant-microbe interactions. However, the impact of these innovations on plant immunity and pathogen infection strategies remains poorly understood. Here, we explore plant-virus interactions in the bryophyte Marchantia polymorpha to gain insights into the evolution of these relationships. Virome analysis reveals that Marchantia is predominantly associated with RNA viruses. Comparative studies with tobacco mosaic virus (TMV) show that Marchantia shares core defense responses with vascular plants but also exhibits unique features, such as a sustained wound response preventing viral spread. Additionally, general defense responses in Marchantia are equivalent to those restricted to vascular tissues in Nicotiana, suggesting that evolutionary acquisition of developmental innovations results in re-routing of defense responses in vascular plants.
Collapse
Affiliation(s)
- Eric Ros-Moner
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Tamara Jiménez-Góngora
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Luis Villar-Martín
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Lana Vogrinec
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Víctor M González-Miguel
- Data Analysis area, Bioinformatics Core Unit, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ignacio Rubio-Somoza
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
4
|
Simon AE, Quito-Avila DF, Bera S. Expanding the Plant Virome: Umbra-Like Viruses Use Host Proteins for Movement. Annu Rev Virol 2024; 11:283-308. [PMID: 38876114 DOI: 10.1146/annurev-virology-111821-122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Before the very recent discovery of umbra-like viruses (ULVs), the signature defining feature of all plant RNA viruses was the encoding of specialized RNA-binding movement proteins (MPs) for transiting their RNA genomes through gated plasmodesmata to establish systemic infections. The vast majority of ULVs share umbravirus-like RNA-dependent RNA polymerases and 3'-terminal structures, but they differ by not encoding cell-to-cell and long-distance MPs and by not relying on a helper virus for trans-encapsidation and plant-to-plant transmission. The recent finding that two groups of ULVs do not necessarily encode MPs is expanding our understanding of the minimum requirements for modern plant RNA viruses. ULV CY1 from citrus uses host protein PHLOEM PROTEIN 2 (PP2) for systemic movement, and related ULVs encode a capsid protein, thereby providing an explanation for the lack of helper viruses present in many ULV-infected plants. ULVs thus resemble the first viruses that infected plants, which were likely deposited from feeding organisms and would have similarly required the use of host proteins such as PP2 to exit initially infected cells.
Collapse
Affiliation(s)
- Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
| | - Diego F Quito-Avila
- Facultad de Ciencias de la Vida and Centro de Investigaciones Biotecnológicas del Ecuador, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Sayanta Bera
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
| |
Collapse
|
5
|
Legarda EG, Elena SF, Mushegian AR. Emergence of two distinct spatial folds in a pair of plant virus proteins encoded by nested genes. J Biol Chem 2024; 300:107218. [PMID: 38522515 PMCID: PMC11044054 DOI: 10.1016/j.jbc.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Virus genomes may encode overlapping or nested open reading frames that increase their coding capacity. It is not known whether the constraints on spatial structures of the two encoded proteins limit the evolvability of nested genes. We examine the evolution of a pair of proteins, p22 and p19, encoded by nested genes in plant viruses from the genus Tombusvirus. The known structure of p19, a suppressor of RNA silencing, belongs to the RAGNYA fold from the alpha+beta class. The structure of p22, the cell-to-cell movement protein from the 30K family widespread in plant viruses, is predicted with the AlphaFold approach, suggesting a single jelly-roll fold core from the all-beta class, structurally similar to capsid proteins from plant and animal viruses. The nucleotide and codon preferences impose modest constraints on the types of secondary structures encoded in the alternative reading frames, nonetheless allowing for compact, well-ordered folds from different structural classes in two similarly-sized nested proteins. Tombusvirus p22 emerged through radiation of the widespread 30K family, which evolved by duplication of a virus capsid protein early in the evolution of plant viruses, whereas lineage-specific p19 may have emerged by a stepwise increase in the length of the overprinted gene and incremental acquisition of functionally active secondary structure elements by the protein product. This evolution of p19 toward the RAGNYA fold represents one of the first documented examples of protein structure convergence in naturally occurring proteins.
Collapse
Affiliation(s)
- Esmeralda G Legarda
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Paterna, València, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Paterna, València, Spain; The Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Arcady R Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Arlington, Virginia, USA.
| |
Collapse
|
6
|
Sáez C, Pagán I. Plant viruses traveling without passport. PLoS Biol 2024; 22:e3002626. [PMID: 38728373 PMCID: PMC11086899 DOI: 10.1371/journal.pbio.3002626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
All plant viruses were thought to encode in its genome a movement protein that acts as a "passport," allowing active movement within the host. A new study in PLOS Biology characterizes the first plant virus that can colonize its host without encoding this protein.
