1
|
Barta T, Monsempès C, Demondion E, Chatterjee A, Kostal L, Lucas P. Stimulus duration encoding occurs early in the moth olfactory pathway. Commun Biol 2024; 7:1252. [PMID: 39363042 PMCID: PMC11449909 DOI: 10.1038/s42003-024-06921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Pheromones convey rich ethological information and guide insects' search behavior. Insects navigating in turbulent environments are tasked with the challenge of coding the temporal structure of an odor plume, obliging recognition of the onset and offset of whiffs of odor. The coding mechanisms that shape odor offset recognition remain elusive. We designed a device to deliver sharp pheromone pulses and simultaneously measured the response dynamics from pheromone-tuned olfactory receptor neurons (ORNs) in male moths and Drosophila. We show that concentration-invariant stimulus duration encoding is implemented in moth ORNs by spike frequency adaptation at two time scales. A linear-nonlinear model fully captures the underlying neural computations and offers an insight into their biophysical mechanisms. Drosophila use pheromone cis-vaccenyl acetate (cVA) only for very short distance communication and are not faced with the need to encode the statistics of the cVA plume. Their cVA-sensitive ORNs are indeed unable to encode odor-off events. Expression of moth pheromone receptors in Drosophila cVA-sensitive ORNs indicates that stimulus-offset coding is receptor independent. In moth ORNs, stimulus-offset coding breaks down for short ( < 200 ms) whiffs. This physiological constraint matches the behavioral latency of switching from the upwind surge to crosswind cast flight upon losing contact with the pheromone.
Collapse
Affiliation(s)
- Tomas Barta
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France.
- Laboratory of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic.
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna, 904-0412, Okinawa, Japan.
| | - Christelle Monsempès
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France
| | - Elodie Demondion
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France
| | - Abhishek Chatterjee
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France
| | - Lubomir Kostal
- Laboratory of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic.
| | - Philippe Lucas
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France.
| |
Collapse
|
2
|
Resolving different presynaptic activity patterns within single olfactory glomeruli of Xenopus laevis larvae. Sci Rep 2021; 11:14258. [PMID: 34244587 PMCID: PMC8270923 DOI: 10.1038/s41598-021-93677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/25/2021] [Indexed: 11/18/2022] Open
Abstract
Olfactory sensing is generally organized into groups of similarly sensing olfactory receptor neurons converging into their corresponding glomerulus, which is thought to behave as a uniform functional unit. It is however unclear to which degree axons within a glomerulus show identical activity, how many converge into a glomerulus, and to answer these questions, how it is possible to visually separate them in live imaging. Here we investigate activity of olfactory receptor neurons and their axon terminals throughout olfactory glomeruli using electrophysiological recordings and rapid 4D calcium imaging. While single olfactory receptor neurons responsive to the same odor stimulus show a diversity of responses in terms of sensitivity and spontaneous firing rate on the level of the somata, their pre-synaptic calcium activity in the glomerulus is homogeneous. In addition, we could not observe the correlated spontaneous calcium activity that is found on the post-synaptic side throughout mitral cell dendrites and has been used in activity correlation imaging. However, it is possible to induce spatio-temporal presynaptic response inhomogeneities by applying trains of olfactory stimuli with varying amino acid concentrations. Automated region-of-interest detection and correlation analysis then visually distinguishes at least two axon subgroups per glomerulus that differ in odor sensitivity.
Collapse
|
3
|
Conchou L, Lucas P, Deisig N, Demondion E, Renou M. Effects of Multi-Component Backgrounds of Volatile Plant Compounds on Moth Pheromone Perception. INSECTS 2021; 12:insects12050409. [PMID: 34062868 PMCID: PMC8147264 DOI: 10.3390/insects12050409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary It is well acknowledged that some of the volatile plant compounds (VPC) naturally present in insect natural habitats alter the perception of their own pheromone when presented individually as a background to pheromone. However, the effects of mixing VPCs as they appear to insects in natural olfactory landscapes are poorly understood. We measured the activity of brain neurons and neurons that detect a sex pheromone component in a moth antenna, while exposed to simple or composite backgrounds of VPCs representative of the odorant variety encountered by this moth. Maps of activities were built using calcium imaging to visualize which brain areas were most affected by VPCs. In the antenna, we observed differences in VPC capacity to elicit firing response that cannot be explained by differences in stimulus intensities because we adjusted concentrations according to volatility. The neuronal network, which reformats the input from antenna neurons in the brain, did not improve pheromone salience. We postulate that moth olfactory system evolved to increase sensitivity and encode fast changes of concentration at some cost for signal extraction. Comparing blends to single compounds indicated that a blend shows the activity of its most active component, VPC salience seems more important than background complexity. Abstract The volatile plant compounds (VPC) alter pheromone perception by insects but mixture effects inside insect olfactory landscapes are poorly understood. We measured the activity of receptor neurons tuned to Z7-12Ac (Z7-ORN), a pheromone component, in the antenna and central neurons in male Agrotis ipsilon while exposed to simple or composite backgrounds of a panel of VPCs representative of the odorant variety encountered by a moth. Maps of activities were built using calcium imaging to visualize which areas in antennal lobes (AL) were affected by VPCs. We compared the VPC activity and their impact as backgrounds at antenna and AL levels, individually or in blends. At periphery, VPCs showed differences in their capacity to elicit Z7-ORN firing response that cannot be explained by differences in stimulus intensities because we adjusted concentrations according to vapor pressures. The AL neuronal network, which reformats the ORN input, did not improve pheromone salience. We postulate that the AL network evolved to increase sensitivity and to encode for fast changes of pheromone at some cost for signal extraction. Comparing blends to single compounds indicated that a blend shows the activity of its most active component. VPC salience seems to be more important than background complexity.
