1
|
Simpkins SW, Nelson J, Deshpande R, Li SC, Piotrowski JS, Wilson EH, Gebre AA, Safizadeh H, Okamoto R, Yoshimura M, Costanzo M, Yashiroda Y, Ohya Y, Osada H, Yoshida M, Boone C, Myers CL. Predicting bioprocess targets of chemical compounds through integration of chemical-genetic and genetic interactions. PLoS Comput Biol 2018; 14:e1006532. [PMID: 30376562 PMCID: PMC6226211 DOI: 10.1371/journal.pcbi.1006532] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/09/2018] [Accepted: 09/26/2018] [Indexed: 02/01/2023] Open
Abstract
Chemical-genetic interactions–observed when the treatment of mutant cells with chemical compounds reveals unexpected phenotypes–contain rich functional information linking compounds to their cellular modes of action. To systematically identify these interactions, an array of mutants is challenged with a compound and monitored for fitness defects, generating a chemical-genetic interaction profile that provides a quantitative, unbiased description of the cellular function(s) perturbed by the compound. Genetic interactions, obtained from genome-wide double-mutant screens, provide a key for interpreting the functional information contained in chemical-genetic interaction profiles. Despite the utility of this approach, integrative analyses of genetic and chemical-genetic interaction networks have not been systematically evaluated. We developed a method, called CG-TARGET (Chemical Genetic Translation via A Reference Genetic nETwork), that integrates large-scale chemical-genetic interaction screening data with a genetic interaction network to predict the biological processes perturbed by compounds. In a recent publication, we applied CG-TARGET to a screen of nearly 14,000 chemical compounds in Saccharomyces cerevisiae, integrating this dataset with the global S. cerevisiae genetic interaction network to prioritize over 1500 compounds with high-confidence biological process predictions for further study. We present here a formal description and rigorous benchmarking of the CG-TARGET method, showing that, compared to alternative enrichment-based approaches, it achieves similar or better accuracy while substantially improving the ability to control the false discovery rate of biological process predictions. Additional investigation of the compatibility of chemical-genetic and genetic interaction profiles revealed that one-third of observed chemical-genetic interactions contributed to the highest-confidence biological process predictions and that negative chemical-genetic interactions overwhelmingly formed the basis of these predictions. We also present experimental validations of CG-TARGET-predicted tubulin polymerization and cell cycle progression inhibitors. Our approach successfully demonstrates the use of genetic interaction networks in the high-throughput functional annotation of compounds to biological processes. Understanding how chemical compounds affect biological systems is of paramount importance as pharmaceutical companies strive to develop life-saving medicines, governments seek to regulate the safety of consumer products and agrichemicals, and basic scientists continue to study the fundamental inner workings of biological organisms. One powerful approach to characterize the effects of chemical compounds in living cells is chemical-genetic interaction screening. Using this approach, a collection of cells–each with a different defined genetic perturbation–is tested for sensitivity or resistance to the presence of a compound, resulting in a quantitative profile describing the functional effects of that compound on the cells. The work presented here describes our efforts to integrate compounds’ chemical-genetic interaction profiles with reference genetic interaction profiles containing information on gene function to predict the cellular processes perturbed by the compounds. We focused on specifically developing a method that could scale to perform these functional predictions for large collections of thousands of screened compounds and robustly control the false discovery rate. With chemical-genetic and genetic interaction screens now underway in multiple species including human cells, the method described here can be generally applied to enable the characterization of compounds’ effects across the tree of life.
