1
|
Bazmi S, Seifi B, Wallin S. Simulations of a protein fold switch reveal crowding-induced population shifts driven by disordered regions. Commun Chem 2023; 6:191. [PMID: 37689829 PMCID: PMC10492864 DOI: 10.1038/s42004-023-00995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023] Open
Abstract
Macromolecular crowding effects on globular proteins, which usually adopt a single stable fold, have been widely studied. However, little is known about crowding effects on fold-switching proteins, which reversibly switch between distinct folds. Here we study the mutationally driven switch between the folds of GA and GB, the two 56-amino acid binding domains of protein G, using a structure-based dual-basin model. We show that, in the absence of crowders, the fold populations PA and PB can be controlled by the strengths of contacts in the two folds, κA and κB. A population balance, PA ≈ PB, is obtained for κB/κA = 0.92. The resulting model protein is subject to crowding at different packing fractions, ϕc. We find that crowding increases the GB population and reduces the GA population, reaching PB/PA ≈ 4 at ϕc = 0.44. We analyze the ϕc-dependence of the crowding-induced GA-to-GB switch using scaled particle theory, which provides a qualitative, but not quantitative, fit of our data, suggesting effects beyond a spherical description of the folds. We show that the terminal regions of the protein chain, which are intrinsically disordered only in GA, play a dominant role in the response of the fold switch to crowding effects.
Collapse
Affiliation(s)
- Saman Bazmi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada
| | - Bahman Seifi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada.
| |
Collapse
|
2
|
Madhurima K, Nandi B, Sekhar A. Metamorphic proteins: the Janus proteins of structural biology. Open Biol 2021; 11:210012. [PMID: 33878950 PMCID: PMC8059507 DOI: 10.1098/rsob.210012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The structural paradigm that the sequence of a protein encodes for a unique three-dimensional native fold does not acknowledge the intrinsic plasticity encapsulated in conformational free energy landscapes. Metamorphic proteins are a recently discovered class of biomolecules that illustrate this plasticity by folding into at least two distinct native state structures of comparable stability in the absence of ligands or cofactors to facilitate fold-switching. The expanding list of metamorphic proteins clearly shows that these proteins are not mere aberrations in protein evolution, but may have actually been a consequence of distinctive patterns in selection pressure such as those found in virus–host co-evolution. In this review, we describe the structure–function relationships observed in well-studied metamorphic protein systems, with specific focus on how functional residues are sequestered or exposed in the two folds of the protein. We also discuss the implications of metamorphosis for protein evolution and the efforts that are underway to predict metamorphic systems from sequence properties alone.
Collapse
Affiliation(s)
- Kulkarni Madhurima
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Bodhisatwa Nandi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
3
|
Seifi B, Aina A, Wallin S. Structural fluctuations and mechanical stabilities of the metamorphic protein RfaH. Proteins 2020; 89:289-300. [PMID: 32996201 DOI: 10.1002/prot.26014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/17/2020] [Accepted: 08/31/2020] [Indexed: 01/08/2023]
Abstract
RfaH is a compact two-domain bacterial transcription factor that functions both as a regulator of transcription and an enhancer of translation. Underpinning the dual functional roles of RfaH is a partial but dramatic fold switch, which completely transforms the ~50-amino acid C-terminal domain (CTD) from an all-α state to an all-β state. The fold switch of the CTD occurs when RfaH binds to RNA polymerase (RNAP), however, the details of how this structural transformation is triggered is not well understood. Here we use all-atom Monte Carlo simulations to characterize structural fluctuations and mechanical stability properties of the full-length RfaH and the CTD as an isolated fragment. In agreement with experiments, we find that interdomain contacts are crucial for maintaining a stable, all-α CTD in free RfaH. To probe mechanical properties, we use pulling simulations to measure the work required to inflict local deformations at different positions along the chain. The resulting mechanical stability profile reveals that free RfaH can be divided into a "rigid" part and a "soft" part, with a boundary that nearly coincides with the boundary between the two domains. We discuss the potential role of this feature for how fold switching may be triggered by interaction with RNAP.
