1
|
Yin L, Zheng Z, Li Y, Li X, Cheng D, Dong C, Liu Y, Zhao J. PatU3 plays a central role in coordinating cell division and differentiation in pattern formation of filamentous cyanobacterium Nostoc sp. PCC 7120. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2896-2909. [PMID: 37505430 DOI: 10.1007/s11427-023-2380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/31/2023] [Indexed: 07/29/2023]
Abstract
Spatial periodic signal for cell differentiation in some multicellular organisms is generated according to Turing's principle for pattern formation. How a dividing cell responds to the signal of differentiation is addressed with the filamentous cyanobacterium Nostoc sp. PCC 7120, which forms the patterned distribution of heterocysts. We show that differentiation of a dividing cell was delayed until its division was completed and only one daughter cell became heterocyst. A mutant of patU3, which encodes an inhibitor of heterocyst formation, showed no such delay and formed heterocyst pairs from the daughter cells of cell division or dumbbell-shaped heterocysts from the cells undergoing cytokinesis. The patA mutant, which forms heterocysts only at the filament ends, restored intercalary heterocysts by a single nucleotide mutation of patU3, and double mutants of patU3/patA and patU3/hetF had the phenotypes of the patU3 mutant. We provide evidence that HetF, which can degrade PatU3, is recruited to cell divisome through its C-terminal domain. A HetF mutant with its N-terminal peptidase domain but lacking the C-terminal domain could not prevent the formation of heterocyst pairs, suggesting that the divisome recruitment of HetF is needed to sequester HetF for the delay of differentiation in dividing cells. Our study demonstrates that PatU3 plays a key role in cell-division coupled control of differentiation.
Collapse
Affiliation(s)
- Lei Yin
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhenggao Zheng
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yilin Li
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiying Li
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Dan Cheng
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Chunxia Dong
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yixuan Liu
- National Teaching Center for Experimental Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Jindong Zhao
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China.
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
2
|
Casanova-Ferrer P, Muñoz-García J, Ares S. Mathematical models of nitrogen-fixing cell patterns in filamentous cyanobacteria. Front Cell Dev Biol 2022; 10:959468. [PMID: 36187490 PMCID: PMC9523125 DOI: 10.3389/fcell.2022.959468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The Anabaena genus is a model organism of filamentous cyanobacteria whose vegetative cells can differentiate under nitrogen-limited conditions into a type of cell called a heterocyst. These heterocysts lose the possibility to divide and are necessary for the filament because they can fix and share environmental nitrogen. In order to distribute the nitrogen efficiently, heterocysts are arranged to form a quasi-regular pattern whose features are maintained as the filament grows. Recent efforts have allowed advances in the understanding of the interactions and genetic mechanisms underlying this dynamic pattern. Here, we present a systematic review of the existing theoretical models of nitrogen-fixing cell differentiation in filamentous cyanobacteria. These filaments constitute one of the simplest forms of multicellular organization, and this allows for several modeling scales of this emergent pattern. The system has been approached at three different levels. From bigger to smaller scale, the system has been considered as follows: at the population level, by defining a mean-field simplified system to study the ratio of heterocysts and vegetative cells; at the filament level, with a continuous simplification as a reaction-diffusion system; and at the cellular level, by studying the genetic regulation that produces the patterning for each cell. In this review, we compare these different approaches noting both the virtues and shortcomings of each one of them.