Collapse
Affiliation(s)
- Scott W. Simpkins
- University of Minnesota-Twin Cities, Bioinformatics and Computational Biology Graduate Program, Minneapolis, Minnesota, United States of America
| | - Justin Nelson
- University of Minnesota-Twin Cities, Bioinformatics and Computational Biology Graduate Program, Minneapolis, Minnesota, United States of America
| | - Raamesh Deshpande
- University of Minnesota-Twin Cities, Department of Computer Science and Engineering, Minneapolis, Minnesota, United States of America
| | - Sheena C. Li
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | | | - Erin H. Wilson
- University of Minnesota-Twin Cities, Department of Computer Science and Engineering, Minneapolis, Minnesota, United States of America
| | - Abraham A. Gebre
- University of Tokyo, Department of Integrated Biosciences, Graduate School of Frontier Sciences, Kashiwa, Chiba, Japan
| | - Hamid Safizadeh
- University of Minnesota-Twin Cities, Department of Computer Science and Engineering, Minneapolis, Minnesota, United States of America
- University of Minnesota, Department of Electrical and Computer Engineering, Minneapolis, Minnesota, United States of America
| | - Reika Okamoto
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Mami Yoshimura
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Michael Costanzo
- University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yoshikazu Ohya
- University of Tokyo, Department of Integrated Biosciences, Graduate School of Frontier Sciences, Kashiwa, Chiba, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Charles Boone
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
- * E-mail: (CB); (CLM)
| | - Chad L. Myers
- University of Minnesota-Twin Cities, Bioinformatics and Computational Biology Graduate Program, Minneapolis, Minnesota, United States of America
- University of Minnesota-Twin Cities, Department of Computer Science and Engineering, Minneapolis, Minnesota, United States of America
- * E-mail: (CB); (CLM)
| |
Collapse
|
2
|
Vanhaelen Q, Mamoshina P, Aliper AM, Artemov A, Lezhnina K, Ozerov I, Labat I, Zhavoronkov A. Design of efficient computational workflows for in silico drug repurposing. Drug Discov Today 2016; 22:210-222. [PMID: 27693712 DOI: 10.1016/j.drudis.2016.09.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/26/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022]
Abstract
Here, we provide a comprehensive overview of the current status of in silico repurposing methods by establishing links between current technological trends, data availability and characteristics of the algorithms used in these methods. Using the case of the computational repurposing of fasudil as an alternative autophagy enhancer, we suggest a generic modular organization of a repurposing workflow. We also review 3D structure-based, similarity-based, inference-based and machine learning (ML)-based methods. We summarize the advantages and disadvantages of these methods to emphasize three current technical challenges. We finish by discussing current directions of research, including possibilities offered by new methods, such as deep learning.
Collapse
Affiliation(s)
- Quentin Vanhaelen
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA.
| | - Polina Mamoshina
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Alexander M Aliper
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Artem Artemov
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Ksenia Lezhnina
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Ivan Ozerov
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| | - Ivan Labat
- BioTime Inc., 1010 Atlantic Avenue, 102, Alameda, CA 94501, USA
| | - Alex Zhavoronkov
- Insilico Medicine Inc., Johns Hopkins University, ETC, B301, MD 21218, USA
| |
Collapse
|
3
|
Malty RH, Jessulat M, Jin K, Musso G, Vlasblom J, Phanse S, Zhang Z, Babu M. Mitochondrial targets for pharmacological intervention in human disease. J Proteome Res 2014; 14:5-21. [PMID: 25367773 PMCID: PMC4286170 DOI: 10.1021/pr500813f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Over the past several years, mitochondrial
dysfunction has been
linked to an increasing number of human illnesses, making mitochondrial
proteins (MPs) an ever more appealing target for therapeutic intervention.
With 20% of the mitochondrial proteome (312 of an estimated 1500 MPs)
having known interactions with small molecules, MPs appear to be highly
targetable. Yet, despite these targeted proteins functioning in a
range of biological processes (including induction of apoptosis, calcium
homeostasis, and metabolism), very few of the compounds targeting
MPs find clinical use. Recent work has greatly expanded the number
of proteins known to localize to the mitochondria and has generated
a considerable increase in MP 3D structures available in public databases,
allowing experimental screening and in silico prediction of mitochondrial
drug targets on an unprecedented scale. Here, we summarize the current
literature on clinically active drugs that target MPs, with a focus
on how existing drug targets are distributed across biochemical pathways
and organelle substructures. Also, we examine current strategies for
mitochondrial drug discovery, focusing on genetic, proteomic, and
chemogenomic assays, and relevant model systems. As cell models and
screening techniques improve, MPs appear poised to emerge as relevant
targets for a wide range of complex human diseases, an eventuality
that can be expedited through systematic analysis of MP function.
