1
|
Huang JP, Yun ST, Zhao JX, Wang XT, Wang XC, Guo XY, San DM, Zhou YX. The two-step strategy for enhancing the specific activity and thermostability of alginate lyase AlyG2 with mechanism for improved thermostability. Int J Biol Macromol 2024; 273:132685. [PMID: 38823749 DOI: 10.1016/j.ijbiomac.2024.132685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/01/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
To overcome the trade-off challenge encountered in the engineering of alginate lyase AlyG2 from Seonamhaeicola algicola Gy8T and to expand its potential industrial applications, we devised a two-step strategy encompassing activity enhancement followed by thermal stability engineering. To enhance the specific activity of efficient AlyG2, we strategically substituted residues with bulky steric hindrance proximal to the active pocket with glycine or alanine. This led to the generation of three promising positive mutants, with particular emphasis on the T91S mutant, exhibiting a 1.91-fold specific activity compared to the wild type. To mitigate the poor thermal stability of T91S, mutants with negative ΔΔG values in the thermal flexibility region were screened out. Notably, the S72Ya mutant not only displayed 17.96 % further increase in specific activity but also exhibited improved stability compared to T91S, manifesting as a remarkable 30.97 % increase in relative activity following a 1-hour incubation at 42 °C. Furthermore, enhanced kinetic stability was observed. To gain deeper insights into the mechanism underlying the enhanced thermostability of the S72Ya mutant, we conducted molecular dynamics simulations, principal component analysis (PCA), dynamic cross-correlation map (DCCM), and free energy landscape (FEL) analysis. The results unveiled a reduction in the flexibility of the surface loop, a stronger correlation dynamic and a narrower motion subspace in S72Ya system, along with the formation of more stable hydrogen bonds. Collectively, our findings suggest amino acids substitutions resulting in smaller side chains proximate to the active site can positively impact enzyme activity, while reducing the flexibility of surface loops emerges as a pivotal factor in conferring thermal stability. These insights offer valuable guidance and a framework for the engineering of other enzyme types.
Collapse
Affiliation(s)
- Jin-Ping Huang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shuai-Ting Yun
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jin-Xin Zhao
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Xue-Ting Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Xiao-Chen Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Xiang-Yi Guo
- SDU-ANU joint science college, Shandong University, Weihai, Shandong 264209, China
| | - Dong-Mei San
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yan-Xia Zhou
- Marine College, Shandong University, Weihai, Shandong 264209, China
| |
Collapse
|
2
|
Guan A, Hou Y, Yang R, Qin J. Enzyme engineering for functional lipids synthesis: recent advance and perspective. BIORESOUR BIOPROCESS 2024; 11:1. [PMID: 38647956 PMCID: PMC10992173 DOI: 10.1186/s40643-023-00723-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/24/2023] [Indexed: 04/25/2024] Open
Abstract
Functional lipids, primarily derived through the modification of natural lipids by various processes, are widely acknowledged for their potential to impart health benefits. In contrast to chemical methods for lipid modification, enzymatic catalysis offers distinct advantages, including high selectivity, mild operating conditions, and reduced byproduct formation. Nevertheless, enzymes face challenges in industrial applications, such as low activity, stability, and undesired selectivity. To address these challenges, protein engineering techniques have been implemented to enhance enzyme performance in functional lipid synthesis. This article aims to review recent advances in protein engineering, encompassing approaches from directed evolution to rational design, with the goal of improving the properties of lipid-modifying enzymes. Furthermore, the article explores the future prospects and challenges associated with enzyme-catalyzed functional lipid synthesis.
