1
|
Paulick A, Jakovljevic V, Zhang S, Erickstad M, Groisman A, Meir Y, Ryu WS, Wingreen NS, Sourjik V. Mechanism of bidirectional thermotaxis in Escherichia coli. eLife 2017; 6:26607. [PMID: 28826491 PMCID: PMC5578741 DOI: 10.7554/elife.26607] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Abstract
In bacteria various tactic responses are mediated by the same cellular pathway, but sensing of physical stimuli remains poorly understood. Here, we combine an in-vivo analysis of the pathway activity with a microfluidic taxis assay and mathematical modeling to investigate the thermotactic response of Escherichia coli. We show that in the absence of chemical attractants E. coli exhibits a steady thermophilic response, the magnitude of which decreases at higher temperatures. Adaptation of wild-type cells to high levels of chemoattractants sensed by only one of the major chemoreceptors leads to inversion of the thermotactic response at intermediate temperatures and bidirectional cell accumulation in a thermal gradient. A mathematical model can explain this behavior based on the saturation-dependent kinetics of adaptive receptor methylation. Lastly, we find that the preferred accumulation temperature corresponds to optimal growth in the presence of the chemoattractant serine, pointing to a physiological relevance of the observed thermotactic behavior. Many bacteria can move towards or away from chemicals, heat and other stimuli in their environment. The ability of bacteria to move in response to nutrients and other chemicals, known as chemotaxis, is the best understood of these phenomena. Bacteria generally swim in a fairly random way and frequently change direction. During chemotaxis, however, the bacteria sense changes in the concentrations of a chemical in their surroundings and this biases the direction in which they swim so that they spend more time swimming towards or away from the source of the chemical. The bacteria have various receptor proteins that can detect different chemicals. For example, the Tar and Tsr receptors can recognize chemicals called aspartate and serine, respectively, which are – amongst other things – nutrients that are used to build proteins. Tar and Tsr are also involved in the response to temperature, referred to as thermotaxis. At low temperatures, a bacterium Escherichia coli will move towards sources of heat. Yet when the bacteria detect both serine and aspartate they may reverse the response and move towards colder areas instead. However, it was not clear why the bacteria do this, and what roles Tar and Tsr play in this response. Paulick et al. have now combined approaches that directly visualise signalling inside living bacteria and that track the movements of individual bacterial cellswith mathematical modelling to investigate thermotaxis in E. coli. The experiments show that the bacteria’s behaviour could be explained by interplay between the responses mediated by Tar and Tsr. In the absence of both serine and aspartate, both receptors stimulate heat-seeking responses, causing the bacteria to move towards hotter areas. When only aspartate is present, Tsr continues to stimulate the heat-seeking response, but the aspartate causes Tar to switch to promoting a cold-seeking response instead. This leads to the bacteria accumulating in areas of intermediate temperature. In the presence of serine only, the bacteria behave in a similar way because the receptors swap roles so that Tsr stimulates the cold-seeking response, while Tar promotes the heat-seeking one. The intermediate temperature at which the bacteria accumulate in response to serine is also around the optimal temperature for E.coli growth in presence of this chemical, suggesting that thermotaxis might play an important role in allowing bacteria to survive and grow in many different environments, including in the human body. Thus, understanding how chemotaxis and thermotaxis are regulated may lead to new ways to control how bacteria behave in patients and natural environments.