Collapse
Affiliation(s)
- Ramy H Malty
- Department of Biochemistry, Research and Innovation Centre, University of Regina , Regina, Saskatchewan S4S 0A2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Heiskanen MA, Aittokallio T. Predicting drug-target interactions through integrative analysis of chemogenetic assays in yeast. MOLECULAR BIOSYSTEMS 2013; 9:768-79. [PMID: 23420501 DOI: 10.1039/c3mb25591c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chemical-genomic and genetic interaction profiling approaches are widely used to study mechanisms of drug action and resistance. However, there exist a number of scoring algorithms customized to different experimental assays, the relative performance of which remains poorly understood, especially with respect to different types of chemogenetic assays. Using yeast Saccharomyces cerevisiae as a test bed, we carried out a systematic evaluation among the main drug target analysis approaches in terms of predicting global drug-target interaction networks. We found drastic differences in their performance across different chemical-genomic assay types, such as those based on heterozygous and homozygous diploid or haploid deletion mutant libraries. Moreover, a relatively small overlap in the predicted targets was observed between those approaches that use either chemical-genomic screening alone or combined with genetic interaction profiling. A rank-based integration of the complementary scoring approaches led to improved overall performance, demonstrating that genetic interaction profiling provides added information on drug target prediction. Optimal performance was achieved when focusing specifically on the negative tail of the genetic interactions, suggesting that combining synthetic lethal interactions with chemical-genetic interactions provides highest information on drug-target interactions. A network view of rapamycin-interacting genes, pathways and complexes was used as an example to demonstrate the benefits of such integrated and optimized analysis of chemogenetic assays in yeast.
Collapse
Affiliation(s)
- Marja A Heiskanen
- Biomathematics Research Group, Department of Mathematics, University of Turku, FI-20014, Finland
| | | |
Collapse
|
5
|
Han S, Lee M, Chang H, Nam M, Park HO, Kwak YS, Ha HJ, Kim D, Hwang SO, Hoe KL, Kim DU. Construction of the first compendium of chemical-genetic profiles in the fission yeast Schizosaccharomyces pombe and comparative compendium approach. Biochem Biophys Res Commun 2013; 436:613-8. [PMID: 23764396 DOI: 10.1016/j.bbrc.2013.05.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/31/2013] [Indexed: 11/26/2022]
Abstract
Genome-wide chemical genetic profiles in Saccharomyces cerevisiae since the budding yeast deletion library construction have been successfully used to reveal unknown mode-of-actions of drugs. Here, we introduce comparative approach to infer drug target proteins more accurately using two compendiums of chemical-genetic profiles from the budding yeast S. cerevisiae and the fission yeast Schizosaccharomyces pombe. For the first time, we established DNA-chip based growth defect measurement of genome-wide deletion strains of S. pombe, and then applied 47 drugs to the pooled heterozygous deletion strains to generate chemical-genetic profiles in S. pombe. In our approach, putative drug targets were inferred from strains hypersensitive to given drugs by analyzing S. pombe and S. cerevisiae compendiums. Notably, many evidences in the literature revealed that the inferred target genes of fungicide and bactericide identified by such comparative approach are in fact the direct targets. Furthermore, by filtering out the genes with no essentiality, the multi-drug sensitivity genes, and the genes with less eukaryotic conservation, we created a set of drug target gene candidates that are expected to be directly affected by a given drug in human cells. Our study demonstrated that it is highly beneficial to construct the multiple compendiums of chemical genetic profiles using many different species. The fission yeast chemical-genetic compendium is available at http://pombe.kaist.ac.kr/compendium.