Collapse
Affiliation(s)
- Pau Casanova-Ferrer
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain
- Centro Nacional de Biotecnologia (CNB), CSIC, Madrid, Spain
| | - Javier Muñoz-García
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain
| | - Saúl Ares
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Centro Nacional de Biotecnologia (CNB), CSIC, Madrid, Spain
| |
Collapse
|
3
|
Casanova-Ferrer P, Ares S, Muñoz-García J. Terminal heterocyst differentiation in the Anabaena patA mutant as a result of post-transcriptional modifications and molecular leakage. PLoS Comput Biol 2022; 18:e1010359. [PMID: 35969646 PMCID: PMC9410556 DOI: 10.1371/journal.pcbi.1010359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/25/2022] [Accepted: 07/05/2022] [Indexed: 12/27/2022] Open
Abstract
The Anabaena genus is a model organism of filamentous cyanobacteria whose vegetative cells can differentiate under nitrogen-limited conditions into a type of cell called heterocyst. These heterocysts lose the possibility to divide and are necessary for the colony because they can fix and share environmental nitrogen. In order to distribute the nitrogen efficiently, heterocysts are arranged to form a quasi-regular pattern whose features are maintained as the filament grows. Recent efforts have allowed advances in the understanding of the interactions and genetic mechanisms underlying this dynamic pattern. However, the main role of the patA and hetF genes are yet to be clarified; in particular, the patA mutant forms heterocysts almost exclusively in the terminal cells of the filament. In this work, we investigate the function of these genes and provide a theoretical model that explains how they interact within the broader genetic network, reproducing their knock-out phenotypes in several genetic backgrounds, including a nearly uniform concentration of HetR along the filament for the patA mutant. Our results suggest a role of hetF and patA in a post-transcriptional modification of HetR which is essential for its regulatory function. In addition, the existence of molecular leakage out of the filament in its boundary cells is enough to explain the preferential appearance of terminal heterocysts, without any need for a distinct regulatory pathway. Understanding multicellular pattern formation is key for the study of both natural and synthetic developmental processes. Arguably one of the simplest model systems for this is the filamentous cyanobacterium Anabaena, that in conditions of nitrogen deprivation undergoes a dynamical differentiation process that differentiates roughly one in every ten cells into nitrogen-fixing heterocysts, in a quasi-regular pattern that is maintained as the filament keeps growing. One of the most characteristic mutations affecting this process forms heterocysts mostly constrained to the terminal cells of the filament. We have used experimental observations to propose a mathematical model of heterocyst differentiation able to reproduce this striking phenotype. The model extends our understanding of the regulations in this pattern-forming system and makes several predictions on molecular interactions. Importantly, a key aspect is the boundary condition at the filament’s ends: inhibitors of differentiation should be able to leak out of the filament, or otherwise the terminal cells would not differentiate. This highlights, in a very clear example, the importance of considering physical constraints in developmental processes.
Collapse
Affiliation(s)
- Pau Casanova-Ferrer
- Grupo Interdisciplinar de Sistemas Complejos (GISC) and Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain
- Centro Nacional de Biotecnologia (CNB), CSIC, Madrid, Spain
| | - Saúl Ares
- Grupo Interdisciplinar de Sistemas Complejos (GISC) and Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain
- Centro Nacional de Biotecnologia (CNB), CSIC, Madrid, Spain
- * E-mail: (SA); (JM-G)
| | - Javier Muñoz-García
- Grupo Interdisciplinar de Sistemas Complejos (GISC) and Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain
- * E-mail: (SA); (JM-G)
| |
Collapse
|
4
|
Cooper GA, Liu M, Peña J, West SA. The evolution of mechanisms to produce phenotypic heterogeneity in microorganisms. Nat Commun 2022; 13:195. [PMID: 35078994 PMCID: PMC8789899 DOI: 10.1038/s41467-021-27902-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
In bacteria and other microorganisms, the cells within a population often show extreme phenotypic variation. Different species use different mechanisms to determine how distinct phenotypes are allocated between individuals, including coordinated, random, and genetic determination. However, it is not clear if this diversity in mechanisms is adaptive-arising because different mechanisms are favoured in different environments-or is merely the result of non-adaptive artifacts of evolution. We use theoretical models to analyse the relative advantages of the two dominant mechanisms to divide labour between reproductives and helpers in microorganisms. We show that coordinated specialisation is more likely to evolve over random specialisation in well-mixed groups when: (i) social groups are small; (ii) helping is more "essential"; and (iii) there is a low metabolic cost to coordination. We find analogous results when we allow for spatial structure with a more detailed model of cellular filaments. More generally, this work shows how diversity in the mechanisms to produce phenotypic heterogeneity could have arisen as adaptations to different environments.
Collapse
Affiliation(s)
- Guy Alexander Cooper
- St. John's College, Oxford, OX1 3JP, UK.
