1
|
Tse-Kang SY, Pukkila-Worley R. Lysosome-related organelle integrity suppresses TIR-1 aggregation to restrain toxic propagation of p38 innate immunity. Cell Rep 2024; 43:114674. [PMID: 39299237 PMCID: PMC11492801 DOI: 10.1016/j.celrep.2024.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024] Open
Abstract
Innate immunity in bacteria, plants, and animals requires the specialized subset of Toll/interleukin-1/resistance gene (TIR) domain proteins that are nicotinamide adenine dinucleotide (NAD+) hydrolases. Aggregation of these TIR proteins engages their enzymatic activity, but it is unknown how this protein multimerization is regulated. Here, we discover that TIR oligomerization is controlled to prevent immune toxicity. We find that p38 propagates its own activation in a positive feedback loop, which promotes the aggregation of the lone enzymatic TIR protein in the nematode C. elegans (TIR-1, homologous to human sterile alpha and TIR motif-containing 1 [SARM1]). We perform a forward genetic screen to determine how the p38 positive feedback loop is regulated. We discover that the integrity of the specific lysosomal subcompartment that expresses TIR-1 is actively maintained to limit inappropriate TIR-1 aggregation on the membranes of these organelles, which restrains toxic propagation of p38 innate immunity. Thus, innate immunity in C. elegans intestinal epithelial cells is regulated by specific control of TIR-1 multimerization.
Collapse
Affiliation(s)
- Samantha Y Tse-Kang
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Breen PC, Kanakanui KG, Newman MA, Dowen RH. The F-box protein FBXL-5 governs vitellogenesis and lipid homeostasis in C. elegans. Front Cell Dev Biol 2024; 12:1389077. [PMID: 38946799 PMCID: PMC11211535 DOI: 10.3389/fcell.2024.1389077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
The molecular mechanisms that govern the metabolic commitment to reproduction, which often occurs at the expense of somatic reserves, remain poorly understood. We identified the Caenorhabditis elegans F-box protein FBXL-5 as a negative regulator of maternal provisioning of vitellogenin lipoproteins, which mediate the transfer of intestinal lipids to the germline. Mutations in fbxl-5 partially suppress the vitellogenesis defects observed in the heterochronic mutants lin-4 and lin-29, both of which ectopically express fbxl-5 at the adult developmental stage. FBXL-5 functions in the intestine to negatively regulate expression of the vitellogenin genes; and consistently, intestine-specific over-expression of FBXL-5 is sufficient to inhibit vitellogenesis, restrict lipid accumulation, and shorten lifespan. Our epistasis analyses suggest that fbxl-5 functions in concert with cul-6, a cullin gene, and the Skp1-related gene skr-3 to regulate vitellogenesis. Additionally, fbxl-5 acts genetically upstream of rict-1, which encodes the core mTORC2 protein Rictor, to govern vitellogenesis. Together, our results reveal an unexpected role for a SCF ubiquitin-ligase complex in controlling intestinal lipid homeostasis by engaging mTORC2 signaling.
Collapse
Affiliation(s)
- Peter C Breen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
| | - Kendall G Kanakanui
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
| | - Martin A Newman
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
| | - Robert H Dowen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, Unites States
| |
Collapse
|
3
|
Torzone SK, Breen PC, Cohen NR, Simmons KN, Dowen RH. The TWK-26 potassium channel governs nutrient absorption in the C. elegans intestine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592787. [PMID: 38766028 PMCID: PMC11100751 DOI: 10.1101/2024.05.06.592787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ion channels are necessary for proper water and nutrient absorption in the intestine, which supports cellular metabolism and organismal growth. While a role for Na + co-transporters and pumps in intestinal nutrient absorption is well defined, how individual K + uniporters function to maintain ion homeostasis is poorly understood. Using Caenorhabditis elegans , we show that a gain-of-function mutation in twk-26 , which encodes a two-pore domain K + ion channel orthologous to human KCNK3, facilitates nutrient absorption and suppresses the metabolic and developmental defects displayed by impaired intestinal MAP Kinase (MAPK) signaling. Mutations in drl-1 and flr-4, which encode two components of this MAPK pathway, cause severe growth defects, reduced lipid storage, and a dramatic increase in autophagic lysosomes, which mirror dietary restriction phenotypes. Additionally, these MAPK mutants display structural defects of the intestine and an impaired defecation motor program. We find that activation of TWK-26 reverses the dietary restriction-like state of the MAPK mutants by restoring intestinal nutrient absorption without correcting the intestinal bloating or defecation defects. This study provides unique insight into the mechanisms by which intestinal K + ion channels support intestinal metabolic homeostasis.
