1
|
Wienbar S, Schwartz GW. Differences in spike generation instead of synaptic inputs determine the feature selectivity of two retinal cell types. Neuron 2022; 110:2110-2123.e4. [PMID: 35508174 PMCID: PMC9262831 DOI: 10.1016/j.neuron.2022.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022]
Abstract
Retinal ganglion cells (RGCs) are the spiking projection neurons of the eye that encode different features of the visual environment. The circuits providing synaptic input to different RGC types to drive feature selectivity have been studied extensively, but there has been less research aimed at understanding the intrinsic properties and how they impact feature selectivity. We introduce an RGC type in the mouse, the Bursty Suppressed-by-Contrast (bSbC) RGC, and compared it to the OFF sustained alpha (OFFsA). Differences in their contrast response functions arose from differences not in synaptic inputs but in their intrinsic properties. Spike generation was the key intrinsic property behind this functional difference; the bSbC RGC undergoes depolarization block while the OFFsA RGC maintains a high spike rate. Our results demonstrate that differences in intrinsic properties allow these two RGC types to detect and relay distinct features of an identical visual stimulus to the brain.
Collapse
Affiliation(s)
- Sophia Wienbar
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208, USA
| | - Gregory William Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
2
|
Abstract
Fear is defined as a fundamental emotion promptly arising in the context of threat and when danger is perceived. Fear can be innate or learned. Examples of innate fear include fears that are triggered by predators, pain, heights, rapidly approaching objects, and ancestral threats such as snakes and spiders. Animals and humans detect and respond more rapidly to threatening stimuli than to nonthreatening stimuli in the natural world. The threatening stimuli for most animals are predators, and most predators are themselves prey to other animals. Predatory avoidance is of crucial importance for survival of animals. Although humans are rarely affected by predators, we are constantly challenged by social threats such as a fearful or angry facial expression. This chapter will summarize the current knowledge on brain circuits processing innate fear responses to visual stimuli derived from studies conducted in mice and humans.
Collapse
|
3
|
Chizhov A, Merkulyeva N. Refractory density model of cortical direction selectivity: Lagged-nonlagged, transient-sustained, and On-Off thalamic neuron-based mechanisms and intracortical amplification. PLoS Comput Biol 2020; 16:e1008333. [PMID: 33052899 PMCID: PMC7605712 DOI: 10.1371/journal.pcbi.1008333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 11/02/2020] [Accepted: 09/12/2020] [Indexed: 11/18/2022] Open
Abstract
A biophysically detailed description of the mechanisms of the primary vision is still being developed. We have incorporated a simplified, filter-based description of retino-thalamic visual signal processing into the detailed, conductance-based refractory density description of the neuronal population activity of the primary visual cortex. We compared four mechanisms of the direction selectivity (DS), three of them being based on asymmetrical projections of different types of thalamic neurons to the cortex, distinguishing between (i) lagged and nonlagged, (ii) transient and sustained, and (iii) On and Off neurons. The fourth mechanism implies a lack of subcortical bias and is an epiphenomenon of intracortical interactions between orientation columns. The simulations of the cortical response to moving gratings have verified that first three mechanisms provide DS to an extent compared with experimental data and that the biophysical model realistically reproduces characteristics of the visual cortex activity, such as membrane potential, firing rate, and synaptic conductances. The proposed model reveals the difference between the mechanisms of both the intact and the silenced cortex, favoring the second mechanism. In the fourth case, DS is weaker but significant; it completely vanishes in the silenced cortex.DS in the On-Off mechanism derives from the nonlinear interactions within the orientation map. Results of simulations can help to identify a prevailing mechanism of DS in V1. This is a step towards a comprehensive biophysical modeling of the primary visual system in the frameworks of the population rate coding concept. A major mechanism that underlies tuning of cortical neurons to the direction of a moving stimulus is still debated. Considering the visual cortex structured with orientation-selective columns, we have realized and compared in our biophysically detailed mathematical model four hypothetical mechanisms of the direction selectivity (DS) known from experiments. The present model accomplishes our previous model that was tuned to experimental data on excitability in slices and reproduces orientation tuning effects in vivo. In simulations, we have found that the convergence of inputs from so-called transient and sustained (or lagged and nonlagged) thalamic neurons in the cortex provides an initial bias for DS, whereas cortical interactions amplify the tuning. In the absence of any bias, DS emerges as an epiphenomenon of the orientation map. In the case of a biased convergence of On- and Off- thalamic inputs, DS emerges with the help of the intracortical interactions on the orientation map, also. Thus, we have proposed a comprehensive description of the primary vision and revealed characteristic features of different mechanisms of DS in the visual cortex with columnar structure.