Collapse
Affiliation(s)
- Ailin Guan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yue Hou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Run Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
3
|
Baroroh U, Chantika NS, Firdaus ARR, Tohari TR, Subroto T, Ishmayana S, Safari A, Rachman SD, Yusuf M. Accelerated molecular dynamics study to compare the thermostability of Bacillus licheniformis and Aspergillus niger α-amylase. J Biomol Struct Dyn 2023:1-11. [PMID: 37979153 DOI: 10.1080/07391102.2023.2283152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
The thermostability of enzymes plays a significant role in the starch hydrolysis process in the industry. The structural difference between thermostable Bacillus licheniformis α-amylase (BLA) and thermolabile Aspergillus niger α-amylase (ANA) is interesting to be explored. This work aimed to study the thermostability-determining factor of BLA as compared to a non-thermostable enzyme, ANA, using molecular dynamics (MD) simulation at a high temperature. A 100 ns of classical MD, which was followed by 200 ns accelerated MD was conducted to explore the conformational changes of the enzyme. It is revealed that the intramolecular interactions through salt bridge interactions and the presence of calcium ions dominates the stability effect of BLA, despite the absence of a disulfide bond in the structure. These results should be useful in designing a thermostable enzyme that can be used in industrial processes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Umi Baroroh
- Department of Biotechnology, Indonesia School of Pharmacy, Bandung, Indonesia
| | - Nindi Salma Chantika
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ade R R Firdaus
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
| | - Taufik Ramdani Tohari
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
| | - Toto Subroto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
| | - Safri Ishmayana
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Agus Safari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Saadah Diana Rachman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
4
|
Marasco R, Fusi M, Coscolín C, Barozzi A, Almendral D, Bargiela R, Nutschel CGN, Pfleger C, Dittrich J, Gohlke H, Matesanz R, Sanchez-Carrillo S, Mapelli F, Chernikova TN, Golyshin PN, Ferrer M, Daffonchio D. Enzyme adaptation to habitat thermal legacy shapes the thermal plasticity of marine microbiomes. Nat Commun 2023; 14:1045. [PMID: 36828822 PMCID: PMC9958047 DOI: 10.1038/s41467-023-36610-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
Microbial communities respond to temperature with physiological adaptation and compositional turnover. Whether thermal selection of enzymes explains marine microbiome plasticity in response to temperature remains unresolved. By quantifying the thermal behaviour of seven functionally-independent enzyme classes (esterase, extradiol dioxygenase, phosphatase, beta-galactosidase, nuclease, transaminase, and aldo-keto reductase) in native proteomes of marine sediment microbiomes from the Irish Sea to the southern Red Sea, we record a significant effect of the mean annual temperature (MAT) on enzyme response in all cases. Activity and stability profiles of 228 esterases and 5 extradiol dioxygenases from sediment and seawater across 70 locations worldwide validate this thermal pattern. Modelling the esterase phase transition temperature as a measure of structural flexibility confirms the observed relationship with MAT. Furthermore, when considering temperature variability in sites with non-significantly different MATs, the broadest range of enzyme thermal behaviour and the highest growth plasticity of the enriched heterotrophic bacteria occur in samples with the widest annual thermal variability. These results indicate that temperature-driven enzyme selection shapes microbiome thermal plasticity and that thermal variability finely tunes such processes and should be considered alongside MAT in forecasting microbial community thermal response.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centre for Conservation and Restoration Science, Edinburgh Napier University Sighthill Campus, Edinburgh, UK
| | | | - Alan Barozzi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - David Almendral
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid, Spain
| | - Rafael Bargiela
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Deiniol Rd, Bangor, UK
| | | | - Christopher Pfleger
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jonas Dittrich
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC) and Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ruth Matesanz
- Spectroscopy Laboratory, Centro de Investigaciones Biologicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Sergio Sanchez-Carrillo
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid, Spain
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
| | - Francesca Mapelli
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Tatyana N Chernikova
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Deiniol Rd, Bangor, UK
| | - Peter N Golyshin
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Deiniol Rd, Bangor, UK
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid, Spain.
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
5
|
Peccati F, Alunno-Rufini S, Jiménez-Osés G. Accurate Prediction of Enzyme Thermostabilization with Rosetta Using AlphaFold Ensembles. J Chem Inf Model 2023; 63:898-909. [PMID: 36647575 PMCID: PMC9930118 DOI: 10.1021/acs.jcim.2c01083] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Thermostability enhancement is a fundamental aspect of protein engineering as a biocatalyst's half-life is key for its industrial and biotechnological application, particularly at high temperatures and under harsh conditions. Thermostability changes upon mutation originate from modifications of the free energy of unfolding (ΔGu), making thermostabilization extremely challenging to predict with computational methods. In this contribution, we combine global conformational sampling with energy prediction using AlphaFold and Rosetta to develop a new computational protocol for the quantitative prediction of thermostability changes upon laboratory evolution of acyltransferase LovD and lipase LipA. We highlight how using an ensemble of protein conformations rather than a single three-dimensional model is mandatory for accurate thermostability predictions. By comparing our approaches with existing ones, we show that ensembles based on AlphaFold models provide more accurate and robust calculated thermostability trends than ensembles based solely on crystallographic structures as the latter introduce a strong distortion (scaffold bias) in computed thermostabilities. Eliminating this bias is critical for computer-guided enzyme design and evaluating the effect of multiple mutations on protein stability.