Collapse
Affiliation(s)
- Cristina Sáez
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Ying X, Bera S, Liu J, Toscano-Morales R, Jang C, Yang S, Ho J, Simon AE. Umbravirus-like RNA viruses are capable of independent systemic plant infection in the absence of encoded movement proteins. PLoS Biol 2024; 22:e3002600. [PMID: 38662792 PMCID: PMC11081511 DOI: 10.1371/journal.pbio.3002600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/09/2024] [Accepted: 03/26/2024] [Indexed: 05/12/2024] Open
Abstract
The signature feature of all plant viruses is the encoding of movement proteins (MPs) that supports the movement of the viral genome into adjacent cells and through the vascular system. The recent discovery of umbravirus-like viruses (ULVs), some of which only encode replication-associated proteins, suggested that they, as with umbraviruses that lack encoded capsid proteins (CPs) and silencing suppressors, would require association with a helper virus to complete an infection cycle. We examined the infection properties of 2 ULVs: citrus yellow vein associated virus 1 (CY1), which only encodes replication proteins, and closely related CY2 from hemp, which encodes an additional protein (ORF5CY2) that was assumed to be an MP. We report that both CY1 and CY2 can independently infect the model plant Nicotiana benthamiana in a phloem-limited fashion when delivered by agroinfiltration. Unlike encoded MPs, ORF5CY2 was dispensable for infection of CY2, but was associated with faster symptom development. Examination of ORF5CY2 revealed features more similar to luteoviruses/poleroviruses/sobemovirus CPs than to 30K class MPs, which all share a similar single jelly-roll domain. In addition, only CY2-infected plants contained virus-like particles (VLPs) associated with CY2 RNA and ORF5CY2. CY1 RNA and a defective (D)-RNA that arises during infection interacted with host protein phloem protein 2 (PP2) in vitro and in vivo, and formed a high molecular weight complex with sap proteins in vitro that was partially resistant to RNase treatment. When CY1 was used as a virus-induced gene silencing (VIGS) vector to target PP2 transcripts, CY1 accumulation was reduced in systemic leaves, supporting the usage of PP2 for systemic movement. ULVs are therefore the first plant viruses encoding replication and CPs but no MPs, and whose systemic movement relies on a host MP. This explains the lack of discernable helper viruses in many ULV-infected plants and evokes comparisons with the initial viruses transferred into plants that must have similarly required host proteins for movement.
Collapse
Affiliation(s)
- Xiaobao Ying
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Sayanta Bera
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Jinyuan Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Roberto Toscano-Morales
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Chanyong Jang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Stephen Yang
- Silvec Biologics, Inc., Gaithersburg, Maryland, United States of America
| | - Jovia Ho
- Silvec Biologics, Inc., Gaithersburg, Maryland, United States of America
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Silvec Biologics, Inc., Gaithersburg, Maryland, United States of America
| |
Collapse
|
8
|
Koonin EV, Kuhn JH, Dolja VV, Krupovic M. Megataxonomy and global ecology of the virosphere. THE ISME JOURNAL 2024; 18:wrad042. [PMID: 38365236 PMCID: PMC10848233 DOI: 10.1093/ismejo/wrad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 02/18/2024]
Abstract
Nearly all organisms are hosts to multiple viruses that collectively appear to be the most abundant biological entities in the biosphere. With recent advances in metagenomics and metatranscriptomics, the known diversity of viruses substantially expanded. Comparative analysis of these viruses using advanced computational methods culminated in the reconstruction of the evolution of major groups of viruses and enabled the construction of a virus megataxonomy, which has been formally adopted by the International Committee on Taxonomy of Viruses. This comprehensive taxonomy consists of six virus realms, which are aspired to be monophyletic and assembled based on the conservation of hallmark proteins involved in capsid structure formation or genome replication. The viruses in different major taxa substantially differ in host range and accordingly in ecological niches. In this review article, we outline the latest developments in virus megataxonomy and the recent discoveries that will likely lead to reassessment of some major taxa, in particular, split of three of the current six realms into two or more independent realms. We then discuss the correspondence between virus taxonomy and the distribution of viruses among hosts and ecological niches, as well as the abundance of viruses versus cells in different habitats. The distribution of viruses across environments appears to be primarily determined by the host ranges, i.e. the virome is shaped by the composition of the biome in a given habitat, which itself is affected by abiotic factors.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, United States
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, United States
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, 75015 Paris, France
| |
Collapse
|
9
|
Machado TB, Picorelli ACR, de Azevedo BL, de Aquino ILM, Queiroz VF, Rodrigues RAL, Araújo JP, Ullmann LS, dos Santos TM, Marques RE, Guimarães SL, Andrade ACSP, Gularte JS, Demoliner M, Filippi M, Pereira VMAG, Spilki FR, Krupovic M, Aylward FO, Del-Bem LE, Abrahão JS. Gene duplication as a major force driving the genome expansion in some giant viruses. J Virol 2023; 97:e0130923. [PMID: 38092658 PMCID: PMC10734413 DOI: 10.1128/jvi.01309-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/26/2023] [Indexed: 12/22/2023] Open
Abstract
IMPORTANCE Giant viruses are noteworthy not only due to their enormous particles but also because of their gigantic genomes. In this context, a fundamental question has persisted: how did these genomes evolve? Here we present the discovery of cedratvirus pambiensis, featuring the largest genome ever described for a cedratvirus. Our data suggest that the larger size of the genome can be attributed to an unprecedented number of duplicated genes. Further investigation of this phenomenon in other viruses has illuminated gene duplication as a key evolutionary mechanism driving genome expansion in diverse giant viruses. Although gene duplication has been described as a recurrent event in cellular organisms, our data highlights its potential as a pivotal event in the evolution of gigantic viral genomes.
Collapse
Affiliation(s)
- Talita B. Machado
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Agnello C. R. Picorelli
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Bruna L. de Azevedo
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Isabella L. M. de Aquino
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Victória F. Queiroz
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rodrigo A. L. Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - João Pessoa Araújo
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | - Leila S. Ullmann
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | - Thiago M. dos Santos
- Del-Bem Lab, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rafael E. Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Samuel L. Guimarães
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Ana Cláudia S. P. Andrade
- Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Laval, Québec, Canada
| | - Juliana S. Gularte
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Brazil
| | - Meriane Demoliner
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Brazil
| | - Micheli Filippi
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Brazil
| | | | - Fernando R. Spilki
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, Brazil
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR6047, Paris, France
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease Virginia Tech, Blacksburg, Virginia, USA
| | - Luiz-Eduardo Del-Bem
- Del-Bem Lab, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jônatas S. Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|