Collapse
|
4
|
Brito KVP, Matias FS. Neuronal heterogeneity modulates phase synchronization between unidirectionally coupled populations with excitation-inhibition balance. Phys Rev E 2021; 103:032415. [PMID: 33862693 DOI: 10.1103/physreve.103.032415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/02/2021] [Indexed: 11/07/2022]
Abstract
Several experiments and models have highlighted the importance of neuronal heterogeneity in brain dynamics and function. However, how such a cell-to-cell diversity can affect cortical computation, synchronization, and neuronal communication is still under debate. Previous studies have focused on the effect of neuronal heterogeneity in one neuronal population. Here we are specifically interested in the effect of neuronal variability on the phase relations between two populations, which can be related to different cortical communication hypotheses. It has been recently shown that two spiking neuron populations unidirectionally connected in a sender-receiver configuration can exhibit anticipated synchronization (AS), which is characterized by a negative phase lag. This phenomenon has been reported in electrophysiological data of nonhuman primates and human EEG during a visual discrimination cognitive task. In experiments, the unidirectional coupling could be accessed by Granger causality and can be accompanied by either positive or negative phase difference between cortical areas. Here we propose a model of two coupled populations in which the neuronal heterogeneity can determine the dynamical relation between the sender and the receiver and can reproduce phase relations reported in experiments. Depending on the distribution of parameters characterizing the neuronal firing patterns, the system can exhibit both AS and the usual delayed synchronization regime (DS, with positive phase) as well as a zero-lag synchronization regime and phase bistability between AS and DS. Furthermore, we show that our network can present diversity in their phase relations maintaining the excitation-inhibition balance.
Collapse
Affiliation(s)
- Katiele V P Brito
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
| | - Fernanda S Matias
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
| |
Collapse
|
5
|
Abstract
The olfactory system translates chemical signals into neuronal signals that inform behavioral decisions of the animal. Odors are cues for source identity, but if monitored long enough, they can also be used to localize the source. Odor representations should therefore be robust to changing conditions and flexible in order to drive an appropriate behavior. In this review, we aim at discussing the main computations that allow robust and flexible encoding of odor information in the olfactory neural pathway.
Collapse
|
6
|
Machado JN, Matias FS. Phase bistability between anticipated and delayed synchronization in neuronal populations. Phys Rev E 2020; 102:032412. [PMID: 33075861 DOI: 10.1103/physreve.102.032412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Two dynamical systems unidirectionally coupled in a sender-receiver configuration can synchronize with a nonzero phase lag. In particular, the system can exhibit anticipated synchronization (AS), which is characterized by a negative phase lag, if the receiver also receives a delayed negative self-feedback. Recently, AS was shown to occur between cortical-like neuronal populations in which the self-feedback is mediated by inhibitory synapses. In this biologically plausible scenario, a transition from the usual delayed synchronization (with positive phase lag) to AS can be mediated by the inhibitory conductances in the receiver population. Here we show that depending on the relation between excitatory and inhibitory synaptic conductances the system can also exhibit phase bistability between anticipated and delayed synchronization. Furthermore, we show that the amount of noise at the receiver and the synaptic conductances can mediate the transition from stable phase locking to a bistable regime and eventually to a phase drift. We suggest that our spiking neuronal populations model could be potentially useful to study phase bistability in cortical regions related to bistable perception.