Collapse
Affiliation(s)
- Francesca Peccati
- Basque
Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Building
800, 48160Derio, Spain,
| | - Sara Alunno-Rufini
- Basque
Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Building
800, 48160Derio, Spain
| | - Gonzalo Jiménez-Osés
- Basque
Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Building
800, 48160Derio, Spain,Ikerbasque, Basque
Foundation for Science, 48013Bilbao, Spain,
| |
Collapse
|
6
|
Glycine Substitution of Residues with Unfavored Dihedral Angles Improves Protein Thermostability. Catalysts 2022. [DOI: 10.3390/catal12080898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Single mutations that can substantially enhance stability are highly desirable for protein engineering. However, it is generally rare for this kind of mutant to emerge from directed evolution experiments. This study used computational approaches to identify hotspots in a diacylglycerol-specific lipase for mutagenesis with functional hotspot and sequence consensus strategies, followed by ∆∆G calculations for all possible mutations using the Rosetta ddg_monomer protocol. Single mutants with significant ∆∆G changes (≤−2.5 kcal/mol) were selected for expression and characterization. Three out of seven tested mutants showed a significantly enhanced thermostability, with Q282W and A292G in the catalytic pocket and D245G located on the opposite surface of the protein. Remarkably, A292G increased the T5015 (the temperature at which 50% of the enzyme activity was lost after a 15 min of incubation) by ~7 °C, concomitant with a twofold increase in enzymatic activity at the optimal reaction temperature. Structural analysis showed that both A292 and D245 adopted unfavored dihedral angles in the wild-type (WT) enzyme. Substitution of them by glycine might release a steric strain to increase the stability. In sum, substitution by glycine might be a promising strategy to improve protein thermostability.
Collapse
|
7
|
Heimsch KC, Gertzen CGW, Schuh AK, Nietzel T, Rahlfs S, Przyborski JM, Gohlke H, Schwarzländer M, Becker K, Fritz-Wolf K. Structure and Function of Redox-Sensitive Superfolder Green Fluorescent Protein Variant. Antioxid Redox Signal 2022; 37:1-18. [PMID: 35072524 PMCID: PMC9293687 DOI: 10.1089/ars.2021.0234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aims: Genetically encoded green fluorescent protein (GFP)-based redox biosensors are widely used to monitor specific and dynamic redox processes in living cells. Over the last few years, various biosensors for a variety of applications were engineered and enhanced to match the organism and cellular environments, which should be investigated. In this context, the unicellular intraerythrocytic parasite Plasmodium, the causative agent of malaria, represents a challenge, as the small size of the organism results in weak fluorescence signals that complicate precise measurements, especially for cell compartment-specific observations. To address this, we have functionally and structurally characterized an enhanced redox biosensor superfolder roGFP2 (sfroGFP2). Results: SfroGFP2 retains roGFP2-like behavior, yet with improved fluorescence intensity (FI) in cellulo. SfroGFP2-based redox biosensors are pH insensitive in a physiological pH range and show midpoint potentials comparable with roGFP2-based redox biosensors. Using crystallography and rigidity theory, we identified the superfolding mutations as being responsible for improved structural stability of the biosensor in a redox-sensitive environment, thus explaining the improved FI in cellulo. Innovation: This work provides insight into the structure and function of GFP-based redox biosensors. It describes an improved redox biosensor (sfroGFP2) suitable for measuring oxidizing effects within small cells where applicability of other redox sensor variants is limited. Conclusion: Improved structural stability of sfroGFP2 gives rise to increased FI in cellulo. Fusion to hGrx1 (human glutaredoxin-1) provides the hitherto most suitable biosensor for measuring oxidizing effects in Plasmodium. This sensor is of major interest for studying glutathione redox changes in small cells, as well as subcellular compartments in general. Antioxid. Redox Signal. 37, 1-18.
Collapse
Affiliation(s)
- Kim C Heimsch
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Katharina Schuh
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Nietzel
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Jude M Przyborski
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,John von Neumann Institute of Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Karin Fritz-Wolf
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany.,Max-Planck Institute of Medical Research, Heidelberg, Germany
| |
Collapse
|
8
|
Vivek K, Sandhia GS, Subramaniyan S. Extremophilic lipases for industrial applications: A general review. Biotechnol Adv 2022; 60:108002. [PMID: 35688350 DOI: 10.1016/j.biotechadv.2022.108002] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/09/2022] [Accepted: 06/02/2022] [Indexed: 01/10/2023]
Abstract
With industrialization and development in modern science enzymes and their applications increased widely. There is always a hunt for new proficient enzymes with novel properties to meet specific needs of various industrial sectors. Along with the high efficiency, the green and eco-friendly side of enzymes attracts human attention, as they form a true answer to counter the hazardous and toxic conventional industrial catalyst. Lipases have always earned industrial attention due to the broad range of hydrolytic and synthetic reactions they catalyse. When these catalytic properties get accompanied by features like temperature stability, pH stability, and solvent stability lipases becomes an appropriate tool for use in many industrial processes. Extremophilic lipases offer the same, thermostable: hot and cold active thermophilic and psychrophilic lipases, acid and alkali resistant and active acidophilic and alkaliphilic lipases, and salt tolerant halophilic lipases form excellent biocatalyst for detergent formulations, biofuel synthesis, ester synthesis, food processing, pharmaceuticals, leather, and paper industry. An interesting application of these lipases is in the bioremediation of lipid waste in harsh environments. The review gives a brief account on various extremophilic lipases with emphasis on thermophilic, psychrophilic, halophilic, alkaliphilic, and acidophilic lipases, their sources, biochemical properties, and potential applications in recent decades.