Collapse
Affiliation(s)
- Bahman Seifi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Newfoundland, Canada
| | - Adekunle Aina
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Newfoundland, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Newfoundland, Canada
| |
Collapse
|
4
|
Tian P, Best RB. Exploring the sequence fitness landscape of a bridge between protein folds. PLoS Comput Biol 2020; 16:e1008285. [PMID: 33048928 PMCID: PMC7553338 DOI: 10.1371/journal.pcbi.1008285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Most foldable protein sequences adopt only a single native fold. Recent protein design studies have, however, created protein sequences which fold into different structures apon changes of environment, or single point mutation, the best characterized example being the switch between the folds of the GA and GB binding domains of streptococcal protein G. To obtain further insight into the design of sequences which can switch folds, we have used a computational model for the fitness landscape of a single fold, built from the observed sequence variation of protein homologues. We have recently shown that such coevolutionary models can be used to design novel foldable sequences. By appropriately combining two of these models to describe the joint fitness landscape of GA and GB, we are able to describe the propensity of a given sequence for each of the two folds. We have successfully tested the combined model against the known series of designed GA/GB hybrids. Using Monte Carlo simulations on this landscape, we are able to identify pathways of mutations connecting the two folds. In the absence of a requirement for domain stability, the most frequent paths go via sequences in which neither domain is stably folded, reminiscent of the propensity for certain intrinsically disordered proteins to fold into different structures according to context. Even if the folded state is required to be stable, we find that there is nonetheless still a wide range of sequences which are close to the transition region and therefore likely fold switches, consistent with recent estimates that fold switching may be more widespread than had been thought.
Collapse
Affiliation(s)
- Pengfei Tian
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, U.S.A
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, U.S.A
| |
Collapse
|
5
|
Petrović D, Risso VA, Kamerlin SCL, Sanchez-Ruiz JM. Conformational dynamics and enzyme evolution. J R Soc Interface 2018; 15:20180330. [PMID: 30021929 PMCID: PMC6073641 DOI: 10.1098/rsif.2018.0330] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022] Open
Abstract
Enzymes are dynamic entities, and their dynamic properties are clearly linked to their biological function. It follows that dynamics ought to play an essential role in enzyme evolution. Indeed, a link between conformational diversity and the emergence of new enzyme functionalities has been recognized for many years. However, it is only recently that state-of-the-art computational and experimental approaches are revealing the crucial molecular details of this link. Specifically, evolutionary trajectories leading to functional optimization for a given host environment or to the emergence of a new function typically involve enriching catalytically competent conformations and/or the freezing out of non-competent conformations of an enzyme. In some cases, these evolutionary changes are achieved through distant mutations that shift the protein ensemble towards productive conformations. Multifunctional intermediates in evolutionary trajectories are probably multi-conformational, i.e. able to switch between different overall conformations, each competent for a given function. Conformational diversity can assist the emergence of a completely new active site through a single mutation by facilitating transition-state binding. We propose that this mechanism may have played a role in the emergence of enzymes at the primordial, progenote stage, where it was plausibly promoted by high environmental temperatures and the possibility of additional phenotypic mutations.
Collapse
Affiliation(s)
- Dušan Petrović
- Department of Chemistry, BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Valeria A Risso
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | | | - Jose M Sanchez-Ruiz
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| |
Collapse
|
6
|
Aina A, Wallin S. Multisequence algorithm for coarse-grained biomolecular simulations: Exploring the sequence-structure relationship of proteins. J Chem Phys 2017; 147:095102. [DOI: 10.1063/1.4986933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- A. Aina
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador A1B 3X7, Canada
| | - S. Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador A1B 3X7, Canada
| |
Collapse
|
7
|
Abstract
Proteins are the workhorses of the cell and, over billions of years, they have evolved an amazing plethora of extremely diverse and versatile structures with equally diverse functions. Evolutionary emergence of new proteins and transitions between existing ones are believed to be rare or even impossible. However, recent advances in comparative genomics have repeatedly called some 10%-30% of all genes without any detectable similarity to existing proteins. Even after careful scrutiny, some of those orphan genes contain protein coding reading frames with detectable transcription and translation. Thus some proteins seem to have emerged from previously non-coding 'dark genomic matter'. These 'de novo' proteins tend to be disordered, fast evolving, weakly expressed but also rapidly assuming novel and physiologically important functions. Here we review mechanisms by which 'de novo' proteins might be created, under which circumstances they may become fixed and why they are elusive. We propose a 'grow slow and moult' model in which first a reading frame is extended, coding for an initially disordered and non-globular appendage which, over time, becomes more structured and may also become associated with other proteins.
