1
|
Arigoni-Affolter I, Losfeld ME, Hennig R, Rapp E, Aebi M. A hierarchical structure in the N-glycosylation process governs the N-glycosylation output: prolonged cultivation induces glycoenzymes expression variations that are reflected in the cellular N-glycome but not in the protein and site-specific glycoprofile of CHO cells. Glycobiology 2024; 34:cwae045. [PMID: 38938083 PMCID: PMC11231950 DOI: 10.1093/glycob/cwae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
N-glycosylation is a central component in the modification of secretory proteins. One characteristic of this process is a heterogeneous output. The heterogeneity is the result of both structural constraints of the glycoprotein as well as the composition of the cellular glycosylation machinery. Empirical data addressing correlations between glycosylation output and glycosylation machinery composition are seldom due to the low abundance of glycoenzymes. We assessed how differences in the glycoenzyme expression affected the N-glycosylation output at a cellular as well as at a protein-specific level. Our results showed that cellular N-glycome changes could be correlated with the variation of glycoenzyme expression, whereas at the protein level differential responses to glycoenzymes alterations were observed. We therefore identified a hierarchical structure in the N-glycosylation process: the enzyme levels in this complex pathway determine its capacity (reflected in the N-glycome), while protein-specific parameters determine the glycosite-specificity. What emerges is a highly variable and adaptable protein modification system that represents a hallmark of eukaryotic cells.
Collapse
Affiliation(s)
- Ilaria Arigoni-Affolter
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Vladimir-Prelog-Weg 4, 8049 Zürich, Switzerland
| | - Marie-Estelle Losfeld
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Vladimir-Prelog-Weg 4, 8049 Zürich, Switzerland
| | - René Hennig
- glyXera GmbH, Brenneckestraße 20, 39120 Magdeburg, Germany
| | - Erdmann Rapp
- glyXera GmbH, Brenneckestraße 20, 39120 Magdeburg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse, 39106 Magdeburg, Germany
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Vladimir-Prelog-Weg 4, 8049 Zürich, Switzerland
| |
Collapse
|
2
|
Tachikawa M. Theoretical approaches for understanding the self-organized formation of the Golgi apparatus. Dev Growth Differ 2023; 65:161-166. [PMID: 36718582 PMCID: PMC11520952 DOI: 10.1111/dgd.12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Eukaryotic cells fold their membranes into highly organized structures called membrane-bound organelles. Organelles display characteristic structures and perform specialized functions related to their structures. Focusing on the Golgi apparatus, we provide an overview of recent theoretical studies to explain the mechanism of the architecture of the Golgi apparatus. These studies are classified into two categories: those that use equilibrium models to describe the robust Golgi morphology and those that use non-equilibrium models to explain the stationarity of the Golgi structures and the constant streaming of membrane traffic. A combinational model of both categories was used for computational reconstruction of the de novo Golgi formation process, which might provide an insight into the integrated understanding of the Golgi structure.
Collapse
Affiliation(s)
- Masashi Tachikawa
- Graduate School of NanobioscienceYokohama City UniversityYokohamaJapan
- PRESTO, Japan Science and Technology AgencyChiyoda‐kuJapan
| |
Collapse
|
3
|
Quiros DN, Nieto F, Mayorga LS. From cartoons to quantitative models in Golgi transport. Biol Cell 2020; 113:146-164. [PMID: 33275796 DOI: 10.1111/boc.202000107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/29/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cell biology is evolving to become a more formal and quantitative science. In particular, several mathematical models have been proposed to address Golgi self-organisation and protein and lipid transport. However, most scientific articles about the Golgi apparatus are still using static cartoons that miss the dynamism of this organelle. RESULTS In this report, we show that schematic drawings of Golgi trafficking can be easily translated into an agent-based model using the Repast platform. The simulations generate an active interplay among cisternae and vesicles rendering quantitative predictions about Golgi stability and transport of soluble and membrane-associated cargoes. The models can incorporate complex networks of molecular interactions and chemical reactions by association with COPASI, a software that handles ordinary differential equations. CONCLUSIONS The strategy described provides a simple, flexible and multiscale support to analyse Golgi transport. The simulations can be used to address issues directly linked to the mechanism of transport or as a way to incorporate the complexity of trafficking to other cellular processes that occur in dynamic organelles. SIGNIFICANCE We show that the rules implicitly present in most schematic representations of intracellular trafficking can be used to build dynamic models with quantitative outputs that can be compared with experimental results.
