Zhu X, Wang H. Revisiting the role and mechanism of ELF3 in circadian clock modulation.
Gene 2024;
913:148378. [PMID:
38490512 DOI:
10.1016/j.gene.2024.148378]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The gene encoding EARLY FLOWERING3 (ELF3) is necessary for photoperiodic flowering and the normal regulation of circadian rhythms. It provides important information at the cellular level to uncover the biological mechanisms that improve plant growth and development. ELF3 interactions with transcription factors such as BROTHER OF LUX ARRHYTHMO (BOA), LIGHT-REGULATED WD1 (LWD1), PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), PHYTOCHROME-INTERACTING FACTOR 7 (PIF7), and LUX ARRHYTHMO (LUX) suggest a role in evening complex (EC) independent pathways, demanding further investigation to elucidate the EC-dependent versus EC-independent mechanisms. The ELF3 regulation of flowering time about photoperiod and temperature variations can also optimize crop cultivation across diverse latitudes. In this review paper, we summarize how ELF3's role in the circadian clock and light-responsive flowering control in crops offers substantial potential for scientific advancement and practical applications in biotechnology and agriculture. Despite its essential role in crop adaptation, very little is known in many important crops. Consequently, comprehensive and targeted research is essential for extrapolating ELF3-related insights from Arabidopsis to other crops, utilizing both computational and experimental methodologies. This research should prioritize investigations into ELF3's protein-protein interactions, post-translational modifications, and genomic targets to elucidate its contribution to accurate circadian clock regulation.
Collapse