Collapse
Affiliation(s)
- Júlio Nunes Machado
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
| | | |
Collapse
|
7
|
Vidybida AK. Possible Stochastic Mechanism for Improving the Selectivity of Olfactory Projection Neurons. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Levakova M, Kostal L, Monsempès C, Lucas P, Kobayashi R. Adaptive integrate-and-fire model reproduces the dynamics of olfactory receptor neuron responses in a moth. J R Soc Interface 2019; 16:20190246. [PMID: 31387478 PMCID: PMC6731495 DOI: 10.1098/rsif.2019.0246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In order to understand how olfactory stimuli are encoded and processed in the brain, it is important to build a computational model for olfactory receptor neurons (ORNs). Here, we present a simple and reliable mathematical model of a moth ORN generating spikes. The model incorporates a simplified description of the chemical kinetics leading to olfactory receptor activation and action potential generation. We show that an adaptive spike threshold regulated by prior spike history is an effective mechanism for reproducing the typical phasic-tonic time course of ORN responses. Our model reproduces the response dynamics of individual neurons to a fluctuating stimulus that approximates odorant fluctuations in nature. The parameters of the spike threshold are essential for reproducing the response heterogeneity in ORNs. The model provides a valuable tool for efficient simulations of olfactory circuits.
Collapse
Affiliation(s)
- Marie Levakova
- Department of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Lubomir Kostal
- Department of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Christelle Monsempès
- Institute of Ecology and Environmental Sciences, INRA, route de St Cyr, 78000 Versailles, France
| | - Philippe Lucas
- Institute of Ecology and Environmental Sciences, INRA, route de St Cyr, 78000 Versailles, France
| | - Ryota Kobayashi
- Principles of Informatics Research Division, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan.,Department of Informatics, SOKENDAI (The Graduate University for Advanced Studies), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
9
|
Conchou L, Lucas P, Meslin C, Proffit M, Staudt M, Renou M. Insect Odorscapes: From Plant Volatiles to Natural Olfactory Scenes. Front Physiol 2019; 10:972. [PMID: 31427985 PMCID: PMC6688386 DOI: 10.3389/fphys.2019.00972] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/11/2019] [Indexed: 11/13/2022] Open
Abstract
Olfaction is an essential sensory modality for insects and their olfactory environment is mostly made up of plant-emitted volatiles. The terrestrial vegetation produces an amazing diversity of volatile compounds, which are then transported, mixed, and degraded in the atmosphere. Each insect species expresses a set of olfactory receptors that bind part of the volatile compounds present in its habitat. Insect odorscapes are thus defined as species-specific olfactory spaces, dependent on the local habitat, and dynamic in time. Manipulations of pest-insect odorscapes are a promising approach to answer the strong demand for pesticide-free plant-protection strategies. Moreover, understanding their olfactory environment becomes a major concern in the context of global change and environmental stresses to insect populations. A considerable amount of information is available on the identity of volatiles mediating biotic interactions that involve insects. However, in the large body of research devoted to understanding how insects use olfaction to locate resources, an integrative vision of the olfactory environment has rarely been reached. This article aims to better apprehend the nature of the insect odorscape and its importance to insect behavioral ecology by reviewing the literature specific to different disciplines from plant ecophysiology to insect neuroethology. First, we discuss the determinants of odorscape composition, from the production of volatiles by plants (section "Plant Metabolism and Volatile Emissions") to their filtering during detection by the olfactory system of insects (section "Insect Olfaction: How Volatile Plant Compounds Are Encoded and Integrated by the Olfactory System"). We then summarize the physical and chemical processes by which volatile chemicals distribute in space (section "Transportation of Volatile Plant Compounds and Spatial Aspects of the Odorscape") and time (section "Temporal Aspects: The Dynamics of the Odorscape") in the atmosphere. The following sections consider the ecological importance of background odors in odorscapes and how insects adapt to their olfactory environment. Habitat provides an odor background and a sensory context that modulate the responses of insects to pheromones and other olfactory signals (section "Ecological Importance of Odorscapes"). In addition, insects do not respond inflexibly to single elements in their odorscape but integrate several components of their environment (section "Plasticity and Adaptation to Complex and Variable Odorscapes"). We finally discuss existing methods of odorscape manipulation for sustainable pest insect control and potential future developments in the context of agroecology (section "Odorscapes in Plant Protection and Agroecology").