Collapse
|
4
|
VanDerMolen KR, Newman MA, Breen PC, Huff LA, Dowen RH. Non-cell-autonomous regulation of mTORC2 by Hedgehog signaling maintains lipid homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592795. [PMID: 38766075 PMCID: PMC11100691 DOI: 10.1101/2024.05.06.592795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Organisms must appropriately allocate energetic resources between essential cellular processes to maintain homeostasis and in turn, maximize fitness. The nutritional and homeostatic regulators of energy homeostasis have been studied in detail; however, how developmental signals might impinge on these pathways to govern cellular metabolism is poorly understood. Here, we identify a non-canonical role for Hedgehog (Hh), a classic regulator of development, in maintaining intestinal lipid homeostasis in C. elegans . We find that expression of two Hh ligands, GRD-3 and GRD-4, is controlled by the LIN-29/EGR transcription factor in the hypodermis, where the Hh secretion factor CHE-14/Dispatched also facilitates non-cell autonomous Hh signaling. We demonstrate, using C. elegans and mouse hepatocytes, that Hh metabolic regulation does not occur through the canonical Hh transcription factor, TRA-1/GLI, but rather through non-canonical signaling that engages mTOR Complex 2 (mTORC2) in the intestine. Hh mutants display impaired lipid homeostasis, including reduced lipoprotein synthesis and fat accumulation, decreased growth, and upregulation of autophagy factors, mimicking loss of mTORC2. Additionally, we found that Hh inhibits p38 MAPK signaling in parallel to mTORC2 activation and that both pathways act together to modulate of lipid homeostasis. Our findings show a non-canonical role for Hedgehog signaling in lipid metabolism via regulation of core homeostatic pathways and reveal a new mechanism by which developmental timing events govern metabolic decisions.
Collapse
|
5
|
Breen PC, Kanakanui KG, Newman MA, Dowen RH. The F-box protein FBXL-5 governs vitellogenesis and lipid homeostasis in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590113. [PMID: 38712300 PMCID: PMC11071313 DOI: 10.1101/2024.04.18.590113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The molecular mechanisms that govern the metabolic commitment to reproduction, which often occurs at the expense of somatic reserves, remain poorly understood. We identified the C. elegans F-box protein FBXL-5 as a negative regulator of maternal provisioning of vitellogenin lipoproteins, which mediate the transfer of intestinal lipids to the germline. Mutations in fbxl-5 partially suppress the vitellogenesis defects observed in the heterochronic mutants lin-4 and lin-29, both of which ectopically express fbxl-5 at the adult developmental stage. FBXL-5 functions in the intestine to negatively regulate expression of the vitellogenin genes; and consistently, intestine-specific over-expression of FBXL-5 is sufficient to inhibit vitellogenesis, restrict lipid accumulation, and shorten lifespan. Our epistasis analyses suggest that fbxl-5 functions in concert with cul-6 , a cullin gene, and the Skp1-related gene skr-3 to regulate vitellogenesis. Additionally, fbxl-5 acts genetically upstream of rict-1 , which encodes the core mTORC2 protein Rictor, to govern vitellogenesis. Together, our results reveal an unexpected role for a SCF ubiquitin-ligase complex in controlling intestinal lipid homeostasis by engaging mTORC2 signaling.
Collapse
|
6
|
Istiban MN, De Fruyt N, Kenis S, Beets I. Evolutionary conserved peptide and glycoprotein hormone-like neuroendocrine systems in C. elegans. Mol Cell Endocrinol 2024; 584:112162. [PMID: 38290646 PMCID: PMC11004728 DOI: 10.1016/j.mce.2024.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Peptides and protein hormones form the largest group of secreted signals that mediate intercellular communication and are central regulators of physiology and behavior in all animals. Phylogenetic analyses and biochemical identifications of peptide-receptor systems reveal a broad evolutionary conservation of these signaling systems at the molecular level. Substantial progress has been made in recent years on characterizing the physiological and putative ancestral roles of many peptide systems through comparative studies in invertebrate models. Several peptides and protein hormones are not only molecularly conserved but also have conserved roles across animal phyla. Here, we focus on functional insights gained in the nematode Caenorhabditis elegans that, with its compact and well-described nervous system, provides a powerful model to dissect neuroendocrine signaling networks involved in the control of physiology and behavior. We summarize recent discoveries on the evolutionary conservation and knowledge on the functions of peptide and protein hormone systems in C. elegans.