Collapse
|
8
|
Venev SV, Zeldovich KB. Massively parallel sampling of lattice proteins reveals foundations of thermal adaptation. J Chem Phys 2016; 143:055101. [PMID: 26254668 DOI: 10.1063/1.4927565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Evolution of proteins in bacteria and archaea living in different conditions leads to significant correlations between amino acid usage and environmental temperature. The origins of these correlations are poorly understood, and an important question of protein theory, physics-based prediction of types of amino acids overrepresented in highly thermostable proteins, remains largely unsolved. Here, we extend the random energy model of protein folding by weighting the interaction energies of amino acids by their frequencies in protein sequences and predict the energy gap of proteins designed to fold well at elevated temperatures. To test the model, we present a novel scalable algorithm for simultaneous energy calculation for many sequences in many structures, targeting massively parallel computing architectures such as graphics processing unit. The energy calculation is performed by multiplying two matrices, one representing the complete set of sequences, and the other describing the contact maps of all structural templates. An implementation of the algorithm for the CUDA platform is available at http://www.github.com/kzeldovich/galeprot and calculates protein folding energies over 250 times faster than a single central processing unit. Analysis of amino acid usage in 64-mer cubic lattice proteins designed to fold well at different temperatures demonstrates an excellent agreement between theoretical and simulated values of energy gap. The theoretical predictions of temperature trends of amino acid frequencies are significantly correlated with bioinformatics data on 191 bacteria and archaea, and highlight protein folding constraints as a fundamental selection pressure during thermal adaptation in biological evolution.
Collapse
Affiliation(s)
- Sergey V Venev
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation St, Worcester, Massachusetts 01605, USA
| | - Konstantin B Zeldovich
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation St, Worcester, Massachusetts 01605, USA
| |
Collapse
|
9
|
Sikosek T, Krobath H, Chan HS. Theoretical Insights into the Biophysics of Protein Bi-stability and Evolutionary Switches. PLoS Comput Biol 2016; 12:e1004960. [PMID: 27253392 PMCID: PMC4890782 DOI: 10.1371/journal.pcbi.1004960] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/04/2016] [Indexed: 11/18/2022] Open
Abstract
Deciphering the effects of nonsynonymous mutations on protein structure is central to many areas of biomedical research and is of fundamental importance to the study of molecular evolution. Much of the investigation of protein evolution has focused on mutations that leave a protein’s folded structure essentially unchanged. However, to evolve novel folds of proteins, mutations that lead to large conformational modifications have to be involved. Unraveling the basic biophysics of such mutations is a challenge to theory, especially when only one or two amino acid substitutions cause a large-scale conformational switch. Among the few such mutational switches identified experimentally, the one between the GA all-α and GB α+β folds is extensively characterized; but all-atom simulations using fully transferrable potentials have not been able to account for this striking switching behavior. Here we introduce an explicit-chain model that combines structure-based native biases for multiple alternative structures with a general physical atomic force field, and apply this construct to twelve mutants spanning the sequence variation between GA and GB. In agreement with experiment, we observe conformational switching from GA to GB upon a single L45Y substitution in the GA98 mutant. In line with the latent evolutionary potential concept, our model shows a gradual sequence-dependent change in fold preference in the mutants before this switch. Our analysis also indicates that a sharp GA/GB switch may arise from the orientation dependence of aromatic π-interactions. These findings provide physical insights toward rationalizing, predicting and designing evolutionary conformational switches. The biological functions of globular proteins are intimately related to their folded structures and their associated conformational fluctuations. Evolution of new structures is an important avenue to new functions. Although many mutations do not change the folded state, experiments indicate that a single amino acid substitution can lead to a drastic change in the folded structure. The physics of this switch-like behavior remains to be elucidated. Here we develop a computational model for the relevant physical forces, showing that mutations can lead to new folds by passing through intermediate sequences where the old and new folds occur with varying probabilities. Our approach helps provide a general physical account of conformational switching in evolution and mutational effects on conformational dynamics.