Collapse
Affiliation(s)
- Lucie Conchou
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Philippe Lucas
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Camille Meslin
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Magali Proffit
- CEFE, CNRS, EPHE, IRD, Université de Montpellier, Université Paul-Valéry Montpellier, Montpellier, France
| | - Michael Staudt
- CEFE, CNRS, EPHE, IRD, Université de Montpellier, Université Paul-Valéry Montpellier, Montpellier, France
| | - Michel Renou
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| |
Collapse
|
10
|
Machon J, Lucas P, Ravaux J, Zbinden M. Comparison of Chemoreceptive Abilities of the Hydrothermal Shrimp Mirocaris fortunata and the Coastal Shrimp Palaemon elegans. Chem Senses 2019; 43:489-501. [PMID: 29931242 DOI: 10.1093/chemse/bjy041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemoreception might play an important role for endemic shrimp that inhabit deep and dark hydrothermal vents to find food sources and to locate active edifices that release specific chemicals. We compared the chemosensory abilities of the hydrothermal shrimp Mirocaris fortunata and the coastal related species, Palaemon elegans. The detection of diverse ecologically relevant chemical stimuli by the antennal appendages was measured with electroantennography. The 2 species can detect food-related odor and sulfide, a short-distance stimulus, via both their antennae and antennules. Neither iron nor manganese, considered as long-distance stimuli, was detected by the antennal appendages. Investigation of the ultrastructure of aesthetasc sensilla revealed no specific features of the hydrothermal species regarding innervation by olfactory sensory neurons. Pore-like structures occurring in the aesthetasc cuticle and dense bacterial covering seem to be unique to hydrothermal species, but their potential link to chemoreception remains elusive.
Collapse
Affiliation(s)
- Julia Machon
- Sorbonne Université, UPMC Univ Paris 06, MNHN, CNRS, IRD, UCBN, UAG, Unité de Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Equipe Adaptations aux Milieux Extrêmes, Bâtiment A, Paris, France
| | - Philippe Lucas
- Department of Sensory Ecology, INRA, iEES-Paris, Route de Saint-Cyr, Versailles, France
| | - Juliette Ravaux
- Sorbonne Université, UPMC Univ Paris 06, MNHN, CNRS, IRD, UCBN, UAG, Unité de Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Equipe Adaptations aux Milieux Extrêmes, Bâtiment A, Paris, France
| | - Magali Zbinden
- Sorbonne Université, UPMC Univ Paris 06, MNHN, CNRS, IRD, UCBN, UAG, Unité de Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Equipe Adaptations aux Milieux Extrêmes, Bâtiment A, Paris, France
| |
Collapse
|
11
|
Pinto MA, Rosso OA, Matias FS. Inhibitory autapse mediates anticipated synchronization between coupled neurons. Phys Rev E 2019; 99:062411. [PMID: 31330650 DOI: 10.1103/physreve.99.062411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Indexed: 06/10/2023]
Abstract
Two identical autonomous dynamical systems unidirectionally coupled in a sender-receiver configuration can exhibit anticipated synchronization (AS) if the receiver neuron also receives a delayed negative self-feedback. Recently, AS was shown to occur in a three-neuron motif with standard chemical synapses where the delayed inhibition was provided by an interneuron. Here, we show that a two-neuron model in the presence of an inhibitory autapse, which is a massive self-innervation present in the cortical architecture, may present AS. The GABAergic autapse regulates the internal dynamics of the receiver neuron and acts as the negative delayed self-feedback required by dynamical systems in order to exhibit AS. In this biologically plausible scenario, a smooth transition from the usual delayed synchronization (DS) to AS typically occurs when the inhibitory conductance is increased. The phenomenon is shown to be robust when model parameters are varied within a physiological range. For extremely large values of the inhibitory autapse the system undergoes to a phase-drift regime in which the receiver is faster than the sender. Furthermore, we show that the inhibitory autapse promotes a faster internal dynamics of the free-running Receiver when the two neurons are uncoupled, which could be the mechanism underlying anticipated synchronization and the DS-AS transition.
Collapse
Affiliation(s)
- Marcel A Pinto
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
| | - Osvaldo A Rosso
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
- Departamento de Informática en Salud, Hospital Italiano de Buenos Aires and CONICET, C1199ABB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernanda S Matias
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
| |
Collapse
|
12
|
Levakova M, Kostal L, Monsempès C, Jacob V, Lucas P. Moth olfactory receptor neurons adjust their encoding efficiency to temporal statistics of pheromone fluctuations. PLoS Comput Biol 2018; 14:e1006586. [PMID: 30422975 PMCID: PMC6258558 DOI: 10.1371/journal.pcbi.1006586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 11/27/2018] [Accepted: 10/19/2018] [Indexed: 11/19/2022] Open
Abstract
The efficient coding hypothesis predicts that sensory neurons adjust their coding resources to optimally represent the stimulus statistics of their environment. To test this prediction in the moth olfactory system, we have developed a stimulation protocol that mimics the natural temporal structure within a turbulent pheromone plume. We report that responses of antennal olfactory receptor neurons to pheromone encounters follow the temporal fluctuations in such a way that the most frequent stimulus timescales are encoded with maximum accuracy. We also observe that the average coding precision of the neurons adjusted to the stimulus-timescale statistics at a given distance from the pheromone source is higher than if the same encoding model is applied at a shorter, non-matching, distance. Finally, the coding accuracy profile and the stimulus-timescale distribution are related in the manner predicted by the information theory for the many-to-one convergence scenario of the moth peripheral sensory system.
