1
|
Fang R, Lu Y. Simulating the conformational dynamics of the ATPase complex on proteasome using its free-energy landscape. STAR Protoc 2023; 4:102182. [PMID: 37768828 PMCID: PMC10542641 DOI: 10.1016/j.xpro.2023.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/16/2023] [Accepted: 02/23/2023] [Indexed: 09/30/2023] Open
Abstract
The AAA+ ATPase complex on proteasome powers its functions through a series of intricate conformational transitions. Here, we describe a procedure to simulate the conformational dynamics of the proteasomal ATPase complex. We first empirically determined the free-energy landscape (FEL) of proteasome and then simulated proteasome's conformational changes as stochastic transitions on its FEL. We compared the FEL-predicted proteasomal behaviors with experimental measurements and analyzed the map of the ATPase's global dynamics to gain mechanistic insights into proteasomal degradation. For complete details on the use and execution of this protocol, please refer to Fang et al. (2022).1.
Collapse
Affiliation(s)
- Rui Fang
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Panigrahi R, Kailasam S. Mapping allosteric pathway in NIa-Pro using computational approach. QUANTITATIVE BIOLOGY 2023. [DOI: 10.15302/j-qb-022-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Varikoti RA, Fonseka HYY, Kelly MS, Javidi A, Damre M, Mullen S, Nugent JL, Gonzales CM, Stan G, Dima RI. Exploring the Effect of Mechanical Anisotropy of Protein Structures in the Unfoldase Mechanism of AAA+ Molecular Machines. NANOMATERIALS 2022; 12:nano12111849. [PMID: 35683705 PMCID: PMC9182431 DOI: 10.3390/nano12111849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023]
Abstract
Essential cellular processes of microtubule disassembly and protein degradation, which span lengths from tens of μm to nm, are mediated by specialized molecular machines with similar hexameric structure and function. Our molecular simulations at atomistic and coarse-grained scales show that both the microtubule-severing protein spastin and the caseinolytic protease ClpY, accomplish spectacular unfolding of their diverse substrates, a microtubule lattice and dihydrofolate reductase (DHFR), by taking advantage of mechanical anisotropy in these proteins. Unfolding of wild-type DHFR requires disruption of mechanically strong β-sheet interfaces near each terminal, which yields branched pathways associated with unzipping along soft directions and shearing along strong directions. By contrast, unfolding of circular permutant DHFR variants involves single pathways due to softer mechanical interfaces near terminals, but translocation hindrance can arise from mechanical resistance of partially unfolded intermediates stabilized by β-sheets. For spastin, optimal severing action initiated by pulling on a tubulin subunit is achieved through specific orientation of the machine versus the substrate (microtubule lattice). Moreover, changes in the strength of the interactions between spastin and a microtubule filament, which can be driven by the tubulin code, lead to drastically different outcomes for the integrity of the hexameric structure of the machine.
Collapse
Affiliation(s)
- Rohith Anand Varikoti
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
| | - Hewafonsekage Yasan Y. Fonseka
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
| | - Maria S. Kelly
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
| | - Alex Javidi
- Data Sciences, Janssen Research and Development, Spring House, PA 19477, USA;
| | - Mangesh Damre
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
| | - Sarah Mullen
- Department of Chemistry, The College of Wooster, Wooster, OH 44691, USA;
| | - Jimmie L. Nugent
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
| | | | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
- Correspondence: (G.S.); (R.I.D.)
| | - Ruxandra I. Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (R.A.V.); (H.Y.Y.F.); (M.S.K.); (M.D.); (J.L.N.IV)
- Correspondence: (G.S.); (R.I.D.)