Collapse
Affiliation(s)
- Anja Paulick
- Max Planck Institute for Terrestrial Microbiology and LOEWE Research Center for Synthetic Microbiology, Marburg, Germany
| | | | - SiMing Zhang
- Department of Physics and Donnelly Centre, University of Toronto, Toronto, Canada
| | - Michael Erickstad
- Departments of Physics, University of California, San Diego, United States
| | - Alex Groisman
- Departments of Physics, University of California, San Diego, United States
| | - Yigal Meir
- Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - William S Ryu
- Department of Physics and Donnelly Centre, University of Toronto, Toronto, Canada
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and LOEWE Research Center for Synthetic Microbiology, Marburg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Eismann S, Endres RG. Protein Connectivity in Chemotaxis Receptor Complexes. PLoS Comput Biol 2015; 11:e1004650. [PMID: 26646441 PMCID: PMC4672929 DOI: 10.1371/journal.pcbi.1004650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 11/10/2015] [Indexed: 01/09/2023] Open
Abstract
The chemotaxis sensory system allows bacteria such as Escherichia coli to swim towards nutrients and away from repellents. The underlying pathway is remarkably sensitive in detecting chemical gradients over a wide range of ambient concentrations. Interactions among receptors, which are predominantly clustered at the cell poles, are crucial to this sensitivity. Although it has been suggested that the kinase CheA and the adapter protein CheW are integral for receptor connectivity, the exact coupling mechanism remains unclear. Here, we present a statistical-mechanics approach to model the receptor linkage mechanism itself, building on nanodisc and electron cryotomography experiments. Specifically, we investigate how the sensing behavior of mixed receptor clusters is affected by variations in the expression levels of CheA and CheW at a constant receptor density in the membrane. Our model compares favorably with dose-response curves from in vivo Förster resonance energy transfer (FRET) measurements, demonstrating that the receptor-methylation level has only minor effects on receptor cooperativity. Importantly, our model provides an explanation for the non-intuitive conclusion that the receptor cooperativity decreases with increasing levels of CheA, a core signaling protein associated with the receptors, whereas the receptor cooperativity increases with increasing levels of CheW, a key adapter protein. Finally, we propose an evolutionary advantage as explanation for the recently suggested CheW-only linker structures. Receptor clusters of the bacterial chemotaxis sensory system act as antennae to amplify tiny changes in concentrations in the chemical environment of the cell, ultimately steering the cell towards nutrients and away from toxins. Despite bacterial chemotaxis being the most widely studied sensory pathway, the exact architecture of the receptor clusters remains speculative, with understanding suffering from a number of paradoxical observations. To address these issues with respect to the protein arrangement in the linkers connecting receptors, we present a statistical-mechanics model that combines insights from electron cryotomography on the linker architecture with results from fluorescence imaging of signaling in living cells. Although the signaling data for different expression levels of key molecular components in the linkers seems contradictory at first, our model reconciles these predictions with structural and biochemical data. Finally, we provide an evolutionary explanation for the observation that some of the incorporated linkers do not seem to transmit signals from the receptors.
Collapse
Affiliation(s)
- Stephan Eismann
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- Department of Life Sciences and Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
| | - Robert G. Endres
- Department of Life Sciences and Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Edgington MP, Tindall MJ. Fold-change detection in a whole-pathway model of Escherichia coli chemotaxis. Bull Math Biol 2014; 76:1376-95. [PMID: 24809945 DOI: 10.1007/s11538-014-9965-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Abstract
There has been recent interest in sensory systems that are able to display a response which is proportional to a fold change in stimulus concentration, a feature referred to as fold-change detection (FCD). Here, we demonstrate FCD in a recent whole-pathway mathematical model of Escherichia coli chemotaxis. FCD is shown to hold for each protein in the signalling cascade and to be robust to kinetic rate and protein concentration variation. Using a sensitivity analysis, we find that only variations in the number of receptors within a signalling team lead to the model not exhibiting FCD. We also discuss the ability of a cell with multiple receptor types to display FCD and explain how a particular receptor configuration may be used to elucidate the two experimentally determined regimes of FCD behaviour. All findings are discussed in respect of the experimental literature.