Collapse
Affiliation(s)
- Marie Levakova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lubomir Kostal
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Vincent Jacob
- Institute of Ecology and Environmental Sciences, INRA, Versailles, France
- Peuplements végétaux et bioagresseurs en milieu végétal, CIRAD, Université de la Réunion, Saint Pierre, Ile de la Réunion, France
| | - Philippe Lucas
- Institute of Ecology and Environmental Sciences, INRA, Versailles, France
| |
Collapse
|
13
|
Jacob VEJM. Current Source Density Analysis of Electroantennogram Recordings: A Tool for Mapping the Olfactory Response in an Insect Antenna. Front Cell Neurosci 2018; 12:287. [PMID: 30233325 PMCID: PMC6135050 DOI: 10.3389/fncel.2018.00287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/13/2018] [Indexed: 11/29/2022] Open
Abstract
The set of chemosensory receptors expressed by the olfactory receptor neurons lying in an insect's antennae and maxillary palps define the ability of this insect to perceive the volatile chemicals of its environment. The main two electrophysiological methods of antennal recordings for studying the range of chemicals that activate chemosensory receptors have limitations. Single-sensillum recording (SSR) samples a subset of olfactory receptor neurons and therefore does not reveal the full capacity of an insect to perceive an odor. Electroantennography (EAG), even if less resolutive than SSRs, is sometimes preferred since it samples the activity of a large number of the olfactory receptor neurons. But, at least in flies, the amplitude of the EAG signal is not directly correlated with the degree of sensitivity of the insect to the olfactory compound. Such dual methodology was also used to study mammalian brains, and the current source density (CSD) analysis was developed to bridge the gap between the cellular and the population recordings. This paper details the use of a similar approach adapted to the study of olfactory responses within insects with bulbous antennae. The EAG was recorded at multiple antennal positions and the CSD that generates the EAG potentials were estimated. The method measures the activation of olfactory receptor neurons (ORNs) across the antennae and thus it quantifies the olfactory sensitivity of the insect. It allows a rapid mapping of olfactory responses and thus can be used to guide further SSRs or to determine that two chemicals are detected by independent ORNs. This study further explored biases resulting from a limited number of recording positions or from an approximation of the antennal geometry that should be considered for interpreting the CSD maps. It also shows that the CSD analysis of EAGs is compatible with a gas chromatograph stimulator for analyzing the response to complex odors. Finally, I discuss the origin of the EAG signal in light of the CSD theory.
Collapse
|
14
|
Jacob V, Monsempès C, Rospars JP, Masson JB, Lucas P. Olfactory coding in the turbulent realm. PLoS Comput Biol 2017; 13:e1005870. [PMID: 29194457 PMCID: PMC5736211 DOI: 10.1371/journal.pcbi.1005870] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/19/2017] [Accepted: 11/01/2017] [Indexed: 01/10/2023] Open
Abstract
Long-distance olfactory search behaviors depend on odor detection dynamics. Due to turbulence, olfactory signals travel as bursts of variable concentration and spacing and are characterized by long-tail distributions of odor/no-odor events, challenging the computing capacities of olfactory systems. How animals encode complex olfactory scenes to track the plume far from the source remains unclear. Here we focus on the coding of the plume temporal dynamics in moths. We compare responses of olfactory receptor neurons (ORNs) and antennal lobe projection neurons (PNs) to sequences of pheromone stimuli either with white-noise patterns or with realistic turbulent temporal structures simulating a large range of distances (8 to 64 m) from the odor source. For the first time, we analyze what information is extracted by the olfactory system at large distances from the source. Neuronal responses are analyzed using linear-nonlinear models fitted with white-noise stimuli and used for predicting responses to turbulent stimuli. We found that neuronal firing rate is less correlated with the dynamic odor time course when distance to the source increases because of improper coding during long odor and no-odor events that characterize large distances. Rapid adaptation during long puffs does not preclude however the detection of puff transitions in PNs. Individual PNs but not individual ORNs encode the onset and offset of odor puffs for any temporal structure of stimuli. A higher spontaneous firing rate coupled to an inhibition phase at the end of PN responses contributes to this coding property. This allows PNs to decode the temporal structure of the odor plume at any distance to the source, an essential piece of information moths can use in their tracking behavior.