Collapse
Affiliation(s)
- K Vivek
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India
| | - G S Sandhia
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India
| | - S Subramaniyan
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India.
| |
Collapse
|
9
|
Rational engineering of phospholipase C from Bacillus cereus HSL3 for simultaneous thermostability and activity improvement. J Biotechnol 2022; 355:1-9. [DOI: 10.1016/j.jbiotec.2022.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/17/2023]
|
10
|
Dong F, Zhang M, Ma R, Lu C, Xu F. Insights of conformational dynamics on catalytic activity in the computational stability design of Bacillus subtilis LipA. Arch Biochem Biophys 2022; 722:109196. [PMID: 35339426 DOI: 10.1016/j.abb.2022.109196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
In protein engineering, the contributions of individual mutations to designed combinatorial mutants are unpredictable. Screening designed mutations that affect enzyme catalytic activity enables evolutions towards efficient activities. Here, Bacillus subtilis LipA (BSLA) was selected as a model protein for thermostabilization designs, and the circular dichroism measurements showed six combinatorial designs with improved stability (from 5.81 °C to 13.61 °C). Based on molecular dynamic simulations, the conformational dynamics of the mutants revealed that mutations alter the populations of conformational states and the increased ensembles of inactive conformations might lead to a reduction in activity. We further demonstrated that the mutations responsible for the reduced enzyme catalytic activity involved a short dynamic correlation path to disturbing the equilibrium conformation of active sites. By removing N82V, which had a close dynamic correlation to the active sites in mutant D3, the redesigned mutant RD3 had an increased activity of 57.6%. By combining computational simulation with experimental verification, this work established that essential sites to counteract the activity-stability trade-off in multipoint combinatorial mutants could be computationally predicted and thus provide a possible strategy by which to indirectly or directly guide protein design.
Collapse
Affiliation(s)
- Fangying Dong
- Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Meng Zhang
- Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Rui Ma
- Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Cheng Lu
- Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| | - Fei Xu
- Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
11
|
El Harrar T, Davari MD, Jaeger KE, Schwaneberg U, Gohlke H. Critical assessment of structure-based approaches to improve protein resistance in aqueous ionic liquids by enzyme-wide saturation mutagenesis. Comput Struct Biotechnol J 2022; 20:399-409. [PMID: 35070165 PMCID: PMC8752993 DOI: 10.1016/j.csbj.2021.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ionic liquids (IL) and aqueous ionic liquids (aIL) are attractive (co-)solvents for green industrial processes involving biocatalysts, but often reduce enzyme activity. Experimental and computational methods are applied to predict favorable substitution sites and, most often, subsequent site-directed surface charge modifications are introduced to enhance enzyme resistance towards aIL. However, almost no studies evaluate the prediction precision with random mutagenesis or the application of simple data-driven filtering processes. Here, we systematically and rigorously evaluated the performance of 22 previously described structure-based approaches to increase enzyme resistance to aIL based on an experimental complete site-saturation mutagenesis library of Bacillus subtilis Lipase A (BsLipA) screened against four aIL. We show that, surprisingly, most of the approaches yield low gain-in-precision (GiP) values, particularly for predicting relevant positions: 14 approaches perform worse than random mutagenesis. Encouragingly, exploiting experimental information on the thermostability of BsLipA or structural weak spots of BsLipA predicted by rigidity theory yields GiP = 3.03 and 2.39 for relevant variants and GiP = 1.61 and 1.41 for relevant positions. Combining five simple-to-compute physicochemical and evolutionary properties substantially increases the precision of predicting relevant variants and positions, yielding GiP = 3.35 and 1.29. Finally, combining these properties with predictions of structural weak spots identified by rigidity theory additionally improves GiP for relevant variants up to 4-fold to ∼10 and sustains or increases GiP for relevant positions, resulting in a prediction precision of ∼90% compared to ∼9% in random mutagenesis. This combination should be applicable to other enzyme systems for guiding protein engineering approaches towards improved aIL resistance.