Collapse
Affiliation(s)
- Tobias Sikosek
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Heinrich Krobath
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hue Sun Chan
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
10
|
Malhotra A, Creer S, Harris JB, Thorpe RS. The importance of being genomic: Non-coding and coding sequences suggest different models of toxin multi-gene family evolution. Toxicon 2015; 107:344-58. [DOI: 10.1016/j.toxicon.2015.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/31/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
|
11
|
Best RB. Bootstrapping new protein folds. Biophys J 2015; 107:1040-1041. [PMID: 25185539 DOI: 10.1016/j.bpj.2014.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/03/2014] [Indexed: 11/26/2022] Open
Affiliation(s)
- Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
12
|
Holzgräfe C, Wallin S. Smooth functional transition along a mutational pathway with an abrupt protein fold switch. Biophys J 2015; 107:1217-1225. [PMID: 25185557 DOI: 10.1016/j.bpj.2014.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 10/24/2022] Open
Abstract
Recent protein design experiments have demonstrated that proteins can migrate between folds through the accumulation of substitution mutations without visiting disordered or nonfunctional points in sequence space. To explore the biophysical mechanism underlying such transitions we use a three-letter continuous protein model with seven atoms per amino acid to provide realistic sequence-structure and sequence-function mappings through explicit simulation of the folding and interaction of model sequences. We start from two 16-amino-acid sequences folding into an α-helix and a β-hairpin, respectively, each of which has a preferred binding partner with 35 amino acids. We identify a mutational pathway between the two folds, which features a sharp fold switch. By contrast, we find that the transition in function is smooth. Moreover, the switch in preferred binding partner does not coincide with the fold switch. Discovery of new folds in evolution might therefore be facilitated by following fitness slopes in sequence space underpinned by binding-induced conformational switching.
Collapse
Affiliation(s)
- Christian Holzgräfe
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, Lund, Sweden
| | - Stefan Wallin
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, Lund, Sweden.
| |
Collapse
|
13
|
Schüler A, Schmitz G, Reft A, Özbek S, Thurm U, Bornberg-Bauer E. The Rise and Fall of TRP-N, an Ancient Family of Mechanogated Ion Channels, in Metazoa. Genome Biol Evol 2015; 7:1713-27. [PMID: 26100409 PMCID: PMC4494053 DOI: 10.1093/gbe/evv091] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mechanoreception, the sensing of mechanical forces, is an ancient means of orientation and communication and tightly linked to the evolution of motile animals. In flies, the transient-receptor-potential N protein (TRP-N) was found to be a cilia-associated mechanoreceptor. TRP-N belongs to a large and diverse family of ion channels. Its unusually long N-terminal repeat of 28 ankyrin domains presumably acts as the gating spring by which mechanical energy induces channel gating. We analyzed the evolutionary origins and possible diversification of TRP-N. Using a custom-made set of highly discriminative sequence profiles we scanned a representative set of metazoan genomes and subsequently corrected several gene models. We find that, contrary to other ion channel families, TRP-N is remarkably conserved in its domain arrangements and copy number (1) in all Bilateria except for amniotes, even in the wake of several whole-genome duplications. TRP-N is absent in Porifera but present in Ctenophora and Placozoa. Exceptional multiplications of TRP-N occurred in Cnidaria, independently along the Hydra and the Nematostella lineage. Molecular signals of subfunctionalization can be attributed to different mechanisms of activation of the gating spring. In Hydra this is further supported by in situ hybridization and immune staining, suggesting that at least three paralogs adapted to nematocyte discharge, which is key for predation and defense. We propose that these new candidate proteins help explain the sensory complexity of Cnidaria which has been previously observed but so far has lacked a molecular underpinning. Also, the ancient appearance of TRP-N supports a common origin of important components of the nervous systems in Ctenophores, Cnidaria, and Bilateria.