Collapse
Affiliation(s)
- Vincent Jacob
- Institute of Ecology and Environmental Sciences, INRA, route de St Cyr, Versailles, France
- Peuplements végétaux et bioagresseurs en milieu végétal, CIRAD, Université de la Réunion, Saint Pierre, Ile de la Réunion, France
| | - Christelle Monsempès
- Institute of Ecology and Environmental Sciences, INRA, route de St Cyr, Versailles, France
| | - Jean-Pierre Rospars
- Institute of Ecology and Environmental Sciences, INRA, route de St Cyr, Versailles, France
| | - Jean-Baptiste Masson
- Decision and Bayesian Computation, Pasteur Institute, CNRS UMR 3571, 25-28 rue du Dr Roux, 75015 Paris, France
- Bioinformatics and Biostatistics Hub, C3BI, Pasteur Institute, CNRS USR 3756, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Philippe Lucas
- Institute of Ecology and Environmental Sciences, INRA, route de St Cyr, Versailles, France
- * E-mail:
| |
Collapse
|
15
|
Carfora M, Pirozzi E. Linked Gauss-Diffusion processes for modeling a finite-size neuronal network. Biosystems 2017; 161:15-23. [PMID: 28780051 DOI: 10.1016/j.biosystems.2017.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 11/25/2022]
|
16
|
Matias FS, Gollo LL, Carelli PV, Mirasso CR, Copelli M. Inhibitory loop robustly induces anticipated synchronization in neuronal microcircuits. Phys Rev E 2016; 94:042411. [PMID: 27841618 DOI: 10.1103/physreve.94.042411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 06/06/2023]
Abstract
We investigate the synchronization properties between two excitatory coupled neurons in the presence of an inhibitory loop mediated by an interneuron. Dynamic inhibition together with noise independently applied to each neuron provide phase diversity in the dynamics of the neuronal motif. We show that the interplay between the coupling strengths and the external noise controls the phase relations between the neurons in a counterintuitive way. For a master-slave configuration (unidirectional coupling) we find that the slave can anticipate the master, on average, if the slave is subject to the inhibitory feedback. In this nonusual regime, called anticipated synchronization (AS), the phase of the postsynaptic neuron is advanced with respect to that of the presynaptic neuron. We also show that the AS regime survives even in the presence of unbalanced bidirectional excitatory coupling. Moreover, for the symmetric mutually coupled situation, the neuron that is subject to the inhibitory loop leads in phase.
Collapse
Affiliation(s)
- Fernanda S Matias
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
| | - Leonardo L Gollo
- System Neuroscience Group, Queensland Institute of Medical Research, Brisbane QLD 4006, Australia
| | - Pedro V Carelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Claudio R Mirasso
- Instituto de Fisica Interdisciplinar y Sistemas Complejos, CSIC-UIB, Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Mauro Copelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| |
Collapse
|
17
|
Levakova M, Tamborrino M, Kostal L, Lansky P. Presynaptic Spontaneous Activity Enhances the Accuracy of Latency Coding. Neural Comput 2016; 28:2162-80. [PMID: 27557098 DOI: 10.1162/neco_a_00880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The time to the first spike after stimulus onset typically varies with the stimulation intensity. Experimental evidence suggests that neural systems use such response latency to encode information about the stimulus. We investigate the decoding accuracy of the latency code in relation to the level of noise in the form of presynaptic spontaneous activity. Paradoxically, the optimal performance is achieved at a nonzero level of noise and suprathreshold stimulus intensities. We argue that this phenomenon results from the influence of the spontaneous activity on the stabilization of the membrane potential in the absence of stimulation. The reported decoding accuracy improvement represents a novel manifestation of the noise-aided signal enhancement.
Collapse
Affiliation(s)
- Marie Levakova
- Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | | | - Lubomir Kostal
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Petr Lansky
- Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| |
Collapse
|
18
|
Gollo LL, Copelli M, Roberts JA. Diversity improves performance in excitable networks. PeerJ 2016; 4:e1912. [PMID: 27168961 PMCID: PMC4860327 DOI: 10.7717/peerj.1912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/17/2016] [Indexed: 11/20/2022] Open
Abstract
As few real systems comprise indistinguishable units, diversity is a hallmark of nature. Diversity among interacting units shapes properties of collective behavior such as synchronization and information transmission. However, the benefits of diversity on information processing at the edge of a phase transition, ordinarily assumed to emerge from identical elements, remain largely unexplored. Analyzing a general model of excitable systems with heterogeneous excitability, we find that diversity can greatly enhance optimal performance (by two orders of magnitude) when distinguishing incoming inputs. Heterogeneous systems possess a subset of specialized elements whose capability greatly exceeds that of the nonspecialized elements. We also find that diversity can yield multiple percolation, with performance optimized at tricriticality. Our results are robust in specific and more realistic neuronal systems comprising a combination of excitatory and inhibitory units, and indicate that diversity-induced amplification can be harnessed by neuronal systems for evaluating stimulus intensities.