Collapse
Affiliation(s)
- Matthew P Edgington
- Department of Mathematics & Statistics, University of Reading, Whiteknights, PO Box 220, Reading, RG6 6AX, UK,
| | | |
Collapse
|
4
|
Mukherjee S, Seok SC, Vieland VJ, Das J. Data-driven quantification of the robustness and sensitivity of cell signaling networks. Phys Biol 2013; 10:066002. [PMID: 24164951 DOI: 10.1088/1478-3975/10/6/066002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Robustness and sensitivity of responses generated by cell signaling networks has been associated with survival and evolvability of organisms. However, existing methods analyzing robustness and sensitivity of signaling networks ignore the experimentally observed cell-to-cell variations of protein abundances and cell functions or contain ad hoc assumptions. We propose and apply a data-driven maximum entropy based method to quantify robustness and sensitivity of Escherichia coli (E. coli) chemotaxis signaling network. Our analysis correctly rank orders different models of E. coli chemotaxis based on their robustness and suggests that parameters regulating cell signaling are evolutionary selected to vary in individual cells according to their abilities to perturb cell functions. Furthermore, predictions from our approach regarding distribution of protein abundances and properties of chemotactic responses in individual cells based on cell population averaged data are in excellent agreement with their experimental counterparts. Our approach is general and can be used to evaluate robustness as well as generate predictions of single cell properties based on population averaged experimental data in a wide range of cell signaling systems.
Collapse
Affiliation(s)
- Sayak Mukherjee
- Battelle Center for Mathematical Medicine, The Research Institute at the Nationwide Children's Hospital, The Ohio State University, 700 Children's Drive, Columbus, OH 43205, USA. Department of Pediatrics, The Ohio State University, 700 Children's Drive, Columbus, OH 43205, USA
| | | | | | | |
Collapse
|
5
|
Othmer HG, Xin X, Xue C. Excitation and adaptation in bacteria-a model signal transduction system that controls taxis and spatial pattern formation. Int J Mol Sci 2013; 14:9205-48. [PMID: 23624608 PMCID: PMC3676780 DOI: 10.3390/ijms14059205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 11/16/2022] Open
Abstract
The machinery for transduction of chemotactic stimuli in the bacterium E. coli is one of the most completely characterized signal transduction systems, and because of its relative simplicity, quantitative analysis of this system is possible. Here we discuss models which reproduce many of the important behaviors of the system. The important characteristics of the signal transduction system are excitation and adaptation, and the latter implies that the transduction system can function as a "derivative sensor" with respect to the ligand concentration in that the DC component of a signal is ultimately ignored if it is not too large. This temporal sensing mechanism provides the bacterium with a memory of its passage through spatially- or temporally-varying signal fields, and adaptation is essential for successful chemotaxis. We also discuss some of the spatial patterns observed in populations and indicate how cell-level behavior can be embedded in population-level descriptions.
Collapse
Affiliation(s)
- Hans G. Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +612-624-8325; Fax: +612-626-2017
| | - Xiangrong Xin
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA; E-Mail:
| | - Chuan Xue
- Department of Mathematics, Ohio State University, Columbus, OH 43210, USA; E-Mail:
| |
Collapse
|
6
|
A "trimer of dimers"-based model for the chemotactic signal transduction network in bacterial chemotaxis. Bull Math Biol 2012; 74:2339-82. [PMID: 22864951 DOI: 10.1007/s11538-012-9756-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/12/2012] [Indexed: 01/13/2023]
Abstract
The network that controls chemotaxis in Escherichia coli is one of the most completely characterized signal transduction systems to date. Receptor clustering accounts for characteristics such as high sensitivity, precise adaptation over a wide dynamic range of ligand concentrations, and robustness to variations in the amounts of intracellular proteins. To gain insights into the structure-function relationship of receptor clusters and understand the mechanism behind the high-performance signaling, we develop and analyze a model for a single trimer of dimers. This new model extends an earlier model (Spiro et al. in Proc. Natl. Acad. Sci. 94:7263-7268, 1997) to incorporate the recent experimental findings that the core structure of receptor clusters is the trimer of receptor dimers. We show that the model can reproduce most of the experimentally-observed behaviors, including excitation, adaptation, high sensitivity, and robustness to parameter variations. In addition, the model makes a number of new predictions as to how the adaptation time varies with the expression level of various proteins involved in signal transduction. Our results provide a more mechanistically-based description of the structure-function relationship for the signaling system, and show the key role of the interaction among dimer members of the trimer in the chemotactic response of cells.