Collapse
Affiliation(s)
- Till El Harrar
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52428 Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- DWI – Leibniz Institute for Interactive Materials e.V., 52074 Aachen, Germany
| | - Holger Gohlke
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Corresponding author at: John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428 Jülich, Germany.
| |
Collapse
|
12
|
Su WB, Zhu CY, Zhou HP, Gao J, Zhang YW. A single site mutation significantly improves the thermostability and activity of heparinase I from Bacteroides eggerthii. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1976757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wen-Bin Su
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Chen-Yuan Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Hua-Ping Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Jian Gao
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
- College of Petroleum and Chemical Engineering, Beibu Gulf University, People’s Republic of China
| |
Collapse
|
13
|
Becker D, Bharatam PV, Gohlke H. F/G Region Rigidity is Inversely Correlated to Substrate Promiscuity of Human CYP Isoforms Involved in Metabolism. J Chem Inf Model 2021; 61:4023-4030. [PMID: 34370479 DOI: 10.1021/acs.jcim.1c00558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Of 57 human cytochrome P450 (CYP) enzymes, 12 metabolize 90% of xenobiotics. To our knowledge, no study has addressed the relation between enzyme dynamics and substrate promiscuity for more than three CYPs. Here, we show by constraint dilution simulations with the Constraint Network Analysis for the 12 isoforms that structural rigidity of the F/G region is significantly inversely correlated to the enzymes' substrate promiscuity. This highlights the functional importance of structural dynamics of the substrate tunnel.
Collapse
Affiliation(s)
- Daniel Becker
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, Sahibzada Ajit Singh Nagar, Mohali 160062, Punjab, India
| | - Holger Gohlke
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
14
|
El Harrar T, Frieg B, Davari MD, Jaeger KE, Schwaneberg U, Gohlke H. Aqueous ionic liquids redistribute local enzyme stability via long-range perturbation pathways. Comput Struct Biotechnol J 2021; 19:4248-4264. [PMID: 34429845 PMCID: PMC8355836 DOI: 10.1016/j.csbj.2021.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/25/2023] Open
Abstract
Ionic liquids (IL) and aqueous ionic liquids (aIL) are attractive (co-)solvents for biocatalysis due to their unique properties. On the other hand, the incubation of enzymes in IL or aIL often reduces enzyme activity. Recent studies proposed various aIL-induced effects to explain the reduction, classified as direct effects, e.g., local dehydration or competitive inhibition, and indirect effects, e.g., structural perturbations or disturbed catalytic site integrity. However, the molecular origin of indirect effects has largely remained elusive. Here we show by multi-μs long molecular dynamics simulations, free energy computations, and rigidity analyses that aIL favorably interact with specific residues of Bacillus subtilis Lipase A (BsLipA) and modify the local structural stability of this model enzyme by inducing long-range perturbations of noncovalent interactions. The perturbations percolate over neighboring residues and eventually affect the catalytic site and the buried protein core. Validation against a complete experimental site saturation mutagenesis library of BsLipA (3620 variants) reveals that the residues of the perturbation pathways are distinguished sequence positions where substitutions highly likely yield significantly improved residual activity. Our results demonstrate that identifying these perturbation pathways and specific IL ion-residue interactions there effectively predicts focused variant libraries with improved aIL tolerance.
Collapse
Affiliation(s)
- Till El Harrar
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Benedikt Frieg
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52428 Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- DWI – Leibniz Institute for Interactive Materials e.V., 52074 Aachen, Germany
| | - Holger Gohlke
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Xing YN, Tan J, Wang Y, Wang J. Enhancing the thermostability of a mono- and diacylglycerol lipase from Malassizia globose by stabilizing a flexible loop in the catalytic pocket. Enzyme Microb Technol 2021; 149:109849. [PMID: 34311886 DOI: 10.1016/j.enzmictec.2021.109849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022]
Abstract
A lipase from Malassizia globose, named SMG1, is highly desirable for industrial application due to its substrate specificity towards mono- and diacylglycerol. To improve its thermostability, we constructed a mutant library using an error-prone polymerase chain reaction, which was screened for both initial and residual enzymatic activity. Selected mutants were further studied using purified proteins for their kinetic thermostability at 45 ℃, T50 (the temperature at which the enzyme loses half of its activity), and the optimal reaction temperature. Results showed that the majority of mutations with improved thermostability were on the protein surface. D245N and L270P showed the most significant thermostability enhancement with an approximately 3 ℃ increase in T50 compared to wild-type (WT). In addition, combining these two mutations resulted in an increase of T50 by 5 °C. Also, the optimal reaction temperatures of L270P and this double mutant are 10 ℃ higher than WT. The double mutant showed an approximately 100-fold increase in half-life at 45 ℃ and higher enzymatic activities at 30 ℃ and above compared to WT. High-temperature unfolding molecular dynamics simulation suggested that the double mutant stabilized a flexible loop in the catalytic pocket.