Collapse
Affiliation(s)
- Andreas Schüler
- Institute for Evolution and Biodiversity, University of Muenster, Germany
| | - Gregor Schmitz
- Institute for Evolution and Biodiversity, University of Muenster, Germany
| | - Abigail Reft
- Centre for Organismal Studies, University of Heidelberg, Germany
| | - Suat Özbek
- Centre for Organismal Studies, University of Heidelberg, Germany HEIKA-Heidelberg Karlsruhe Research Partnership, Heidelberg University, Karlsruhe Institute of Technology (KIT), Heidelberg and Karlsruhe, Germany
| | - Ulrich Thurm
- Institute for Neurobiology and Behavioural Biology, University of Muenster, Germany
| | | |
Collapse
|
14
|
Wang K, Yu S, Ji X, Lakner C, Griffing A, Thorne JL. Roles of solvent accessibility and gene expression in modeling protein sequence evolution. Evol Bioinform Online 2015; 11:85-96. [PMID: 25987828 PMCID: PMC4415675 DOI: 10.4137/ebo.s22911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 11/05/2022] Open
Abstract
Models of protein evolution tend to ignore functional constraints, although structural constraints are sometimes incorporated. Here we propose a probabilistic framework for codon substitution that evaluates joint effects of relative solvent accessibility (RSA), a structural constraint; and gene expression, a functional constraint. First, we explore the relationship between RSA and codon usage at the genomic scale as well as at the individual gene scale. Motivated by these results, we construct our framework by determining how probable is an amino acid, given RSA and gene expression, and then evaluating the relative probability of observing a codon compared to other synonymous codons. We come to the biologically plausible conclusion that both RSA and gene expression are related to amino acid frequencies, but, among synonymous codons, the relative probability of a particular codon is more closely related to gene expression than RSA. To illustrate the potential applications of our framework, we propose a new codon substitution model. Using this model, we obtain estimates of 2N s, the product of effective population size N, and relative fitness difference of allele s. For a training data set consisting of human proteins with known structures and expression data, 2N s is estimated separately for synonymous and nonsynonymous substitutions in each protein. We then contrast the patterns of synonymous and nonsynonymous 2N s estimates across proteins while also taking gene expression levels of the proteins into account. We conclude that our 2N s estimates are too concentrated around 0, and we discuss potential explanations for this lack of variability.
Collapse
Affiliation(s)
- Kuangyu Wang
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Shuhui Yu
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA. ; College of Life Science, Chongqing University, Chongqing, China
| | - Xiang Ji
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Clemens Lakner
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Alexander Griffing
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey L Thorne
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
15
|
Sikosek T, Chan HS. Biophysics of protein evolution and evolutionary protein biophysics. J R Soc Interface 2015; 11:20140419. [PMID: 25165599 DOI: 10.1098/rsif.2014.0419] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence-structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by 'hidden' conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution.
Collapse
Affiliation(s)
- Tobias Sikosek
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
16
|
Holzgräfe C, Wallin S. Local versus global fold switching in protein evolution: insight from a three-letter continuous model. Phys Biol 2015; 12:026002. [DOI: 10.1088/1478-3975/12/2/026002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Ferrada E. The amino acid alphabet and the architecture of the protein sequence-structure map. I. Binary alphabets. PLoS Comput Biol 2014; 10:e1003946. [PMID: 25473967 PMCID: PMC4256021 DOI: 10.1371/journal.pcbi.1003946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
The correspondence between protein sequences and structures, or sequence-structure map, relates to fundamental aspects of structural, evolutionary and synthetic biology. The specifics of the mapping, such as the fraction of accessible sequences and structures, or the sequences' ability to fold fast, are dictated by the type of interactions between the monomers that compose the sequences. The set of possible interactions between monomers is encapsulated by the potential energy function. In this study, I explore the impact of the relative forces of the potential on the architecture of the sequence-structure map. My observations rely on simple exact models of proteins and random samples of the space of potential energy functions of binary alphabets. I adopt a graph perspective and study the distribution of viable sequences and the structures they produce, as networks of sequences connected by point mutations. I observe that the relative proportion of attractive, neutral and repulsive forces defines types of potentials, that induce sequence-structure maps of vastly different architectures. I characterize the properties underlying these differences and relate them to the structure of the potential. Among these properties are the expected number and relative distribution of sequences associated to specific structures and the diversity of structures as a function of sequence divergence. I study the types of binary potentials observed in natural amino acids and show that there is a strong bias towards only some types of potentials, a bias that seems to characterize the folding code of natural proteins. I discuss implications of these observations for the architecture of the sequence-structure map of natural proteins, the construction of random libraries of peptides, and the early evolution of the natural amino acid alphabet.
