1
|
Kim WK, Lee Y, Jang SJ, Hyeon C. Kinetic Model for the Desensitization of G Protein-Coupled Receptor. J Phys Chem Lett 2024; 15:6137-6145. [PMID: 38832827 DOI: 10.1021/acs.jpclett.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Desensitization of G-protein-coupled receptors (GPCR) is a general regulatory mechanism adopted by biological organisms against overstimulation of G protein signaling. Although the details of the mechanism are extensively studied, it is not easy to gain an overarching understanding of the process constituted by a multitude of molecular events with vastly differing time scales. To offer a semiquantitative yet predictive understanding of the mechanism, we formulate a kinetic model for the G protein signaling and desensitization by considering essential biochemical steps from ligand binding to receptor internalization. The internalization, followed by receptor depletion from the plasma membrane, attenuates the downstream signal. Together with the kinetic model and its full numerics of the expression derived for the dose-response relation, an approximated form of the expression clarifies the role played by the individual biochemical processes and allows us to identify four distinct regimes for the downregulation that emerge from the balance between phosphorylation, dephosphorylation, and the cellular level of β-arrestin.
Collapse
Affiliation(s)
- Won Kyu Kim
- Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Yoonji Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Seogjoo J Jang
- Korea Institute for Advanced Study, Seoul 02455, Korea
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
- PhD programs in Chemistry and Physics Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | | |
Collapse
|
2
|
Kim WK, Choi K, Hyeon C, Jang SJ. General Chemical Reaction Network Theory for Olfactory Sensing Based on G-Protein-Coupled Receptors: Elucidation of Odorant Mixture Effects and Agonist-Synergist Threshold. J Phys Chem Lett 2023; 14:8412-8420. [PMID: 37712530 DOI: 10.1021/acs.jpclett.3c02310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
This work presents a general chemical reaction network theory for olfactory sensing processes that employ G-protein-coupled receptors as olfactory receptors (ORs). The theory can be applied to general mixtures of odorants and an arbitrary number of ORs. Reactions of ORs with G-proteins, in both the presence and absence of odorants, are explicitly considered. A unique feature of the theory is the definition of an odor activity vector consisting of strengths of odorant-induced signals from ORs relative to those due to background G-protein activity in the absence of odorants. It is demonstrated that each component of the odor activity defined this way reduces to a Michaelis-Menten form capable of accounting for cooperation or competition effects between different odorants. The main features of the theory are illustrated for a two-odorant mixture. Known and potential mixture effects, such as suppression, shadowing, inhibition, and synergy, are quantitatively described. Effects of relative values of rate constants, basal activity, and G-protein concentration are also demonstrated.
Collapse
Affiliation(s)
- Won Kyu Kim
- Korea Institute for Advanced Study, Hoegiro 85, Dongdaemun-gu, Seoul 02455, Korea
| | - Kiri Choi
- Korea Institute for Advanced Study, Hoegiro 85, Dongdaemun-gu, Seoul 02455, Korea
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Hoegiro 85, Dongdaemun-gu, Seoul 02455, Korea
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
- PhD Programs in Chemistry and Physics, Graduate Center, City University of New York, New York, New York 10016, United States
| |
Collapse
|
3
|
Wu Y, Li X, Hua T, Liu ZJ, Liu H, Zhao S. MD Simulations Revealing Special Activation Mechanism of Cannabinoid Receptor 1. Front Mol Biosci 2022; 9:860035. [PMID: 35425811 PMCID: PMC9004671 DOI: 10.3389/fmolb.2022.860035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Cannabinoid receptor 1 (CB1) is a G protein-coupled receptor (GPCR) that is gaining much interest for its regulating role in the central nervous system and its value as a drug target. Structures of CB1 in inactive and active states have revealed conformational change details that are not common in other GPCRs. Here, we performed molecular dynamics simulations of CB1 in different ligand binding states and with mutations to reveal its activation mechanism. The conformational change of the “twin toggle switch” residues F2003.36 and W3566.48 that correlates with ligand efficacy is identified as a key barrier step in CB1 activation. Similar conformational change of residues 3.36/6.48 is also observed in melanocortin receptor 4, showing this “twin toggle switch” residue pair is crucial for the activation of multiple GPCR members.