Collapse
Affiliation(s)
- Yan-Ni Xing
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jie Tan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Jiaqi Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
16
|
Cui H, Eltoukhy L, Zhang L, Markel U, Jaeger K, Davari MD, Schwaneberg U. Less Unfavorable Salt Bridges on the Enzyme Surface Result in More Organic Cosolvent Resistance. Angew Chem Int Ed Engl 2021; 60:11448-11456. [PMID: 33687787 PMCID: PMC8252522 DOI: 10.1002/anie.202101642] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 11/06/2022]
Abstract
Biocatalysis for the synthesis of fine chemicals is highly attractive but usually requires organic (co-)solvents (OSs). However, native enzymes often have low activity and resistance in OSs and at elevated temperatures. Herein, we report a smart salt bridge design strategy for simultaneously improving OS resistance and thermostability of the model enzyme, Bacillus subtilits Lipase A (BSLA). We combined comprehensive experimental studies of 3450 BSLA variants and molecular dynamics simulations of 36 systems. Iterative recombination of four beneficial substitutions yielded superior resistant variants with up to 7.6-fold (D64K/D144K) improved resistance toward three OSs while exhibiting significant thermostability (thermal resistance up to 137-fold, and half-life up to 3.3-fold). Molecular dynamics simulations revealed that locally refined flexibility and strengthened hydration jointly govern the highly increased resistance in OSs and at 50-100 °C. The salt bridge redesign provides protein engineers with a powerful and likely general approach to design OSs- and/or thermal-resistant lipases and other α/β-hydrolases.
Collapse
Affiliation(s)
- Haiyang Cui
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- DWI Leibniz-Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
| | - Lobna Eltoukhy
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Lingling Zhang
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesWest 7th Avenue 32, Tianjin Airport Economic Area300308TianjinChina
| | - Ulrich Markel
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme TechnologyHeinrich Heine University DüsseldorfWilhelm Johnen Strasse52426JülichGermany
- Institute of Bio-and Geosciences IBG 1: BiotechnologyForschungszentrum Jülich GmbHWilhelm Johnen Strasse52426JülichGermany
| | - Mehdi D. Davari
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- DWI Leibniz-Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
| |
Collapse
|
17
|
Cui H, Eltoukhy L, Zhang L, Markel U, Jaeger K, Davari MD, Schwaneberg U. Less Unfavorable Salt Bridges on the Enzyme Surface Result in More Organic Cosolvent Resistance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Haiyang Cui
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
- DWI Leibniz-Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| | - Lobna Eltoukhy
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Lingling Zhang
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences West 7th Avenue 32, Tianjin Airport Economic Area 300308 Tianjin China
| | - Ulrich Markel
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf Wilhelm Johnen Strasse 52426 Jülich Germany
- Institute of Bio-and Geosciences IBG 1: Biotechnology Forschungszentrum Jülich GmbH Wilhelm Johnen Strasse 52426 Jülich Germany
| | - Mehdi D. Davari
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
- DWI Leibniz-Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| |
Collapse
|
18
|
Nutschel C, Coscolín C, David B, Mulnaes D, Ferrer M, Jaeger KE, Gohlke H. Promiscuous Esterases Counterintuitively Are Less Flexible than Specific Ones. J Chem Inf Model 2021; 61:2383-2395. [PMID: 33949194 DOI: 10.1021/acs.jcim.1c00152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Understanding mechanisms of promiscuity is increasingly important from a fundamental and application point of view. As to enzyme structural dynamics, more promiscuous enzymes generally have been recognized to also be more flexible. However, examples for the opposite received much less attention. Here, we exploit comprehensive experimental information on the substrate promiscuity of 147 esterases tested against 96 esters together with computationally efficient rigidity analyses to understand the molecular origin of the observed promiscuity range. Unexpectedly, our data reveal that promiscuous esterases are significantly less flexible than specific ones, are significantly more thermostable, and have a significantly increased specific activity. These results may be reconciled with a model according to which structural flexibility in the case of specific esterases serves for conformational proofreading. Our results signify that an esterase sequence space can be screened by rigidity analyses for promiscuous esterases as starting points for further exploration in biotechnology and synthetic chemistry.