Collapse
Affiliation(s)
- Anton Chizhov
- Ioffe Institute, St.-Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, St.-Petersburg, Russia
- * E-mail:
| | | |
Collapse
|
4
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
5
|
Bhalla US. Dendrites, deep learning, and sequences in the hippocampus. Hippocampus 2017; 29:239-251. [PMID: 29024221 DOI: 10.1002/hipo.22806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 11/06/2022]
Abstract
The hippocampus places us both in time and space. It does so over remarkably large spans: milliseconds to years, and centimeters to kilometers. This works for sensory representations, for memory, and for behavioral context. How does it fit in such wide ranges of time and space scales, and keep order among the many dimensions of stimulus context? A key organizing principle for a wide sweep of scales and stimulus dimensions is that of order in time, or sequences. Sequences of neuronal activity are ubiquitous in sensory processing, in motor control, in planning actions, and in memory. Against this strong evidence for the phenomenon, there are currently more models than definite experiments about how the brain generates ordered activity. The flip side of sequence generation is discrimination. Discrimination of sequences has been extensively studied at the behavioral, systems, and modeling level, but again physiological mechanisms are fewer. It is against this backdrop that I discuss two recent developments in neural sequence computation, that at face value share little beyond the label "neural." These are dendritic sequence discrimination, and deep learning. One derives from channel physiology and molecular signaling, the other from applied neural network theory - apparently extreme ends of the spectrum of neural circuit detail. I suggest that each of these topics has deep lessons about the possible mechanisms, scales, and capabilities of hippocampal sequence computation.
Collapse
Affiliation(s)
- Upinder S Bhalla
- Neurobiology, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, Karnataka, India
| |
Collapse
|
6
|
Guo T, Tsai D, Morley JW, Suaning GJ, Kameneva T, Lovell NH, Dokos S. Electrical activity of ON and OFF retinal ganglion cells: a modelling study. J Neural Eng 2016; 13:025005. [PMID: 26905646 DOI: 10.1088/1741-2560/13/2/025005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Retinal ganglion cells (RGCs) demonstrate a large range of variation in their ionic channel properties and morphologies. Cell-specific properties are responsible for the unique way RGCs process synaptic inputs, as well as artificial electrical signals such as that from a visual prosthesis. A cell-specific computational modelling approach allows us to examine the functional significance of regional membrane channel expression and cell morphology. APPROACH In this study, an existing RGC ionic model was extended by including a hyperpolarization activated non-selective cationic current as well as a T-type calcium current identified in recent experimental findings. Biophysically-defined model parameters were simultaneously optimized against multiple experimental recordings from ON and OFF RGCs. MAIN RESULTS With well-defined cell-specific model parameters and the incorporation of detailed cell morphologies, these models were able to closely reconstruct and predict ON and OFF RGC response properties recorded experimentally. SIGNIFICANCE The resulting models were used to study the contribution of different ion channel properties and spatial structure of neurons to RGC activation. The techniques of this study are generally applicable to other excitable cell models, increasing the utility of theoretical models in accurately predicting the response of real biological neurons.
Collapse
Affiliation(s)
- Tianruo Guo
- Graduate School of Biomedical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
7
|
El-Sayyad HIH, Elmansi AA, Bakr EHM. Hypercholesterolemia-induced ocular disorder: Ameliorating role of phytotherapy. Nutrition 2015; 31:1307-16. [PMID: 26429651 DOI: 10.1016/j.nut.2015.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 05/07/2015] [Accepted: 05/10/2015] [Indexed: 01/03/2023]
Abstract
The ocular region is a complex structure that allows conscious light perception and vision. It is of ecto-mesodermal origin. Cholesterol and polyunsaturated fatty acids are involved in retinal cell function; however, hypercholesterolemia and diabetes impair its function. Retinal damage, neovascularization, and cataracts are the main complications of cholesterol overload. Dietary supplementation of selected plant products can lead to the scavenging of free reactive oxygen species, thereby protecting the ocular regions from the damage of hypercholesterolemia. This review illustrates the dramatic effects of increased cholesterol levels on the ocular regions. The effect of phytotherapy is discussed in relation to the different regions of the eye, including the retina, cornea, and lens.