Collapse
Affiliation(s)
- Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Xuanxuan Li
- Complex Systems Division, Beijing Computational Science Research Center, Beijing, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, Beijing, China
- *Correspondence: Haiguang Liu, ; Suwen Zhao,
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- *Correspondence: Haiguang Liu, ; Suwen Zhao,
| |
Collapse
|
4
|
Poudel H, Leitner DM. Activation-Induced Reorganization of Energy Transport Networks in the β 2 Adrenergic Receptor. J Phys Chem B 2021; 125:6522-6531. [PMID: 34106712 DOI: 10.1021/acs.jpcb.1c03412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We compute energy exchange networks (EENs) through the β2 adrenergic receptor (β2AR), a G-protein coupled receptor (GPCR), in inactive and active states, based on the results of molecular dynamics simulations of this membrane bound protein. We introduce a new definition for the reorganization of EENs upon activation that depends on the relative change in rates of energy transfer across noncovalent contacts throughout the protein. On the basis of the reorganized network that we obtain for β2AR upon activation, we identify a branched pathway between the agonist binding site and the cytoplasmic region, where a G-protein binds to the receptor when activated. The pathway includes all of the motifs containing molecular switches previously identified as contributing to the allosteric transition of β2AR upon agonist binding. EENs and their reorganization upon activation are compared with structure-based contact networks computed for the inactive and active states of β2AR.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
5
|
Leitner DM, Hyeon C, Reid KM. Water-mediated biomolecular dynamics and allostery. J Chem Phys 2020; 152:240901. [DOI: 10.1063/5.0011392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| | - Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
6
|
Insights into adenosine A2A receptor activation through cooperative modulation of agonist and allosteric lipid interactions. PLoS Comput Biol 2020; 16:e1007818. [PMID: 32298258 PMCID: PMC7188303 DOI: 10.1371/journal.pcbi.1007818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/28/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
The activation process of G protein-coupled receptors (GPCRs) has been extensively studied, both experimentally and computationally. In particular, Molecular Dynamics (MD) simulations have proven useful in exploring GPCR conformational space. The typical behaviour of class A GPCRs, when subjected to unbiased MD simulations from their crystallized inactive state, is to fluctuate between inactive and intermediate(s) conformations, even with bound agonist. Fully active conformation(s) are rarely stabilized unless a G protein is also bound. Despite several crystal structures of the adenosine A2a receptor (A2aR) having been resolved in complex with co-crystallized agonists and Gs protein, its agonist-mediated activation process is still not completely understood. In order to thoroughly examine the conformational landscape of A2aR activation, we performed unbiased microsecond-length MD simulations in quadruplicate, starting from the inactive conformation either in apo or with bound agonists: endogenous adenosine or synthetic NECA, embedded in two homogeneous phospholipid membranes: 1,2-dioleoyl-sn-glycerol-3-phosphoglycerol (DOPG) or 1,2-dioleoyl-sn-glycerol-3-phosphocholine (DOPC). In DOPC with bound adenosine or NECA, we observe transition to an intermediate receptor conformation consistent with the known adenosine-bound crystal state. In apo state in DOPG, two different intermediate conformations are obtained. One is similar to that observed with bound adenosine in DOPC, while the other is closer to the active state but not yet fully active. Exclusively, in DOPG with bound adenosine or NECA, we reproducibly identify receptor conformations with fully active features, which are able to dock Gs protein. These different receptor conformations can be attributed to the action/absence of agonist and phospholipid-mediated allosteric effects on the intracellular side of the receptor.