Collapse
Affiliation(s)
- Leonardo L Gollo
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Centre for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mauro Copelli
- Departamento de Física, Universidade Federal de Pernambuco , Recife PE , Brazil
| | - James A Roberts
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Centre for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Jeanne JM, Wilson RI. Convergence, Divergence, and Reconvergence in a Feedforward Network Improves Neural Speed and Accuracy. Neuron 2015; 88:1014-1026. [PMID: 26586183 DOI: 10.1016/j.neuron.2015.10.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/24/2015] [Accepted: 10/08/2015] [Indexed: 11/16/2022]
Abstract
One of the proposed canonical circuit motifs employed by the brain is a feedforward network where parallel signals converge, diverge, and reconverge. Here we investigate a network with this architecture in the Drosophila olfactory system. We focus on a glomerulus whose receptor neurons converge in an all-to-all manner onto six projection neurons that then reconverge onto higher-order neurons. We find that both convergence and reconvergence improve the ability of a decoder to detect a stimulus based on a single neuron's spike train. The first transformation implements averaging, and it improves peak detection accuracy but not speed; the second transformation implements coincidence detection, and it improves speed but not peak accuracy. In each case, the integration time and threshold of the postsynaptic cell are matched to the statistics of convergent spike trains.
Collapse
Affiliation(s)
- James M Jeanne
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Self-Organized Near-Zero-Lag Synchronization Induced by Spike-Timing Dependent Plasticity in Cortical Populations. PLoS One 2015; 10:e0140504. [PMID: 26474165 PMCID: PMC4608682 DOI: 10.1371/journal.pone.0140504] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/21/2015] [Indexed: 12/30/2022] Open
Abstract
Several cognitive tasks related to learning and memory exhibit synchronization of macroscopic cortical areas together with synaptic plasticity at neuronal level. Therefore, there is a growing effort among computational neuroscientists to understand the underlying mechanisms relating synchrony and plasticity in the brain. Here we numerically study the interplay between spike-timing dependent plasticity (STDP) and anticipated synchronization (AS). AS emerges when a dominant flux of information from one area to another is accompanied by a negative time lag (or phase). This means that the receiver region pulses before the sender does. In this paper we study the interplay between different synchronization regimes and STDP at the level of three-neuron microcircuits as well as cortical populations. We show that STDP can promote auto-organized zero-lag synchronization in unidirectionally coupled neuronal populations. We also find synchronization regimes with negative phase difference (AS) that are stable against plasticity. Finally, we show that the interplay between negative phase difference and STDP provides limited synaptic weight distribution without the need of imposing artificial boundaries.
Collapse
|
21
|
Lavialle-Defaix C, Jacob V, Monsempès C, Anton S, Rospars JP, Martinez D, Lucas P. Firing and intrinsic properties of antennal lobe neurons in the Noctuid moth Agrotis ipsilon. Biosystems 2015; 136:46-58. [PMID: 26126723 DOI: 10.1016/j.biosystems.2015.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/04/2015] [Accepted: 06/24/2015] [Indexed: 02/06/2023]
Abstract
The antennal lobe (AL) of the Noctuid moth Agrotis ipsilon has emerged as an excellent model for studying olfactory processing and its plasticity in the central nervous system. Odor-evoked responses of AL neurons and input-to-output transformations involved in pheromone processing are well characterized in this species. However, the intrinsic electrical properties responsible of the firing of AL neurons are poorly known. To this end, patch-clamp recordings in current- and voltage-clamp mode from neurons located in the two main clusters of cell bodies in the ALs were combined with intracellular staining on A. ipsilon males. Staining indicated that the lateral cluster (LC) is composed of 85% of local neurons (LNs) and 15% of projection neurons (PNs). The medial cluster (MC) contains only PNs. Action potentials were readily recorded from the soma in LNs and PNs located in the LC but not from PNs in the MC where recordings showed small or no action potentials. In the LC, the spontaneous activity of about 20% of the LNs presented irregular bursts while being more regular in PNs. We also identified a small population of LNs lacking voltage-gated Na(+) currents and generating spikelets. We focused on the firing properties of LNs since in about 60% of LNs, but not in PNs, action potentials were followed by depolarizing afterpotentials (DAPs). These DAPs could generate a second action potential, so that the activity was composed of action potential doublets. DAPs depended on voltage, Ca(2+)-channels and possibly on Ca(2+)-activated non-specific cationic channels. During steady state current injection, DAPs occurred after each action potential and did not require high-frequency firing. The amplitude of DAPs increased when the interspike interval was small, typically within bursts, likely arising from a Ca(2+) build up. DAPs were more often found in bursting than in non-bursting LNs but do not support bursting activity. DAPs and spike doublets also occurred during odor-evoked activity suggesting that they can mediate olfactory integration in the AL.