Collapse
Affiliation(s)
- Hassan I H El-Sayyad
- Faculty of Science, Department of Zoology, Mansoura University, Mansoura, Egypt.
| | - Ahmed A Elmansi
- Faculty of Science, Department of Zoology, Mansoura University, Mansoura, Egypt
| | - Eman H M Bakr
- Faculty of Science, Department of Zoology, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Short-term depression, temporal summation, and onset inhibition shape interval tuning in midbrain neurons. J Neurosci 2015; 34:14272-87. [PMID: 25339741 DOI: 10.1523/jneurosci.2299-14.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A variety of synaptic mechanisms can contribute to single-neuron selectivity for temporal intervals in sensory stimuli. However, it remains unknown how these mechanisms interact to establish single-neuron sensitivity to temporal patterns of sensory stimulation in vivo. Here we address this question in a circuit that allows us to control the precise temporal patterns of synaptic input to interval-tuned neurons in behaviorally relevant ways. We obtained in vivo intracellular recordings under multiple levels of current clamp from midbrain neurons in the mormyrid weakly electric fish Brienomyrus brachyistius during stimulation with electrosensory pulse trains. To reveal the excitatory and inhibitory inputs onto interval-tuned neurons, we then estimated the synaptic conductances underlying responses. We found short-term depression in excitatory and inhibitory pathways onto all interval-tuned neurons. Short-interval selectivity was associated with excitation that depressed less than inhibition at short intervals, as well as temporally summating excitation. Long-interval selectivity was associated with long-lasting onset inhibition. We investigated tuning after separately nullifying the contributions of temporal summation and depression, and found the greatest diversity of interval selectivity among neurons when both mechanisms were at play. Furthermore, eliminating the effects of depression decreased sensitivity to directional changes in interval. These findings demonstrate that variation in depression and summation of excitation and inhibition helps to establish tuning to behaviorally relevant intervals in communication signals, and that depression contributes to neural coding of interval sequences. This work reveals for the first time how the interplay between short-term plasticity and temporal summation mediates the decoding of temporal sequences in awake, behaving animals.
Collapse
|
9
|
El-Sayyad HIH, Khalifa SA, AL-Gebaly AS, El-Mansy AA. Aging related changes of retina and optic nerve of Uromastyx aegyptia and Falco tinnunculus. ACS Chem Neurosci 2014; 5:39-50. [PMID: 24215233 DOI: 10.1021/cn400154k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aging is a biological phenomenon that involves gradual degradation of the structure and function of the retina and optic nerve. To our knowledge, little is known about the aging-related ocular cell loss in avian (Falco tinnunculus) and reptilian species (Uromastyx aegyptia). A selected 90 animals of pup, middle, and old age U. aegyptia (reptilian) and F. tinnunculus (avian) were used. The retinae and optic nerves were investigated by light and transmission electron microscopy (TEM) and assessments of neurotransmitters, antioxidant enzymes (catalase, superoxide dismustase and glutathione s transferase), caspase-3 and -7, malonadialdhyde, and DNA fragmentation. Light and TEM observations of the senile specimens revealed apparent deterioration of retinal cell layers, especially the pigmented epithelium and photoreceptor outer segments. Their inclusions of melanin were replaced by lipofuscins. Also, vacuolar degeneration and demyelination of the optic nerve axons were detected. Concomitantly, there was a marked increase of oxidative stress involved reduction of neurotransmitters and antioxidant enzymes and an increase of lipid peroxidation, caspase-3 and -7, subG0/G1 apoptosis, and P53. We conclude that aging showed an inverse relationship with the neurotransmitters and antioxidant enzymes and a linear relationship of caspases, malondialdhyde, DNA apoptosis, and P53 markers of cell death. These markers reflected the retinal cytological alterations and lipofuscin accumulation within inner segments.
Collapse
Affiliation(s)
| | - Soad A. Khalifa
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 002050, Egypt
| | - Asma S. AL-Gebaly
- Department of Biology, Science College, Princess Noura Bint Abdul Rahman University, Riyadh 11421, Kingdom of Saudia Arabia
| | - Ahmed A. El-Mansy
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 002050, Egypt
| |
Collapse
|