Collapse
|
7
|
Jung JW, Macalino SJY, Cui M, Kim JE, Kim HJ, Song DG, Nam SH, Kim S, Choi S, Lee JW. Transmembrane 4 L Six Family Member 5 Senses Arginine for mTORC1 Signaling. Cell Metab 2019; 29:1306-1319.e7. [PMID: 30956113 DOI: 10.1016/j.cmet.2019.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 01/15/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022]
Abstract
The mechanistic target of rapamycin complex (mTORC1) is a signaling hub on the lysosome surface, responding to lysosomal amino acids. Although arginine is metabolically important, the physiological arginine sensor that activates mTOR remains unclear. Here, we show that transmembrane 4 L six family member 5 (TM4SF5) translocates from plasma membrane to lysosome upon arginine sufficiency and senses arginine, culminating in mTORC1/S6K1 activation. TM4SF5 bound active mTOR upon arginine sufficiency and constitutively bound amino acid transporter SLC38A9. TM4SF5 binding to the cytosolic arginine sensor Castor1 decreased upon arginine sufficiency, thus allowing TM4SF5-mediated sensing of metabolic amino acids. TM4SF5 directly bound free L-arginine via its extracellular loop possibly for the efflux, being supported by mutant study and homology and molecular docking modeling. Therefore, we propose that lysosomal TM4SF5 senses and enables arginine efflux for mTORC1/S6K1 activation, and arginine-auxotroph in hepatocellular carcinoma may be targeted by blocking the arginine sensing using anti-TM4SF5 reagents.
Collapse
Affiliation(s)
- Jae Woo Jung
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul 08826, South Korea
| | - Stephani Joy Y Macalino
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Minghua Cui
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Ji Eon Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Hye-Jin Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Dae-Geun Song
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung-si, Gangwon-do 25451, South Korea
| | - Seo Hee Nam
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Semi Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Republic of Korea
| | - Sun Choi
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| | - Jung Weon Lee
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul 08826, South Korea; Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
8
|
Thirumalai D, Hyeon C, Zhuravlev PI, Lorimer GH. Symmetry, Rigidity, and Allosteric Signaling: From Monomeric Proteins to Molecular Machines. Chem Rev 2019; 119:6788-6821. [DOI: 10.1021/acs.chemrev.8b00760] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Thirumalai
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Pavel I. Zhuravlev
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - George H. Lorimer
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
9
|
Peeking at G-protein-coupled receptors through the molecular dynamics keyhole. Future Med Chem 2019; 11:599-615. [DOI: 10.4155/fmc-2018-0393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Molecular dynamics is a state of the art computational tool for the investigation of biophysics phenomenon at a molecular scale, as it enables the modeling of dynamic processes, such as conformational motions, molecular solvation and ligand binding. The recent advances in structural biology have led to a bloom in published G-protein-coupled receptor structures, representing a solid and valuable resource for molecular dynamics studies. During the last decade, indeed, a plethora of physiological and pharmacological facets of this membrane protein superfamily have been addressed by means of molecular dynamics simulations, including the activation mechanism, allosterism and, very recently, biased signaling. Here, we try to recapitulate some of the main contributions that molecular dynamics has recently produced in the field.
Collapse
|
10
|
Miszta P, Jakowiecki J, Rutkowska E, Turant M, Latek D, Filipek S. Approaches for Differentiation and Interconverting GPCR Agonists and Antagonists. Methods Mol Biol 2018; 1705:265-296. [PMID: 29188567 DOI: 10.1007/978-1-4939-7465-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Predicting the functional preferences of the ligands was always a highly demanding task, much harder that predicting whether a ligand can bind to the receptor. This is because of significant similarities of agonists, antagonists and inverse agonists which are binding usually in the same binding site of the receptor and only small structural changes can push receptor toward a particular activation state. For G protein-coupled receptors, due to a large progress in crystallization techniques and also in receptor thermal stabilization, it was possible to obtain a large number of high-quality structures of complexes of these receptors with agonists and non-agonists. Additionally, the long-time-scale molecular dynamics simulations revealed how the activation processes of GPCRs can take place. Using both theoretical and experimental knowledge it was possible to employ many clever and sophisticated methods which can help to differentiate agonists and non-agonists, so one can interconvert them in search of the optimal drug.