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK.
| | - Ming Liu
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Jorge Peña
- Institute for Advanced Study in Toulouse, University of Toulouse Capitole, 31080, Toulouse, Cedex 6, France
| | | |
Collapse
|
5
|
Osburn FS, Wagner ND, Scott JT. Biological stoichiometry and growth dynamics of a diazotrophic cyanobacteria in nitrogen sufficient and deficient conditions. HARMFUL ALGAE 2021; 103:102011. [PMID: 33980450 PMCID: PMC8119935 DOI: 10.1016/j.hal.2021.102011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
The role of nitrogen (N) fixation in determining the frequency, magnitude, and extent of harmful algal blooms (HABs) has not been well studied. Dolichospermum is a common HAB species that is diazotrophic (capable of N fixation) and thus growth is often considered never to be limited by low combined N sources. However, N fixation is energetically expensive and its cost during bloom formation has not been quantified. Additionally, it is unknown how acclimation to differing nutrient ratios affects growth and cellular carbon (C):N stoichiometry. Here, we test the hypotheses that diazotrophic cyanobacteria are homeostatic for N because of their ability to fix atmospheric N2 and that previous acclimation to low N environments will result in more fixed N and lower C:N stoichiometry. Briefly, cultures that varied in resource N:phosphorus (P) ranging from 0.01 to 100 (atom), were seeded with Dolichospermum which were previously acclimated to low and high N:P conditions and then sampled temporally for growth and C:N stoichiometry. We found that Dolichospermum was not homeostatic for N and displayed classic signs of N limitation and elevated C:N stoichiometry, highlighting the necessary growth trade-off within cells when expending energy to fix N. Acclimation to N limited conditions caused differences in both C:N and fixed N at various time points in the experiment. These results highlight the importance of environmentally available N to a diazotrophic bloom, as well as how previous growth conditions can influence population growth during blooms experiencing variable N:P.
Collapse
Affiliation(s)
- Felicia S Osburn
- Department of Biology, Baylor University, One Bear Place 97388, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place 97178, Waco, TX 76798, USA.
| | - Nicole D Wagner
- Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place 97178, Waco, TX 76798, USA
| | - J Thad Scott
- Department of Biology, Baylor University, One Bear Place 97388, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place 97178, Waco, TX 76798, USA
| |
Collapse
|
6
|
Inomura K, Deutsch C, Masuda T, Prášil O, Follows MJ. Quantitative models of nitrogen-fixing organisms. Comput Struct Biotechnol J 2020; 18:3905-3924. [PMID: 33335688 PMCID: PMC7733014 DOI: 10.1016/j.csbj.2020.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 10/26/2022] Open
Abstract
Nitrogen-fixing organisms are of importance to the environment, providing bioavailable nitrogen to the biosphere. Quantitative models have been used to complement the laboratory experiments and in situ measurements, where such evaluations are difficult or costly. Here, we review the current state of the quantitative modeling of nitrogen-fixing organisms and ways to enhance the bridge between theoretical and empirical studies.
Collapse
Affiliation(s)
- Keisuke Inomura
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Curtis Deutsch
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Takako Masuda
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, Třeboň, Czech Republic
| | - Ondřej Prášil
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, Třeboň, Czech Republic
| | - Michael J. Follows
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Malek Shahkouhi A, Motamedian E. Reconstruction of a regulated two-cell metabolic model to study biohydrogen production in a diazotrophic cyanobacterium Anabaena variabilis ATCC 29413. PLoS One 2020; 15:e0227977. [PMID: 31978122 PMCID: PMC6980584 DOI: 10.1371/journal.pone.0227977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022] Open
Abstract
Anabaena variabilis is a diazotrophic filamentous cyanobacterium that differentiates to heterocysts and produces hydrogen as a byproduct. Study on metabolic interactions of the two differentiated cells provides a better understanding of its metabolism especially for improving hydrogen production. To this end, a genome-scale metabolic model for Anabaena variabilis ATCC 29413, iAM957, was reconstructed and evaluated in this research. Then, the model and transcriptomic data of the vegetative and heterocyst cells were applied to construct a regulated two-cell metabolic model. The regulated model improved prediction for biomass in high radiation levels. The regulated model predicts that heterocysts provide an oxygen-free environment and then, this model was used to find strategies for improving hydrogen production in heterocysts. The predictions indicate that the removal of uptake hydrogenase improves hydrogen production which is consistent with previous empirical research. Furthermore, the regulated model proposed activation of some reactions to provide redox cofactors which are required for improving hydrogen production up to 60% by bidirectional hydrogenase.