Collapse
Affiliation(s)
- Evandro Ferrada
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
18
|
Knott M, Best RB. Discriminating binding mechanisms of an intrinsically disordered protein via a multi-state coarse-grained model. J Chem Phys 2014; 140:175102. [PMID: 24811666 PMCID: PMC4032430 DOI: 10.1063/1.4873710] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/17/2014] [Indexed: 12/31/2022] Open
Abstract
Many proteins undergo a conformational transition upon binding to their cognate binding partner, with intrinsically disordered proteins (IDPs) providing an extreme example in which a folding transition occurs. However, it is often not clear whether this occurs via an "induced fit" or "conformational selection" mechanism, or via some intermediate scenario. In the first case, transient encounters with the binding partner favour transitions to the bound structure before the two proteins dissociate, while in the second the bound structure must be selected from a subset of unbound structures which are in the correct state for binding, because transient encounters of the incorrect conformation with the binding partner are most likely to result in dissociation. A particularly interesting situation involves those intrinsically disordered proteins which can bind to different binding partners in different conformations. We have devised a multi-state coarse-grained simulation model which is able to capture the binding of IDPs in alternate conformations, and by applying it to the binding of nuclear coactivator binding domain (NCBD) to either ACTR or IRF-3 we are able to determine the binding mechanism. By all measures, the binding of NCBD to either binding partner appears to occur via an induced fit mechanism. Nonetheless, we also show how a scenario closer to conformational selection could arise by choosing an alternative non-binding structure for NCBD.
Collapse
Affiliation(s)
- Michael Knott
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Robert B Best
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
19
|
Chen T, Chan HS. Effects of desolvation barriers and sidechains on local–nonlocal coupling and chevron behaviors in coarse-grained models of protein folding. Phys Chem Chem Phys 2014; 16:6460-79. [DOI: 10.1039/c3cp54866j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coarse-grained protein chain models with desolvation barriers or sidechains lead to stronger local–nonlocal coupling and more linear chevron plots.
Collapse
Affiliation(s)
- Tao Chen
- Departments of Biochemistry
- of Molecular Genetics
- of Physics
- University of Toronto
- Toronto, Canada
| | - Hue Sun Chan
- Departments of Biochemistry
- of Molecular Genetics
- of Physics
- University of Toronto
- Toronto, Canada
| |
Collapse
|
20
|
Ingles-Prieto A, Ibarra-Molero B, Delgado-Delgado A, Perez-Jimenez R, Fernandez JM, Gaucher EA, Sanchez-Ruiz JM, Gavira JA. Conservation of protein structure over four billion years. Structure 2013; 21:1690-7. [PMID: 23932589 PMCID: PMC3774310 DOI: 10.1016/j.str.2013.06.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/07/2013] [Accepted: 06/26/2013] [Indexed: 01/07/2023]
Abstract
Little is known about the evolution of protein structures and the degree of protein structure conservation over planetary time scales. Here, we report the X-ray crystal structures of seven laboratory resurrections of Precambrian thioredoxins dating up to approximately four billion years ago. Despite considerable sequence differences compared with extant enzymes, the ancestral proteins display the canonical thioredoxin fold, whereas only small structural changes have occurred over four billion years. This remarkable degree of structure conservation since a time near the last common ancestor of life supports a punctuated-equilibrium model of structure evolution in which the generation of new folds occurs over comparatively short periods and is followed by long periods of structural stasis.