Collapse
Affiliation(s)
- Przemysław Miszta
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland
| | - Jakub Jakowiecki
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland
| | - Ewelina Rutkowska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland
| | - Maria Turant
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland
| | - Dorota Latek
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland
| | - Sławomir Filipek
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland.
| |
Collapse
|
11
|
Implications for human odor sensing revealed from the statistics of odorant-receptor interactions. PLoS Comput Biol 2018; 14:e1006175. [PMID: 29782484 PMCID: PMC5983876 DOI: 10.1371/journal.pcbi.1006175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/01/2018] [Accepted: 05/04/2018] [Indexed: 11/26/2022] Open
Abstract
Binding of odorants to olfactory receptors (ORs) elicits downstream chemical and neural signals, which are further processed to odor perception in the brain. Recently, Mainland and colleagues have measured more than 500 pairs of odorant-OR interaction by a high-throughput screening assay method, opening a new avenue to understanding the principles of human odor coding. Here, using a recently developed minimal model for OR activation kinetics, we characterize the statistics of OR activation by odorants in terms of three empirical parameters: the half-maximum effective concentration EC50, the efficacy, and the basal activity. While the data size of odorants is still limited, the statistics offer meaningful information on the breadth and optimality of the tuning of human ORs to odorants, and allow us to relate the three parameters with the microscopic rate constants and binding affinities that define the OR activation kinetics. Despite the stochastic nature of the response expected at individual OR-odorant level, we assess that the confluence of signals in a neuron released from the multitude of ORs is effectively free of noise and deterministic with respect to changes in odorant concentration. Thus, setting a threshold to the fraction of activated OR copy number for neural spiking binarizes the electrophysiological signal of olfactory sensory neuron, thereby making an information theoretic approach a viable tool in studying the principles of odor perception. Despite the decades of research, quantitative details of human olfaction have remained largely unexplored. However, a high-throughput measurement has recently been carried out to produce dose-response data between a set of odorants and a repertoire of human olfactory receptors. We characterized each pair of odorant-receptor interaction in terms of EC50, efficacy, and basal level, a strategy often adopted in biochemical, pharmacological sciences to describe the response of receptors to cognate ligands. The distributions of EC50 values and efficacies acquired from the analysis provide glimpses into how human olfactory receptors are tuned to odorants. Specifically, the response of human ORs is optimized around ∼ 100μM of odorant. Next, the efficacies of OR responses to odorants are bi-exponentially distributed, which indicates that the strength of odorant-OR interaction is classified into strong and weak subgroups. By showing that the stochastic response of individual receptor to odorant can effectively be binarized at cellular level through olfactory processes, we also provide a theoretical basis for an information theoretical approach in studying the principles of odor perception.
Collapse
|
12
|
Basith S, Lee Y, Choi S. Understanding G Protein-Coupled Receptor Allostery via Molecular Dynamics Simulations: Implications for Drug Discovery. Methods Mol Biol 2018; 1762:455-472. [PMID: 29594786 DOI: 10.1007/978-1-4939-7756-7_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Unraveling the mystery of protein allostery has been one of the greatest challenges in both structural and computational biology. However, recent advances in computational methods, particularly molecular dynamics (MD) simulations, have led to its utility as a powerful and popular tool for the study of protein allostery. By capturing the motions of a protein's constituent atoms, simulations can enable the discovery of allosteric hot spots and the determination of the mechanistic basis for allostery. These structural and dynamic studies can provide a foundation for a wide range of applications, including rational drug design and protein engineering. In our laboratory, the use of MD simulations and network analysis assisted in the elucidation of the allosteric hotspots and intracellular signal transduction of G protein-coupled receptors (GPCRs), primarily on one of the adenosine receptor subtypes, A2A adenosine receptor (A2AAR). In this chapter, we describe a method for calculating the map of allosteric signal flow in different GPCR conformational states and illustrate how these concepts have been utilized in understanding the mechanism of GPCR allostery. These structural studies will provide valuable insights into the allosteric and orthosteric modulations that would be of great help to design novel drugs targeting GPCRs in pathological states.