Collapse
Affiliation(s)
- Céline Lavialle-Defaix
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France
| | - Vincent Jacob
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France
| | - Christelle Monsempès
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France
| | - Sylvia Anton
- Neuroéthologie-RCIM, INRA-Université d'Angers, UPRES EA 2647 USC INRA 1330, 42 rue Georges Morel, 49071 Beaucouzé, France
| | - Jean-Pierre Rospars
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France
| | - Dominique Martinez
- UMR7503, Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS), Vandœuvre-lès-Nancy, France
| | - Philippe Lucas
- UMR 1392 Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), INRA, Route de Saint-Cyr, F-78026 Versailles cedex, France.
| |
Collapse
|
22
|
Renou M, Party V, Rouyar A, Anton S. Olfactory signal coding in an odor background. Biosystems 2015; 136:35-45. [PMID: 26116090 DOI: 10.1016/j.biosystems.2015.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/18/2015] [Accepted: 06/17/2015] [Indexed: 11/26/2022]
Abstract
Insects communicating with pheromones are confronted with an olfactory environment featuring a diversity of volatile organic compounds from plant origin. These volatiles constitute a rich and fluctuant background from which the information carried by the pheromone signal must be extracted. Thus, the pheromone receptor neurons must encode into spike trains the quality, intensity and temporal characteristics of the signal that are determinant to the recognition and localization of a conspecific female. We recorded and analyzed the responses of the pheromone olfactory receptor neurons of male moths to sex pheromone in different odor background conditions. We show that in spite of the narrow chemical tuning of the pheromone receptor neurons, the sensory input can be altered by odorant background.
Collapse
Affiliation(s)
- Michel Renou
- IEES - ECOSENS, INRA, Route de Saint Cyr, 78026 Versailles, France.
| | - Virginie Party
- IEES - ECOSENS, INRA, Route de Saint Cyr, 78026 Versailles, France
| | - Angéla Rouyar
- IEES - ECOSENS, INRA, Route de Saint Cyr, 78026 Versailles, France
| | - Sylvia Anton
- IEES - ECOSENS, INRA, Route de Saint Cyr, 78026 Versailles, France
| |
Collapse
|
23
|
Modeling the cellular mechanisms and olfactory input underlying the triphasic response of moth pheromone-sensitive projection neurons. PLoS One 2015; 10:e0126305. [PMID: 25962173 PMCID: PMC4427114 DOI: 10.1371/journal.pone.0126305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 03/31/2015] [Indexed: 11/23/2022] Open
Abstract
In the antennal lobe of the noctuid moth Agrotis ipsilon, most pheromone-sensitive projection neurons (PNs) exhibit a triphasic firing pattern of excitation (E1)-inhibition (I)-excitation (E2) in response to a pulse of the sex pheromone. To understand the mechanisms underlying this stereotypical discharge, we developed a biophysical model of a PN receiving inputs from olfactory receptor neurons (ORNs) via nicotinic cholinergic synapses. The ORN is modeled as an inhomogeneous Poisson process whose firing rate is a function of time and is fitted to extracellular data recorded in response to pheromone stimulations at various concentrations and durations. The PN model is based on the Hodgkin-Huxley formalism with realistic ionic currents whose parameters were derived from previous studies. Simulations revealed that the inhibitory phase I can be produced by a SK current (Ca2+-gated small conductance K+ current) and that the excitatory phase E2 can result from the long-lasting response of the ORNs. Parameter analysis further revealed that the ending time of E1 depends on some parameters of SK, Ca2+, nACh and Na+ currents; I duration mainly depends on the time constant of intracellular Ca2+ dynamics, conductance of Ca2+ currents and some parameters of nACh currents; The mean firing frequency of E1 and E2 depends differentially on the interaction of various currents. Thus it is likely that the interplay between PN intrinsic currents and feedforward synaptic currents are sufficient to generate the triphasic firing patterns observed in the noctuid moth A. ipsilon.
Collapse
|