Collapse
Affiliation(s)
- D Nicolas Quiros
- IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| | - Franco Nieto
- IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Luis S Mayorga
- IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| |
Collapse
|
4
|
Vagne Q, Vrel JP, Sens P. A minimal self-organisation model of the Golgi apparatus. eLife 2020; 9:47318. [PMID: 32755543 PMCID: PMC7406241 DOI: 10.7554/elife.47318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/07/2020] [Indexed: 11/29/2022] Open
Abstract
The design principles dictating the spatio-temporal organisation of eukaryotic cells, and in particular the mechanisms controlling the self-organisation and dynamics of membrane-bound organelles such as the Golgi apparatus, remain elusive. Although this organelle was discovered 120 years ago, such basic questions as whether vesicular transport through the Golgi occurs in an anterograde (from entry to exit) or retrograde fashion are still strongly debated. Here, we address these issues by studying a quantitative model of organelle dynamics that includes: de-novo compartment generation, inter-compartment vesicular exchange, and biochemical conversion of membrane components. We show that anterograde or retrograde vesicular transports are asymptotic behaviors of a much richer dynamical system. Indeed, the structure and composition of cellular compartments and the directionality of vesicular exchange are intimately linked. They are emergent properties that can be tuned by varying the relative rates of vesicle budding, fusion and biochemical conversion.
Collapse
Affiliation(s)
- Quentin Vagne
- Center for Systems Biology Dresden, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jean-Patrick Vrel
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005, Paris, France.,UPMC Univ Paris 06, CNRS, UMR 168, F-75005, Paris, France
| | - Pierre Sens
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005, Paris, France.,UPMC Univ Paris 06, CNRS, UMR 168, F-75005, Paris, France
| |
Collapse
|
5
|
Vagne Q, Sens P. Stochastic Model of Vesicular Sorting in Cellular Organelles. PHYSICAL REVIEW LETTERS 2018; 120:058102. [PMID: 29481197 DOI: 10.1103/physrevlett.120.058102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Indexed: 06/08/2023]
Abstract
The proper sorting of membrane components by regulated exchange between cellular organelles is crucial to intracellular organization. This process relies on the budding and fusion of transport vesicles, and should be strongly influenced by stochastic fluctuations, considering the relatively small size of many organelles. We identify the perfect sorting of two membrane components initially mixed in a single compartment as a first passage process, and we show that the mean sorting time exhibits two distinct regimes as a function of the ratio of vesicle fusion to budding rates. Low ratio values lead to fast sorting but result in a broad size distribution of sorted compartments dominated by small entities. High ratio values result in two well-defined sorted compartments but sorting is exponentially slow. Our results suggest an optimal balance between vesicle budding and fusion for the rapid and efficient sorting of membrane components and highlight the importance of stochastic effects for the steady-state organization of intracellular compartments.