Collapse
Affiliation(s)
- Shaherin Basith
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Yoonji Lee
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sun Choi
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Li Y, Yin C, Liu P, Li D, Lin J. Identification of a Different Agonist-Binding Site and Activation Mechanism of the Human P2Y 1 Receptor. Sci Rep 2017; 7:13764. [PMID: 29062134 PMCID: PMC5653743 DOI: 10.1038/s41598-017-14268-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/09/2017] [Indexed: 02/03/2023] Open
Abstract
The human P2Y1 receptor (P2Y1R) is a purinergic G-protein-coupled receptor (GPCR) that functions as a receptor for adenosine 5'-diphosphate (ADP). An antagonist of P2Y1R might potentially have antithrombotic effects, whereas agonists might serve as antidiabetic agents. On the basis of the antagonist-bound MRS2500-P2Y1R crystal structure, we constructed computational models of apo-P2Y1R and the agonist-receptor complex 2MeSADP-P2Y1R. We then performed conventional molecular dynamics (cMD) and accelerated molecular dynamics (aMD) simulations to study the conformational dynamics after binding with agonist/antagonist as well as the P2Y1R activation mechanism. We identified a new agonist-binding site of P2Y1R that is consistent with previous mutagenesis data. This new site is deeper than those of the agonist ADP in the recently simulated ADP-P2Y1R structure and the antagonist MRS2500 in the MRS2500-P2Y1R crystal structure. During P2Y1R activation, the cytoplasmic end of helix VI shifts outward 9.1 Å, the Ser1463.47-Tyr2375.58 hydrogen bond breaks, a Tyr2375.58-Val2626.37 hydrogen bond forms, and the conformation of the χ1 rotamer of Phe2696.44 changes from parallel to perpendicular to helix VI. The apo-P2Y1R system and the MRS2500-P2Y1R system remain inactive. The newly identified agonist binding site and activation mechanism revealed in this study may aid in the design of P2Y1R antagonists/agonists as antithrombotic/antidiabetic agents, respectively.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Can Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
- Pharmaceutical Intelligence Platform, Tianjin Joint Academy of Biomedicine and Technology, Tianjin, 300457, China
| | - Pi Liu
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Dongmei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
- Pharmaceutical Intelligence Platform, Tianjin Joint Academy of Biomedicine and Technology, Tianjin, 300457, China.
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
14
|
Weng WH, Li YT, Hsu HJ. Activation-Induced Conformational Changes of Dopamine D3 Receptor Promote the Formation of the Internal Water Channel. Sci Rep 2017; 7:12792. [PMID: 28986565 PMCID: PMC5630584 DOI: 10.1038/s41598-017-13155-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/19/2017] [Indexed: 01/11/2023] Open
Abstract
The atomic-level dopamine activation mechanism for transmitting extracellular ligand binding events through transmembrane helices to the cytoplasmic G protein remains unclear. In the present study, the complete dopamine D3 receptor (D3R), with a homology-modeled N-terminus, was constructed to dock different ligands to simulate conformational alterations in the receptor’s active and inactive forms during microsecond-timescale molecular dynamic simulations. In agonist-bound systems, the D3R N-terminus formed a “lid-like” structure and lay flat on the binding site opening, whereas in antagonist and inverse agonist-bound systems, the N-terminus exposed the binding cavity. Receptor activation was characterized using the different molecular switch residue distances, and G protein-binding site volumes. A continuous water pathway was observed only in the dopamine-Gαi-bound system. In the inactive D3Rs, water entry was hindered by the hydrophobic layers. Finally, a complete activation mechanism of D3R was proposed. Upon agonist binding, the “lid-like” conformation of the N-terminus induces a series of molecular switches to increase the volume of the D3R cytoplasmic binding part for G protein association. Meanwhile, water enters the transmembrane region inducing molecular switches to assist in opening the hydrophobic layers to form a continuous water channel, which is crucial for maintaining a fully active conformation for signal transduction.