Collapse
|
7
|
Aquino G, Clausznitzer D, Tollis S, Endres RG. Optimal receptor-cluster size determined by intrinsic and extrinsic noise. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:021914. [PMID: 21405870 DOI: 10.1103/physreve.83.021914] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 10/11/2010] [Indexed: 05/30/2023]
Abstract
Biological cells sense external chemical stimuli in their environment using cell-surface receptors. To increase the sensitivity of sensing, receptors often cluster. This process occurs most noticeably in bacterial chemotaxis, a paradigm for sensing and signaling in general. While amplification of weak stimuli is useful in the absence of noise, its usefulness is less clear in the presence of extrinsic input noise and intrinsic signaling noise. Here, exemplified in a bacterial chemotaxis system, we combine the allosteric Monod-Wyman-Changeux model for signal amplification by receptor complexes with calculations of noise to study their interconnectedness. Importantly, we calculate the signal-to-noise ratio, describing the balance of beneficial and detrimental effects of clustering for the cell. Interestingly, we find that there is no advantage for the cell to build receptor complexes for noisy input stimuli in the absence of intrinsic signaling noise. However, with intrinsic noise, an optimal complex size arises in line with estimates of the size of chemoreceptor complexes in bacteria and protein aggregates in lipid rafts of eukaryotic cells.
Collapse
Affiliation(s)
- Gerardo Aquino
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
8
|
Precision and kinetics of adaptation in bacterial chemotaxis. Biophys J 2011; 99:2766-74. [PMID: 21044573 DOI: 10.1016/j.bpj.2010.08.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 10/18/2022] Open
Abstract
The chemotaxis network of the bacterium Escherichia coli is perhaps the most studied model for adaptation of a signaling system to persistent stimuli. Although adaptation in this system is generally considered to be precise, there has been little effort to quantify this precision, or to understand how and when precision fails. Using a Förster resonance energy transfer-based reporter of signaling activity, we undertook a systematic study of adaptation kinetics and precision in E. coli cells expressing a single type of chemoreceptor (Tar). Quantifiable loss of precision of adaptation was observed at levels of the attractant MeAsp as low 10 μM, with pronounced differences in both kinetics and precision of adaptation between addition and removal of attractant. Quantitative modeling of the kinetic data suggests that loss of precise adaptation is due to a slowing of receptor methylation as available modification sites become scarce. Moreover, the observed kinetics of adaptation imply large cell-to-cell variation in adaptation rates-potentially providing genetically identical cells with the ability to "hedge their bets" by pursuing distinct chemotactic strategies.
Collapse
|
9
|
Gurry T, Kahramanoğulları O, Endres RG. Biophysical mechanism for ras-nanocluster formation and signaling in plasma membrane. PLoS One 2009; 4:e6148. [PMID: 19587789 PMCID: PMC2704371 DOI: 10.1371/journal.pone.0006148] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 06/07/2009] [Indexed: 01/02/2023] Open
Abstract
Ras GTPases are lipid-anchored G proteins, which play a fundamental role in cell signaling processes. Electron micrographs of immunogold-labeled Ras have shown that membrane-bound Ras molecules segregate into nanocluster domains. Several models have been developed in attempts to obtain quantitative descriptions of nanocluster formation, but all have relied on assumptions such as a constant, expression-level independent ratio of Ras in clusters to Ras monomers (cluster/monomer ratio). However, this assumption is inconsistent with the law of mass action. Here, we present a biophysical model of Ras clustering based on short-range attraction and long-range repulsion between Ras molecules in the membrane. To test this model, we performed Monte Carlo simulations and compared statistical clustering properties with experimental data. We find that we can recover the experimentally-observed clustering across a range of Ras expression levels, without assuming a constant cluster/monomer ratio or the existence of lipid rafts. In addition, our model makes predictions about the signaling properties of Ras nanoclusters in support of the idea that Ras nanoclusters act as an analog-digital-analog converter for high fidelity signaling.