Collapse
Affiliation(s)
- Quentin Vagne
- Institut Curie, PSL Research University, CNRS, UMR 168, 26 rue d'Ulm, F-75005 Paris, France
| | - Pierre Sens
- Institut Curie, PSL Research University, CNRS, UMR 168, 26 rue d'Ulm, F-75005 Paris, France
| |
Collapse
|
6
|
Tachikawa M, Mochizuki A. Golgi apparatus self-organizes into the characteristic shape via postmitotic reassembly dynamics. Proc Natl Acad Sci U S A 2017; 114:5177-5182. [PMID: 28461510 PMCID: PMC5441826 DOI: 10.1073/pnas.1619264114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Golgi apparatus is a membrane-bounded organelle with the characteristic shape of a series of stacked flat cisternae. During mitosis in mammalian cells, the Golgi apparatus is once fragmented into small vesicles and then reassembled to form the characteristic shape again in each daughter cell. The mechanism and details of the reassembly process remain elusive. Here, by the physical simulation of a coarse-grained membrane model, we reconstructed the three-dimensional morphological dynamics of the Golgi reassembly process. Considering the stability of the interphase Golgi shape, we introduce two hypothetical mechanisms-the Golgi rim stabilizer protein and curvature-dependent restriction on membrane fusion-into the general biomembrane model. We show that the characteristic Golgi shape is spontaneously organized from the assembly of vesicles by proper tuning of the two additional mechanisms, i.e., the Golgi reassembly process is modeled as self-organization. We also demonstrate that the fine Golgi shape forms via a balance of three reaction speeds: vesicle aggregation, membrane fusion, and shape relaxation. Moreover, the membrane fusion activity decreases thickness and the number of stacked cisternae of the emerging shapes.
Collapse
Affiliation(s)
- Masashi Tachikawa
- Theoretical Biology Laboratory, RIKEN, Wako 351-0198, Japan;
- Interdisciplinary Theoretical Science Research Group, RIKEN, Wako 351-0198, Japan
| | - Atsushi Mochizuki
- Theoretical Biology Laboratory, RIKEN, Wako 351-0198, Japan
- Interdisciplinary Theoretical Science Research Group, RIKEN, Wako 351-0198, Japan
- Core Research for Evolutionary Science and Technology, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
- Interdisciplinary Theoretical and Mathematical Science Program, RIKEN, Wako 351-0198, Japan
| |
Collapse
|
7
|
Nonequilibrium description of de novo biogenesis and transport through Golgi-like cisternae. Sci Rep 2016; 6:38840. [PMID: 27991496 PMCID: PMC5171829 DOI: 10.1038/srep38840] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/11/2016] [Indexed: 12/11/2022] Open
Abstract
A central issue in cell biology is the physico-chemical basis of organelle biogenesis in intracellular trafficking pathways, its most impressive manifestation being the biogenesis of Golgi cisternae. At a basic level, such morphologically and chemically distinct compartments should arise from an interplay between the molecular transport and chemical maturation. Here, we formulate analytically tractable, minimalist models, that incorporate this interplay between transport and chemical progression in physical space, and explore the conditions for de novo biogenesis of distinct cisternae. We propose new quantitative measures that can discriminate between the various models of transport in a qualitative manner–this includes measures of the dynamics in steady state and the dynamical response to perturbations of the kind amenable to live-cell imaging.
Collapse
|
8
|
Mani S, Thattai M. Stacking the odds for Golgi cisternal maturation. eLife 2016; 5. [PMID: 27542195 PMCID: PMC5012865 DOI: 10.7554/elife.16231] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/18/2016] [Indexed: 12/28/2022] Open
Abstract
What is the minimal set of cell-biological ingredients needed to generate a Golgi apparatus? The compositions of eukaryotic organelles arise through a process of molecular exchange via vesicle traffic. Here we statistically sample tens of thousands of homeostatic vesicle traffic networks generated by realistic molecular rules governing vesicle budding and fusion. Remarkably, the plurality of these networks contain chains of compartments that undergo creation, compositional maturation, and dissipation, coupled by molecular recycling along retrograde vesicles. This motif precisely matches the cisternal maturation model of the Golgi, which was developed to explain many observed aspects of the eukaryotic secretory pathway. In our analysis cisternal maturation is a robust consequence of vesicle traffic homeostasis, independent of the underlying details of molecular interactions or spatial stacking. This architecture may have been exapted rather than selected for its role in the secretion of large cargo. DOI:http://dx.doi.org/10.7554/eLife.16231.001
Collapse
Affiliation(s)
- Somya Mani
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Mukund Thattai
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
9
|
Mani S, Thattai M. Wine glasses and hourglasses: Non-adaptive complexity of vesicle traffic in microbial eukaryotes. Mol Biochem Parasitol 2016; 209:58-63. [PMID: 27012485 PMCID: PMC5154330 DOI: 10.1016/j.molbiopara.2016.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/27/2022]
Abstract
We are motivated by the diversity of vesicle traffic systems in microbial parasites. We present a mathematical model of vesicle traffic in a manner accessible to a broad audience. We show that many complex features of vesicle traffic systems arise spontaneously due to molecular interactions. Traffic features such as compartmental maturation might arise non-adaptively and later be selected for function.