Collapse
Affiliation(s)
- Wei-Hsiang Weng
- Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan
| | - Ya-Tzu Li
- Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan.
| |
Collapse
|
15
|
Bartuzi D, Kaczor AA, Matosiuk D. Signaling within Allosteric Machines: Signal Transmission Pathways Inside G Protein-Coupled Receptors. Molecules 2017; 22:molecules22071188. [PMID: 28714871 PMCID: PMC6152049 DOI: 10.3390/molecules22071188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 11/16/2022] Open
Abstract
In recent years, our understanding of function of G protein-coupled receptors (GPCRs) has changed from a picture of simple signal relays, transmitting only a particular signal to a particular G protein heterotrimer, to versatile machines, capable of various responses to different stimuli and being modulated by various factors. Some recent reports provide not only the data on ligands/modulators and resultant signals induced by them, but also deeper insights into exact pathways of signal migration and mechanisms of signal transmission through receptor structure. Combination of these computational and experimental data sheds more light on underlying mechanisms of signal transmission and signaling bias in GPCRs. In this review we focus on available clues on allosteric pathways responsible for complex signal processing within GPCRs structures, with particular emphasis on linking compatible in silico- and in vitro-derived data on the most probable allosteric connections.
Collapse
Affiliation(s)
- Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, 4A Chodźki Str., Lublin PL20093, Poland.
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, 4A Chodźki Str., Lublin PL20093, Poland.
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, Kuopio FI-70211, Finland.
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, 4A Chodźki Str., Lublin PL20093, Poland.
| |
Collapse
|
16
|
Lee Y, Kim S, Choi S, Hyeon C. Ultraslow Water-Mediated Transmembrane Interactions Regulate the Activation of A2A Adenosine Receptor. Biophys J 2017; 111:1180-1191. [PMID: 27653477 DOI: 10.1016/j.bpj.2016.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/09/2016] [Accepted: 08/02/2016] [Indexed: 01/04/2023] Open
Abstract
Water molecules inside a G-protein coupled receptor (GPCR) have recently been spotlighted in a series of crystal structures. To decipher the dynamics and functional roles of internal water molecules in GPCR activity, we studied the A2A adenosine receptor using microsecond molecular-dynamics simulations. Our study finds that the amount of water flux across the transmembrane (TM) domain varies depending on the receptor state, and that the water molecules of the TM channel in the active state flow three times more slowly than those in the inactive state. Depending on the location in solvent-protein interface as well as the receptor state, the average residence time of water in each residue varies from ∼O(10(2)) ps to ∼O(10(2)) ns. Especially, water molecules, exhibiting ultraslow relaxation (∼O(10(2)) ns) in the active state, are found around the microswitch residues that are considered activity hotspots for GPCR function. A continuous allosteric network spanning the TM domain, arising from water-mediated contacts, is unique in the active state, underscoring the importance of slow water molecules in the activation of GPCRs.