Collapse
Affiliation(s)
- Thomas Gurry
- Centre for Integrated Systems Biology at Imperial College, Imperial College London, London, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Ozan Kahramanoğulları
- Centre for Integrated Systems Biology at Imperial College, Imperial College London, London, United Kingdom
- Department of Computing, Imperial College London, London, United Kingdom
| | - Robert G. Endres
- Centre for Integrated Systems Biology at Imperial College, Imperial College London, London, United Kingdom
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Endres RG. Polar chemoreceptor clustering by coupled trimers of dimers. Biophys J 2009; 96:453-63. [PMID: 19167296 DOI: 10.1016/j.bpj.2008.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022] Open
Abstract
Receptors of bacterial chemotaxis form clusters at the cell poles, where clusters act as "antennas" to amplify small changes in ligand concentration. It is worthy of note that chemoreceptors cluster at multiple length scales. At the smallest scale, receptors form dimers, which assemble into stable timers of dimers. At a large scale, trimers form large polar clusters composed of thousands of receptors. Although much is known about the signaling properties emerging from receptor clusters, it is unknown how receptors localize at the cell poles and what the determining factors are for cluster size. Here, we present a model of polar receptor clustering based on coupled trimers of dimers, where cluster size is determined as a minimum of the cluster-membrane free energy. This energy has contributions from the cluster-membrane elastic energy, penalizing large clusters due to their high intrinsic curvature, and receptor-receptor coupling that favors large clusters. We find that the reduced cluster-membrane curvature mismatch at the curved cell poles leads to large and robust polar clusters, in line with experimental observation, whereas lateral clusters are efficiently suppressed.
Collapse
Affiliation(s)
- Robert G Endres
- Division of Molecular Biosciences and Centre for Integrated Systems Biology at Imperial College, Imperial College London, London, United Kingdom.
| |
Collapse
|
11
|
Rao CV, Glekas GD, Ordal GW. The three adaptation systems of Bacillus subtilis chemotaxis. Trends Microbiol 2008; 16:480-7. [PMID: 18774298 DOI: 10.1016/j.tim.2008.07.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/24/2008] [Accepted: 07/30/2008] [Indexed: 11/27/2022]
Abstract
Adaptation has a crucial role in the gradient-sensing mechanism that underlies bacterial chemotaxis. The Escherichia coli chemotaxis pathway uses a single adaptation system involving reversible receptor methylation. In Bacillus subtilis, the chemotaxis pathway seems to use three adaptation systems. One involves reversible receptor methylation, although quite differently than in E. coli. The other two involve CheC, CheD and CheV, which are chemotaxis proteins not found in E. coli. Remarkably, no one system is absolutely required for adaptation or is independently capable of generating adaptation. In this review, we discuss these three novel adaptation systems in B. subtilis and propose a model for their integration.
Collapse
Affiliation(s)
- Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
12
|
Chemoreceptors in Caulobacter crescentus: trimers of receptor dimers in a partially ordered hexagonally packed array. J Bacteriol 2008; 190:6805-10. [PMID: 18689468 DOI: 10.1128/jb.00640-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chemoreceptor arrays are macromolecular complexes that form extended assemblies primarily at the poles of bacterial cells and mediate chemotaxis signal transduction, ultimately controlling cellular motility. We have used cryo-electron tomography to determine the spatial distribution and molecular architecture of signaling molecules that comprise chemoreceptor arrays in wild-type Caulobacter crescentus cells. We demonstrate that chemoreceptors are organized as trimers of receptor dimers, forming partially ordered hexagonally packed arrays of signaling complexes in the cytoplasmic membrane. This novel organization at the threshold between order and disorder suggests how chemoreceptors and associated molecules are arranged in signaling assemblies to respond dynamically in the activation and adaptation steps of bacterial chemotaxis.