Collapse
Affiliation(s)
- Majdulin Nabil Istiban
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
7
|
Buckley M, Jacob WP, Bortey L, McClain M, Ritter AL, Godfrey A, Munneke AS, Ramachandran S, Kenis S, Kolnik JC, Olofsson S, Adkins R, Kutoloski T, Rademacher L, Heinecke O, Alva A, Beets I, Francis MM, Kowalski JR. Cell non-autonomous signaling through the conserved C. elegans glycopeptide hormone receptor FSHR-1 regulates cholinergic neurotransmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.578699. [PMID: 38405708 PMCID: PMC10888917 DOI: 10.1101/2024.02.10.578699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Modulation of neurotransmission is key for organismal responses to varying physiological contexts such as during infection, injury, or other stresses, as well as in learning and memory and for sensory adaptation. Roles for cell autonomous neuromodulatory mechanisms in these processes have been well described. The importance of cell non-autonomous pathways for inter-tissue signaling, such as gut-to-brain or glia-to-neuron, has emerged more recently, but the cellular mechanisms mediating such regulation remain comparatively unexplored. Glycoproteins and their G protein-coupled receptors (GPCRs) are well-established orchestrators of multi-tissue signaling events that govern diverse physiological processes through both cell-autonomous and cell non-autonomous regulation. Here, we show that follicle stimulating hormone receptor, FSHR-1, the sole Caenorhabditis elegans ortholog of mammalian glycoprotein hormone GPCRs, is important for cell non-autonomous modulation of synaptic transmission. Inhibition of fshr-1 expression reduces muscle contraction and leads to synaptic vesicle accumulation in cholinergic motor neurons. The neuromuscular and locomotor defects in fshr-1 loss-of-function mutants are associated with an underlying accumulation of synaptic vesicles, build-up of the synaptic vesicle priming factor UNC-10/RIM, and decreased synaptic vesicle release from cholinergic motor neurons. Restoration of FSHR-1 to the intestine is sufficient to restore neuromuscular activity and synaptic vesicle localization to fshr-1- deficient animals. Intestine-specific knockdown of FSHR-1 reduces neuromuscular function, indicating FSHR-1 is both necessary and sufficient in the intestine for its neuromuscular effects. Re-expression of FSHR-1 in other sites of endogenous expression, including glial cells and neurons, also restored some neuromuscular deficits, indicating potential cross-tissue regulation from these tissues as well. Genetic interaction studies provide evidence that downstream effectors gsa-1 / Gα S , acy-1 /adenylyl cyclase and sphk-1/ sphingosine kinase and glycoprotein hormone subunit orthologs, GPLA-1/GPA2 and GPLB-1/GPB5, are important for FSHR-1 modulation of the NMJ. Together, our results demonstrate that FSHR-1 modulation directs inter-tissue signaling systems, which promote synaptic vesicle release at neuromuscular synapses.
Collapse
|
8
|
Honey KL, Torzone SK, Dowen RH. The C. elegansflr-3(ut9) mutation is a loss-of-function insertion within the drl-1 locus. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.001047. [PMID: 38116473 PMCID: PMC10728751 DOI: 10.17912/micropub.biology.001047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
The genes encoding the mitogen-activated protein kinases DRL-1 and FLR-4 are required for growth and lipid homeostasis in C. elegans . Interestingly, the flr-3 ( ut9 ) mutant, which was previously isolated in a forward genetic screen for mutations that confer fluoride resistance, phenocopies the drl-1 and flr-4 loss-of-function mutants; however, the genetic identity of flr-3 is unknown. Through whole genome sequencing, we found that the flr-3 ( ut9 ) mutation is an insertion in the drl-1 locus and disrupts drl-1 gene function, resulting in dramatic growth defects and impaired vitellogenin production.
Collapse
Affiliation(s)
- Kendra L. Honey
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Sarah K. Torzone
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Robert H. Dowen
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|