Collapse
Affiliation(s)
- Yoonji Lee
- National Leading Research Laboratory of Molecular Modeling and Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Songmi Kim
- Korea Institute for Advanced Study, Seoul, Korea
| | - Sun Choi
- National Leading Research Laboratory of Molecular Modeling and Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea.
| | | |
Collapse
|
17
|
Abstract
G-protein-coupled receptors (GPCRs) constitute a large group of integral membrane proteins that transduce extracellular signals from a wide range of agonists into targeted intracellular responses. Although the responses can vary depending on the category of G-proteins activated by a particular receptor, responses were also found to be triggered by interactions of the receptor with β-arrestins. It was subsequently discovered that for the same receptor molecule (e.g., the β-adrenergic receptor), some agonists have a propensity to specifically favor responses by G-proteins, others by β-arrestins, as has now been extensively studied. This feature of the GPCR system is known as biased agonism and is subject to various interpretations, including agonist-induced conformational change versus selective stabilization of preexisting active conformations. Here, we explore a complete allosteric framework for biased agonism based on alternative preexisting conformations that bind more strongly, but nonexclusively, either G-proteins or β-arrestins. The framework incorporates reciprocal effects among all interacting molecules. As a result, G-proteins and β-arrestins are in steric competition for binding to the cytoplasmic surface of either the G-protein-favoring or β-arrestin-favoring GPCR conformation. Moreover, through linkage relations, the strength of the interactions of G-proteins or β-arrestins with the corresponding active conformation potentiates the apparent affinity for the agonist, effectively equating these two proteins to allosteric modulators. The balance between response alternatives can also be influenced by the physiological concentrations of either G-proteins or β-arrestins, as well as by phosphorylation or interactions with positive or negative allosteric modulators. The nature of the interactions in the simulations presented suggests novel experimental tests to distinguish more fully among alternative mechanisms.
Collapse
|
18
|
Gorge Motions of Acetylcholinesterase Revealed by Microsecond Molecular Dynamics Simulations. Sci Rep 2017; 7:3219. [PMID: 28607438 PMCID: PMC5468367 DOI: 10.1038/s41598-017-03088-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/11/2017] [Indexed: 11/27/2022] Open
Abstract
Acetylcholinesterase, with a deep, narrow active-site gorge, attracts enormous interest due to its particularly high catalytic efficiency and its inhibitors used for treatment of Alzheimer’s disease. To facilitate the massive pass-through of the substrate and inhibitors, “breathing” motions to modulate the size of the gorge are an important prerequisite. However, the molecular mechanism that governs such motions is not well explored. Here, to systematically investigate intrinsic motions of the enzyme, we performed microsecond molecular dynamics simulations on the monomer and dimer of Torpedo californica acetylcholinesterase (TcAChE) as well as the complex of TcAChE bound with the drug E2020. It has been revealed that protein-ligand interactions and dimerization both keep the gorge in bulk, and opening events of the gorge increase dramatically compared to the monomer. Dynamics of three subdomains, S3, S4 and the Ω-loop, are tightly associated with variations of the gorge size while the dynamics can be changed by ligand binding or protein dimerization. Moreover, high correlations among these subdomains provide a basis for remote residues allosterically modulating the gorge motions. These observations are propitious to expand our understanding of protein structure and function as well as providing clues for performing structure-based drug design.
Collapse
|
19
|
Jang S, Hyeon C. Kinetic Model for the Activation of Mammalian Olfactory Receptor. J Phys Chem B 2017; 121:1304-1311. [PMID: 28118707 DOI: 10.1021/acs.jpcb.7b00486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The sense of smell is triggered by binding of odorants to a set of olfactory receptors (ORs), the activation of which generates specific patterns of neuronal signals in olfactory bulbs. Despite a long history of research and speculations, very little is known about the actual mechanism of OR activation. In particular, there is virtually no theoretical framework capable of describing the kinetics of olfactory activation at a quantitative level. Based on the fact that mammalian ORs belong to a class of G-protein coupled receptors (GPCRs) and utilizing the information available from recent studies on other types of GPCRs with known structural data, we construct a minimal kinetic model for mammalian olfactory activation, obtaining a new expression for the signal strength as a function of odorant and G-protein concentrations and defining this as odor activity (OA). The parametric dependence of OA on equilibrium dissociation and rate constants provides a new comprehensive means to describe how odorant-OR binding kinetics affects the odor signal, and offers new quantitative criteria for classifying agonistic, partially agonistic, and antagonistic (or inverse agonistic) behavior. The dependence of OA on the concentration of G-proteins also suggests a new experimental method to determine key equilibrium constants for odorant-OR and G-protein-OR association/dissociation processes.