Collapse
Affiliation(s)
- Alvaro Ingles-Prieto
- Facultad de Ciencias, Departamento de Química Física, Universidad de Granada, Granada, 18071, Spain
| | - Beatriz Ibarra-Molero
- Facultad de Ciencias, Departamento de Química Física, Universidad de Granada, Granada, 18071, Spain
| | - Asuncion Delgado-Delgado
- Facultad de Ciencias, Departamento de Química Física, Universidad de Granada, Granada, 18071, Spain
| | - Raul Perez-Jimenez
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Julio M. Fernandez
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Eric A. Gaucher
- Georgia Institute of Technology, School of Biology, School of Chemistry and Biochemistry, and Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia, 30332, USA
| | - Jose M. Sanchez-Ruiz
- Facultad de Ciencias, Departamento de Química Física, Universidad de Granada, Granada, 18071, Spain,To whom correspondence should be addressed: CONTACT: Jose M. Sanchez-Ruiz., , TEL: 34-958243189, FAX: 34-958272879
| | - Jose A. Gavira
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones Científicas – Universidad de Granada), Avenida de las Palmeras 4, Armilla, Granada, 18100, Spain,To whom correspondence should be addressed: CONTACT: Jose M. Sanchez-Ruiz., , TEL: 34-958243189, FAX: 34-958272879
| |
Collapse
|
21
|
Bhattacharjee N, Biswas P. Helical ambivalency induced by point mutations. BMC STRUCTURAL BIOLOGY 2013; 13:9. [PMID: 23675772 PMCID: PMC3683331 DOI: 10.1186/1472-6807-13-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 05/02/2013] [Indexed: 01/15/2023]
Abstract
Background Mutation of amino acid sequences in a protein may have diverse effects on its structure and function. Point mutations of even a single amino acid residue in the helices of the non-redundant database may lead to sequentially identical peptides which adopt different secondary structures in different proteins. However, various physico-chemical factors which govern the formation of these ambivalent helices generated by point mutations of a sequence are not clearly known. Results Sequences generated by point mutations of helices are mapped on to their non-helical counterparts in the SCOP database. The results show that short helices are prone to transform into non-helical conformations upon point mutations. Mutation of amino acid residues by helix breakers preferentially yield non-helical conformations, while mutation with residues of intermediate helix propensity display least preferences for non-helical conformations. Differences in the solvent accessibility of the mutating/mutated residues are found to be a major criteria for these sequences to conform to non-helical conformations. Even with minimal differences in the amino acid distributions of the sequences flanking the helical and non-helical conformations, helix-flanking sequences are found be more solvent accessible. Conclusions All types of mutations from helical to non-helical conformations are investigated. The primary factors attributing such changes in conformation can be: i) type/propensity of the mutating and mutant residues ii) solvent accessibility of the residue at the mutation site iii) context/environment dependence of the flanking sequences. The results from the present study may be used to design de novo proteins via point mutations.
Collapse
|
22
|
Affiliation(s)
- Rachel Kolodny
- Department of Computer Science, University of Haifa, Haifa 31905, Israel;
| | - Leonid Pereyaslavets
- Department of Structural Biology, Stanford University, Stanford, California 94305; ,
| | | | - Michael Levitt
- Department of Structural Biology, Stanford University, Stanford, California 94305; ,
| |
Collapse
|
23
|
Stewart KL, Dodds ED, Wysocki VH, Cordes MHJ. A polymetamorphic protein. Protein Sci 2013; 22:641-9. [PMID: 23471712 DOI: 10.1002/pro.2248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 11/10/2022]
Abstract
Arc repressor is a homodimeric protein with a ribbon-helix-helix fold. A single polar-to-hydrophobic substitution (N11L) at a solvent-exposed position leads to population of an alternate dimeric fold in which 3₁₀ helices replace a β-sheet. Here we find that the variant Q9V/N11L/R13V (S-VLV), with two additional polar-to-hydrophobic surface mutations in the same β-sheet, forms a highly stable, reversibly folded octamer with approximately half the α-helical content of wild-type Arc. At low protein concentration and low ionic strength, S-VLV also populates both dimeric topologies previously observed for N11L, as judged by NMR chemical shift comparisons. Thus, accumulation of simple hydrophobic mutations in Arc progressively reduces fold specificity, leading first to a sequence with two folds and then to a manifold bridge sequence with at least three different topologies. Residues 9-14 of S-VLV form a highly hydrophobic stretch that is predicted to be amyloidogenic, but we do not observe aggregates of higher order than octamer. Increases in sequence hydrophobicity can promote amyloid aggregation but also exert broader and more complex effects on fold specificity. Altered native folds, changes in fold coupled to oligomerization, toxic pre-amyloid oligomers, and amyloid fibrils may represent a near continuum of accessible alternatives in protein structure space.
Collapse
Affiliation(s)
- Katie L Stewart
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|