Collapse
Affiliation(s)
- Ali Malek Shahkouhi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Motamedian
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Tamamizu K, Kumazaki S. Spectral microscopic imaging of heterocysts and vegetative cells in two filamentous cyanobacteria based on spontaneous Raman scattering and photoluminescence by 976 nm excitation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:78-88. [PMID: 30414930 DOI: 10.1016/j.bbabio.2018.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 11/29/2022]
Abstract
Photosynthetic pigment-protein complexes are highly concentrated in thylakoid membranes of chloroplasts and cyanobacteria that emit strong autofluorescence (mainly 600-800 nm). In Raman scattering microscopy that enables imaging of pigment concentrations of thylakoid membranes, near infrared laser excitation at 1064 nm or visible laser excitation at 488-532 nm has been often employed in order to avoid the autofluorescence. Here we explored a new approach to Raman imaging of thylakoid membranes by using excitation wavelength of 976 nm. Two types of differentiated cells, heterocysts and vegetative cells, in two diazotrophic filamentous cyanobacteria, Anabaena variabilis, and Rivularia M-261, were characterized. Relative Raman scattering intensities of phycobilisomes of the heterocyst in comparison with the nearest vegetative cells of Rivularia remained at a significantly higher level than those of A. variabilis. It was also found that the 976 nm excitation induces photoluminescence around 1017-1175 nm from the two cyanobacteria, green alga (Parachlorella kessleri) and plant (Arabidopsis thaliana). We propose that this photoluminescence can be used as an index of concentration of chlorophyll a that has relatively small Raman scattering cross-sections. The Rivularia heterocysts that we analyzed were clearly classified into at least two subgroups based on the Chla-associated photoluminescence and carotenoid Raman bands, indicating two physiologically distinct states in the development or aging of the terminal heterocyst.
Collapse
Affiliation(s)
- Kouto Tamamizu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigeichi Kumazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
9
|
Herrero A, Stavans J, Flores E. The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiol Rev 2016; 40:831-854. [DOI: 10.1093/femsre/fuw029] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/10/2016] [Accepted: 07/09/2016] [Indexed: 11/13/2022] Open
|
10
|
Formation and maintenance of nitrogen-fixing cell patterns in filamentous cyanobacteria. Proc Natl Acad Sci U S A 2016; 113:6218-23. [PMID: 27162328 DOI: 10.1073/pnas.1524383113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cyanobacteria forming one-dimensional filaments are paradigmatic model organisms of the transition between unicellular and multicellular living forms. Under nitrogen-limiting conditions, in filaments of the genus Anabaena, some cells differentiate into heterocysts, which lose the possibility to divide but are able to fix environmental nitrogen for the colony. These heterocysts form a quasiregular pattern in the filament, representing a prototype of patterning and morphogenesis in prokaryotes. Recent years have seen advances in the identification of the molecular mechanism regulating this pattern. We use these data to build a theory on heterocyst pattern formation, for which both genetic regulation and the effects of cell division and filament growth are key components. The theory is based on the interplay of three generic mechanisms: local autoactivation, early long-range inhibition, and late long-range inhibition. These mechanisms can be identified with the dynamics of hetR, patS, and hetN expression. Our theory reproduces quantitatively the experimental dynamics of pattern formation and maintenance for wild type and mutants. We find that hetN alone is not enough to play the role as the late inhibitory mechanism: a second mechanism, hypothetically the products of nitrogen fixation supplied by heterocysts, must also play a role in late long-range inhibition. The preponderance of even intervals between heterocysts arises naturally as a result of the interplay between the timescales of genetic regulation and cell division. We also find that a purely stochastic initiation of the pattern, without a two-stage process, is enough to reproduce experimental observations.
Collapse
|
11
|
Correction: An Integrative Approach for Modeling and Simulation of Heterocyst Pattern Formation in Cyanobacteria Filaments. PLoS Comput Biol 2015; 11:e1004378. [PMID: 26154339 PMCID: PMC4496046 DOI: 10.1371/journal.pcbi.1004378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|