Microbial eukaryotes present a stunning diversity of endomembrane organization. From specialized secretory organelles such as the rhoptries and micronemes of apicomplexans, to peroxisome-derived metabolic compartments such as the glycosomes of kinetoplastids, different microbial taxa have explored different solutions to the compartmentalization and processing of cargo. The basic secretory and endocytic system, comprising the ER, Golgi, endosomes, and plasma membrane, as well as diverse taxon-specific specialized endomembrane organelles, are coupled by a complex network of cargo transport via vesicle traffic. It is tempting to connect form to function, ascribing biochemical roles to each compartment and vesicle of such a system. Here we argue that traffic systems of high complexity could arise through non-adaptive mechanisms via purely physical constraints, and subsequently be exapted for various taxon-specific functions. Our argument is based on a Boolean mathematical model of vesicle traffic: we specify rules of how compartments exchange vesicles; these rules then generate hypothetical cells with different types of endomembrane organization. Though one could imagine a large number of hypothetical vesicle traffic systems, very few of these are consistent with molecular interactions. Such molecular constraints are the bottleneck of a metaphorical hourglass, and the rules that make it through the bottleneck are expected to generate cells with many special properties. Sampling at random from among such rules represents an evolutionary null hypothesis: any properties of the resulting cells must be non-adaptive. We show by example that vesicle traffic systems generated in this random manner are reminiscent of the complex trafficking apparatus of real cells.
Collapse
Affiliation(s)
- Somya Mani
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Mukund Thattai
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
10
|
Brown AI, Rutenberg AD. Cluster coarsening on drops exhibits strong and sudden size-selectivity. SOFT MATTER 2015; 11:3786-3793. [PMID: 25846269 DOI: 10.1039/c5sm00284b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Autophagy, an important process for degradation of cellular components, requires the targeting of autophagy receptor proteins to potential substrates. Receptor proteins have been observed to form clusters on membranes. To understand how receptor clusters might affect autophagy selectivity, we model cluster coarsening on a polydisperse collection of spherical drop-like substrates. Our model receptor corresponds to NBR1, which supports peroxisome autophagy. We recover dynamical scaling of cluster sizes, but find that changing the drop size distribution changes the cluster-size scaling distribution. The magnitude of this effect is similar to how changing the spatial-dimension affects scaling in bulk systems. We also observe a sudden onset of size-selection of the remaining drops with clusters, due to clusters evaporating from smaller drops and growing on larger drops. This coarsening-driven size selection provides a physical mechanism for autophagy selectivity, and may explain reports of size selection during peroxisome degradation.
Collapse
Affiliation(s)
- Aidan I Brown
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, CanadaB3H 4R2.
| | | |
Collapse
|
11
|
Ramakrishnan N, Ipsen JH, Rao M, Kumar PBS. Organelle morphogenesis by active membrane remodeling. SOFT MATTER 2015; 11:2387-2393. [PMID: 25672939 DOI: 10.1039/c4sm02311k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Intracellular organelles are subject to a steady flux of lipids and proteins through active, energy consuming transport processes. Active fission and fusion are promoted by GTPases, e.g., Arf-Coatamer and the Rab-Snare complexes, which both sense and generate local membrane curvature. Here we investigate, through Dynamical Triangulation Monte Carlo simulations, the role that these active processes play in determining the morphology and composition segregation in closed membranes. We find that the steady state shapes obtained as a result of such active processes, bear a striking resemblance to the ramified morphologies of organelles in vivo, pointing to the relevance of nonequilibrium fission-fusion in organelle morphogenesis.
Collapse
Affiliation(s)
- N Ramakrishnan
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India.
| | | | | | | |
Collapse
|