Collapse
Affiliation(s)
- Christina Nutschel
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Cristina Coscolín
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Benoit David
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Daniel Mulnaes
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52425 Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
19
|
Li W, Sun W, Li C. Engineered microorganisms and enzymes for efficiently synthesizing plant natural products. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Contreras F, Nutschel C, Beust L, Davari MD, Gohlke H, Schwaneberg U. Can constraint network analysis guide the identification phase of KnowVolution? A case study on improved thermostability of an endo-β-glucanase. Comput Struct Biotechnol J 2020; 19:743-751. [PMID: 33552446 PMCID: PMC7822948 DOI: 10.1016/j.csbj.2020.12.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/02/2023] Open
Abstract
Cellulases are industrially important enzymes, e.g., in the production of bioethanol, in pulp and paper industry, feedstock, and textile. Thermostability is often a prerequisite for high process stability and improving thermostability without affecting specific activities at lower temperatures is challenging and often time-consuming. Protein engineering strategies that combine experimental and computational are emerging in order to reduce experimental screening efforts and speed up enzyme engineering campaigns. Constraint Network Analysis (CNA) is a promising computational method that identifies beneficial positions in enzymes to improve thermostability. In this study, we compare CNA and directed evolution in the identification of beneficial positions in order to evaluate the potential of CNA in protein engineering campaigns (e.g., in the identification phase of KnowVolution). We engineered the industrially relevant endoglucanase EGLII from Penicillium verruculosum towards increased thermostability. From the CNA approach, six variants were obtained with an up to 2-fold improvement in thermostability. The overall experimental burden was reduced to 40% utilizing the CNA method in comparison to directed evolution. On a variant level, the success rate was similar for both strategies, with 0.27% and 0.18% improved variants in the epPCR and CNA-guided library, respectively. In essence, CNA is an effective method for identification of positions that improve thermostability.
Collapse
Affiliation(s)
- Francisca Contreras
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Christina Nutschel
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Laura Beust
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
21
|
Enhancement of hydrogen peroxide tolerance of lipase LipA from Bacillus subtilis using semi-rational design. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Guan C, Tao Z, Wang L, Zhao R, Chen X, Huang X, Su J, Lu Z, Chen X, Gu R. Isolation of novel Lactobacillus with lipolytic activity from the vinasse and their preliminary potential using as probiotics. AMB Express 2020; 10:91. [PMID: 32415368 PMCID: PMC7229107 DOI: 10.1186/s13568-020-01026-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/08/2020] [Indexed: 11/10/2022] Open
Abstract
Lactobacillus casei f1, L. paracasei f2 and L. paracasei f3 with lipolytic activity were isolated and identified from vinasses according to the morphological–physiological properties detection and 16S rDNA analysis. These three strains showed obvious lipase activities to olive oil and L. casei f1 performed highest enzyme activity of 17.8 U/mL. L. casei f1, L. paracasei f2 and L. paracasei f3 could lipolyze the blending oils, peanut oil and sesame oil with diverse degrading rates. The degrading rates to the preferred oils, L. casei f1 to blending oils, L. paracasei f2 to peanut oil and L. paracasei f3 to sesame oil, were 21.2%, 27.3% and 39.6%, respectively. The corresponding oil degrading rates increased as the cell growth and the highest degrading rates were obtained at the stationary phase with the viable count more than 7.5 LogCFU/mL. By GC–MS analysis, L. casei f1, L. paracasei f2 and L. paracasei f3 performed diverse lipolytic capacities to the 12 kinds of fat acids and all of them preferred to hydrolyze the linoleic acid with the degrading rate of 49.11%, 31.83% and 64.44%, respectively. These three strains showed considerable probiotic properties, displaying higher than 106 CFU/mL desirable viable count though the simulated gastrointestinal tract, as well as inhibiting six indicator bacteria. These results suggested that the three isolated strains could be considered as novel probiotic candidates and applied in the food industry.
Collapse
|
23
|
Denesyuk A, Dimitriou PS, Johnson MS, Nakayama T, Denessiouk K. The acid-base-nucleophile catalytic triad in ABH-fold enzymes is coordinated by a set of structural elements. PLoS One 2020; 15:e0229376. [PMID: 32084230 PMCID: PMC7034887 DOI: 10.1371/journal.pone.0229376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/05/2020] [Indexed: 01/09/2023] Open
Abstract
The alpha/beta-Hydrolases (ABH) are a structural class of proteins that are found widespread in nature and includes enzymes that can catalyze various reactions in different substrates. The catalytic versatility of the ABH fold enzymes, which has been a valuable property in protein engineering applications, is based on a similar acid-base-nucleophile catalytic mechanism. In our research, we are concerned with the structure that surrounds the key units of the catalytic machinery, and we have previously found conserved structural organizations that coordinate the catalytic acid, the catalytic nucleophile and the residues of the oxyanion hole. Here, we explore the architecture that surrounds the catalytic histidine at the active sites of enzymes from 40 ABH fold families, where we have identified six conserved interactions that coordinate the catalytic histidine next to the catalytic acid and the catalytic nucleophile. Specifically, the catalytic nucleophile is coordinated next to the catalytic histidine by two weak hydrogen bonds, while the catalytic acid is directly involved in the coordination of the catalytic histidine through by two weak hydrogen bonds. The imidazole ring of the catalytic histidine is coordinated by a CH-π contact and a hydrophobic interaction. Moreover, the catalytic triad residues are connected with a residue that is located at the core of the active site of ABH fold, which is suggested to be the fourth member of a “structural catalytic tetrad”. Besides their role in the stability of the catalytic mechanism, the conserved elements of the catalytic site are actively involved in ligand binding and affect other properties of the catalytic activity, such as substrate specificity, enantioselectivity, pH optimum and thermostability of ABH fold enzymes. These properties are regularly targeted in protein engineering applications, and thus, the identified conserved structural elements can serve as potential modification sites in order to develop ABH fold enzymes with altered activities.