Collapse
Affiliation(s)
- Seogjoo Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York , 65-30 Kissena Boulevard, Queens, New York 11367, United States.,PhD programs in Chemistry and Physics, and Initiative for Theoretical Sciences, Graduate Center, City University of New York , 365 Fifth Avenue, New York, New York 10016, United States
| | - Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study , Hoegiro 85, Dongdaemun-gu, Seoul 02455, Korea
| |
Collapse
|
20
|
Abstract
Molecular dynamics (MD) simulations have become a powerful and popular method for the study of protein allostery, the widespread phenomenon in which a stimulus at one site on a protein influences the properties of another site on the protein. By capturing the motions of a protein's constituent atoms, simulations can enable the discovery of allosteric binding sites and the determination of the mechanistic basis for allostery. These results can provide a foundation for applications including rational drug design and protein engineering. Here, we provide an introduction to the investigation of protein allostery using molecular dynamics simulation. We emphasize the importance of designing simulations that include appropriate perturbations to the molecular system, such as the addition or removal of ligands or the application of mechanical force. We also demonstrate how the bidirectional nature of allostery-the fact that the two sites involved influence one another in a symmetrical manner-can facilitate such investigations. Through a series of case studies, we illustrate how these concepts have been used to reveal the structural basis for allostery in several proteins and protein complexes of biological and pharmaceutical interest.
Collapse
|
21
|
Lakkaraju SK, Lemkul JA, Huang J, MacKerell AD. DIRECT-ID: An automated method to identify and quantify conformational variations--application to β2 -adrenergic GPCR. J Comput Chem 2016; 37:416-25. [PMID: 26558323 PMCID: PMC4756637 DOI: 10.1002/jcc.24231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/10/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022]
Abstract
The conformational dynamics of a macromolecule can be modulated by a number of factors, including changes in environment, ligand binding, and interactions with other macromolecules, among others. We present a method that quantifies the differences in macromolecular conformational dynamics and automatically extracts the structural features responsible for these changes. Given a set of molecular dynamics (MD) simulations of a macromolecule, the norms of the differences in covariance matrices are calculated for each pair of trajectories. A matrix of these norms thus quantifies the differences in conformational dynamics across the set of simulations. For each pair of trajectories, covariance difference matrices are parsed to extract structural elements that undergo changes in conformational properties. As a demonstration of its applicability to biomacromolecular systems, the method, referred to as DIRECT-ID, was used to identify relevant ligand-modulated structural variations in the β2 -adrenergic (β2 AR) G-protein coupled receptor. Micro-second MD simulations of the β2 AR in an explicit lipid bilayer were run in the apo state and complexed with the ligands: BI-167107 (agonist), epinephrine (agonist), salbutamol (long-acting partial agonist), or carazolol (inverse agonist). Each ligand modulated the conformational dynamics of β2 AR differently and DIRECT-ID analysis of the inverse-agonist vs. agonist-modulated β2 AR identified residues known through previous studies to selectively propagate deactivation/activation information, along with some previously unidentified ligand-specific microswitches across the GPCR. This study demonstrates the utility of DIRECT-ID to rapidly extract functionally relevant conformational dynamics information from extended MD simulations of large and complex macromolecular systems.
Collapse
Affiliation(s)
- Sirish Kaushik Lakkaraju
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, MD 21201
| | - Justin A. Lemkul
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, MD 21201
| | - Jing Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, MD 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, MD 21201
| |
Collapse
|