| |
Collapse
|
4
|
Damre M, Dayananda A, Varikoti RA, Stan G, Dima RI. Factors underlying asymmetric pore dynamics of disaggregase and microtubule-severing AAA+ machines. Biophys J 2021; 120:3437-3454. [PMID: 34181904 PMCID: PMC8391056 DOI: 10.1016/j.bpj.2021.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/11/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022] Open
Abstract
Disaggregation and microtubule-severing nanomachines from the AAA+ (ATPases associated with various cellular activities) superfamily assemble into ring-shaped hexamers that enable protein remodeling by coupling large-scale conformational changes with application of mechanical forces within a central pore by loops protruding within the pore. We probed the asymmetric pore motions and intraring interactions that support them by performing extensive molecular dynamics simulations of single-ring severing proteins and the double-ring disaggregase ClpB. Simulations reveal that dynamic stability of hexameric pores of severing proteins and of the nucleotide-binding domain 1 (NBD1) ring of ClpB, which belong to the same clade, involves a network of salt bridges that connect conserved motifs of central pore loops. Clustering analysis of ClpB highlights correlated motions of domains of neighboring protomers supporting strong interprotomer collaboration. Severing proteins have weaker interprotomer coupling and stronger intraprotomer stabilization through salt bridges involving pore loops. Distinct mechanisms are identified in the NBD2 ring of ClpB involving weaker interprotomer coupling through salt bridges formed by noncanonical loops and stronger intraprotomer coupling. Analysis of collective motions of PL1 loops indicates that the largest amplitude motions in the spiral complex of spastin and ClpB involve axial excursions of the loops, whereas for katanin they involve opening and closing of the central pore. All three motors execute primarily axial excursions in the ring complex. These results suggest distinct substrate processing mechanisms of remodeling and translocation by ClpB and spastin compared to katanin, thus providing dynamic support for the differential action of the two severing proteins. Relaxation dynamics of the distance between the PL1 loops and the center of mass of protomers reveals observation-time-dependent dynamics, leading to predicted relaxation times of tens to hundreds of microseconds on millisecond experimental timescales. For ClpB, the predicted relaxation time is in excellent agreement with the extracted time from smFRET experiments.
Collapse
Affiliation(s)
- Mangesh Damre
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio
| | - Ashan Dayananda
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio
| | | | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio.
| | - Ruxandra I Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
5
|
Avestan MS, Javidi A, Ganote LP, Brown JM, Stan G. Kinetic effects in directional proteasomal degradation of the green fluorescent protein. J Chem Phys 2020; 153:105101. [DOI: 10.1063/5.0015191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Alex Javidi
- Data Sciences, Janssen Research and Development, Spring House, Pennsylvania 19477, USA
| | | | | | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| |
Collapse
|
6
|
Dima RI, Stan G. Computational Studies of Mechanical Remodeling of Substrate Proteins by AAA+ Biological Nanomachines. ACS SYMPOSIUM SERIES 2020. [DOI: 10.1021/bk-2020-1356.ch008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ruxandra I. Dima
- Department of Chemistry, University of Cincinnati, P. O. Box 210172, Cincinnati, Ohio 45221, United States
| | - George Stan
- Department of Chemistry, University of Cincinnati, P. O. Box 210172, Cincinnati, Ohio 45221, United States
| |
Collapse
|
7
|
Javidialesaadi A, Flournoy SM, Stan G. Role of Diffusion in Unfolding and Translocation of Multidomain Titin I27 Substrates by a Clp ATPase Nanomachine. J Phys Chem B 2019; 123:2623-2635. [DOI: 10.1021/acs.jpcb.8b10282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Shanice M. Flournoy
- Department of Chemistry, Virginia State University, Petersburg, Virginia 23806, United States
| | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
8
|
Javidialesaadi A, Stan G. Asymmetric Conformational Transitions in AAA+ Biological Nanomachines Modulate Direction-Dependent Substrate Protein Unfolding Mechanisms. J Phys Chem B 2017; 121:7108-7121. [DOI: 10.1021/acs.jpcb.7b05963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
9
|
Abstract
The concept of allostery has evolved in the past century. In this Editorial, we briefly overview the history of allostery, from the pre-allostery nomenclature era starting with the Bohr effect (1904) to the birth of allostery by Monod and Jacob (1961). We describe the evolution of the allostery concept, from a conformational change in a two-state model (1965, 1966) to dynamic allostery in the ensemble model (1999); from multi-subunit (1965) proteins to all proteins (2004). We highlight the current available methods to study allostery and their applications in studies of conformational mechanisms, disease, and allosteric drug discovery. We outline the challenges and future directions that we foresee. Altogether, this Editorial narrates the history of this fundamental concept in the life sciences, its significance, methodologies to detect and predict it, and its application in a broad range of living systems.
Collapse
|