Collapse
Affiliation(s)
- Sangjo Han
- Bioinformatics Lab, Healthcare Group, SK Telecom, 9-1, Sunae-dong, Pundang-gu, Sungnam-si, Kyunggi-do 463-784, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
FitSearch: a robust way to interpret a yeast fitness profile in terms of drug's mode-of-action. BMC Genomics 2013; 14 Suppl 1:S6. [PMID: 23368702 PMCID: PMC3549813 DOI: 10.1186/1471-2164-14-s1-s6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Yeast deletion-mutant collections have been successfully used to infer the mode-of-action of drugs especially by profiling chemical-genetic and genetic-genetic interactions on a genome-wide scale. Although tens of thousands of those profiles are publicly available, a lack of an accurate method for mining such data has been a major bottleneck for more widespread use of these useful resources. Results For general usage of those public resources, we designed FitRankDB as a general repository of fitness profiles, and developed a new search algorithm, FitSearch, for identifying the profiles that have a high similarity score with statistical significance for a given fitness profile. We demonstrated that our new repository and algorithm are highly beneficial to researchers who attempting to make hypotheses based on unknown modes-of-action of bioactive compounds, regardless of the types of experiments that have been performed using yeast deletion-mutant collection in various types of different measurement platforms, especially non-chip-based platforms. Conclusions We showed that our new database and algorithm are useful when attempting to construct a hypothesis regarding the unknown function of a bioactive compound through small-scale experiments with a yeast deletion collection in a platform independent manner. The FitRankDB and FitSearch enhance the ease of searching public yeast fitness profiles and obtaining insights into unknown mechanisms of action of drugs. FitSearch is freely available at http://fitsearch.kaist.ac.kr.
Collapse
|
7
|
Beltrao P, Ryan C, Krogan NJ. Comparative interaction networks: bridging genotype to phenotype. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 751:139-56. [PMID: 22821457 PMCID: PMC3518490 DOI: 10.1007/978-1-4614-3567-9_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past decade, biomedical research has witnessed an exponential increase in the throughput of the characterization of biological systems. Here we review the recent progress in large-scale methods to determine protein-protein, genetic and chemical-genetic interaction networks. We discuss some of the limitations and advantages of the different methods and give examples of how these networks are being used to study the evolutionary process. Comparative studies have revealed that different types of protein-protein interactions diverge at different rates with high conservation of co-complex membership but rapid divergence of more promiscuous interactions like those that mediate post-translational modifications. These evolutionary trends have consistent genetic consequences with highly conserved epistatic interactions within complex subunits but faster divergence of epistatic interactions across complexes or pathways. Finally, we discuss how these evolutionary observations are being used to interpret cross-species chemical-genetic studies and how they might shape therapeutic strategies. Together, these interaction networks offer us an unprecedented level of detail into how genotypes are translated to phenotypes, and we envision that they will be increasingly useful in the interpretation of genetic and phenotypic variation occurring within populations as well as the rational design of combinatorial therapeutics.
Collapse
Affiliation(s)
- Pedro Beltrao
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94158, USA
| | - Colm Ryan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94158, USA. School of Computer Science and Informatics, University College Dublin, Dublin, Ireland
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94158, USA. J. David Gladstone Institutes, San Francisco, CA 94158, USA
| |
Collapse
|
8
|
Abstract
BACKGROUND One of the most recent and important developments in drug discovery is a new drug development approach of building and analyzing networks that contain relationships among drugs and targets, diseases, genes and other components. These networks and their integrations provide useful information for finding new targets as well as new drugs. OBJECTIVE This review article aims to review recent developments in various types of networks and suggest the future direction of these network studies for drug discovery. METHODS Databases and networks are integrated into a more complete network to better present the relationships among drugs, targets, genes, phenotypes and diseases. After discussing the limitations and obstacles of the recent research, we suggest several strategies to build a successful and practical drug-target network. RESULTS/CONCLUSION A useful, integrated network can be built from various databases and networks by resolving several issues, such as limited coverage and inconsistency. This integrated network can be completed by the prediction of missing links, biological network comparison and drug target identification. Possible applications are multi-target drug development, drug repurposing, estimation of drug effect on target perturbations in the whole system and extraction of the suitable purpose of the drug-target sub-network.
Collapse
Affiliation(s)
- Soyoung Lee
- KAIST, Department of Bio and Brain Engineering, 335 Gwahak-ro, Yuseong-gu, Daejeon, 305-701 Korea, Republic of Korea +82 42 350 4317 ; +82 42 350 4310 ;
| | | | | |
Collapse
|