Collapse
|
13
|
Swem LR, Swem DL, Wingreen NS, Bassler BL. Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi. Cell 2008; 134:461-73. [PMID: 18692469 PMCID: PMC2585989 DOI: 10.1016/j.cell.2008.06.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 05/01/2008] [Accepted: 06/11/2008] [Indexed: 12/18/2022]
Abstract
Quorum sensing, a process of bacterial cell-cell communication, relies on production, detection, and response to autoinducer signaling molecules. LuxN, a nine-transmembrane domain protein from Vibrio harveyi, is the founding example of membrane-bound receptors for acyl-homoserine lactone (AHL) autoinducers. We used mutagenesis and suppressor analyses to identify the AHL-binding domain of LuxN and discovered LuxN mutants that confer both decreased and increased AHL sensitivity. Our analysis of dose-response curves of multiple LuxN mutants pins these inverse phenotypes on quantifiable opposing shifts in the free-energy bias of LuxN for occupying its kinase and phosphatase states. To understand receptor activation and to characterize the pathway signaling parameters, we exploited a strong LuxN antagonist, one of fifteen small-molecule antagonists we identified. We find that quorum-sensing-mediated communication can be manipulated positively and negatively to control bacterial behavior and, more broadly, that signaling parameters can be deduced from in vivo data.
Collapse
Affiliation(s)
- Lee R. Swem
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Danielle L. Swem
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Ned S. Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| |
Collapse
|
14
|
Variable sizes of Escherichia coli chemoreceptor signaling teams. Mol Syst Biol 2008; 4:211. [PMID: 18682701 PMCID: PMC2538909 DOI: 10.1038/msb.2008.49] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 06/21/2008] [Indexed: 11/18/2022] Open
Abstract
Like many sensory receptors, bacterial chemotaxis receptors form clusters. In bacteria, large-scale clusters are subdivided into signaling teams that act as ‘antennas' allowing detection of ligands with remarkable sensitivity. The range of sensitivity is greatly extended by adaptation of receptors to changes in concentrations through covalent modification. However, surprisingly little is known about the sizes of receptor signaling teams. Here, we combine measurements of the signaling response, obtained from in vivo fluorescence resonance energy transfer, with the statistical method of principal component analysis, to quantify the size of signaling teams within the framework of the previously successful Monod–Wyman–Changeux model. We find that size of signaling teams increases 2- to 3-fold with receptor modification, indicating an additional, previously unrecognized level of adaptation of the chemotaxis network. This variation of signaling-team size shows that receptor cooperativity is dynamic and likely optimized for sensing noisy ligand concentrations.
Collapse
|
15
|
Hazelbauer GL, Falke JJ, Parkinson JS. Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 2007; 33:9-19. [PMID: 18165013 DOI: 10.1016/j.tibs.2007.09.014] [Citation(s) in RCA: 488] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/10/2007] [Accepted: 09/23/2007] [Indexed: 11/27/2022]
Abstract
Chemoreceptors are crucial components in the bacterial sensory systems that mediate chemotaxis. Chemotactic responses exhibit exquisite sensitivity, extensive dynamic range and precise adaptation. The mechanisms that mediate these high-performance functions involve not only actions of individual proteins but also interactions among clusters of components, localized in extensive patches of thousands of molecules. Recently, these patches have been imaged in native cells, important features of chemoreceptor structure and on-off switching have been identified, and new insights have been gained into the structural basis and functional consequences of higher order interactions among sensory components. These new data suggest multiple levels of molecular interactions, each of which contribute specific functional features and together create a sophisticated signaling device.
Collapse
Affiliation(s)
- Gerald L Hazelbauer
- Department of Biochemistry, University of Missouri Columbia, Columbia, MO 65211, USA.
| | | | | |
Collapse
|