Collapse
Affiliation(s)
- Alexander Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
- * E-mail:
| | - Polytimi S. Dimitriou
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
24
|
Nutschel C, Fulton A, Zimmermann O, Schwaneberg U, Jaeger KE, Gohlke H. Systematically Scrutinizing the Impact of Substitution Sites on Thermostability and Detergent Tolerance for Bacillus subtilis Lipase A. J Chem Inf Model 2020; 60:1568-1584. [PMID: 31905288 DOI: 10.1021/acs.jcim.9b00954] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Improving an enzyme's (thermo-)stability or tolerance against solvents and detergents is highly relevant in protein engineering and biotechnology. Recent developments have tended toward data-driven approaches, where available knowledge about the protein is used to identify substitution sites with high potential to yield protein variants with improved stability, and subsequently, substitutions are engineered by site-directed or site-saturation (SSM) mutagenesis. However, the development and validation of algorithms for data-driven approaches have been hampered by the lack of availability of large-scale data measured in a uniform way and being unbiased with respect to substitution types and locations. Here, we extend our knowledge on guidelines for protein engineering following a data-driven approach by scrutinizing the impact of substitution sites on thermostability or/and detergent tolerance for Bacillus subtilis lipase A (BsLipA) at very large scale. We systematically analyze a complete experimental SSM library of BsLipA containing all 3439 possible single variants, which was evaluated as to thermostability and tolerances against four detergents under respectively uniform conditions. Our results provide systematic and unbiased reference data at unprecedented scale for a biotechnologically important protein, identify consistently defined hot spot types for evaluating the performance of data-driven protein-engineering approaches, and show that the rigidity theory and ensemble-based approach Constraint Network Analysis yields hot spot predictions with an up to ninefold gain in precision over random classification.
Collapse
Affiliation(s)
- Christina Nutschel
- John von Neumann Institute for Computing (NIC) and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Alexander Fulton
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52425 Jülich, Germany
| | - Olav Zimmermann
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials, 52056 Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52425 Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC) and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Verma N, Dollinger P, Kovacic F, Jaeger KE, Gohlke H. The Membrane-Integrated Steric Chaperone Lif Facilitates Active Site Opening of Pseudomonas aeruginosa Lipase A. J Comput Chem 2019; 41:500-512. [PMID: 31618459 DOI: 10.1002/jcc.26085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022]
Abstract
Lipases are essential and widely used biocatalysts. Hence, the production of lipases requires a detailed understanding of the molecular mechanism of its folding and secretion. Lipase A from Pseudomonas aeruginosa, PaLipA, constitutes a prominent example that has additional relevance because of its role as a virulence factor in many diseases. PaLipA requires the assistance of a membrane-integrated steric chaperone, the lipase-specific foldase Lif, to achieve its enzymatically active state. However, the molecular mechanism of how Lif activates its cognate lipase has remained elusive. Here, we show by molecular dynamics simulations at the atomistic level and potential of mean force computations that Lif catalyzes the activation process of PaLipA by structurally stabilizing an intermediate PaLipA conformation, particularly a β-sheet in the region of residues 17-30, such that the opening of PaLipA's lid domain is facilitated. This opening allows substrate access to PaLipA's catalytic site. A surprising and so far not fully understood aspect of our study is that the open state of PaLipA is unstable compared to the closed one according to our computational and in vitro biochemical results. We thus speculate that further interactions of PaLipA with the Xcp secretion machinery and/or components of the extracellular matrix contribute to the remaining activity of secreted PaLipA. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Neha Verma
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| | - Peter Dollinger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| |
Collapse
|
26
|
Xia Q, Ding Y. Thermostability of Lipase A and Dynamic Communication Based on Residue Interaction Network. Protein Pept Lett 2019; 26:702-716. [PMID: 31215367 DOI: 10.2174/0929866526666190617091812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/10/2019] [Accepted: 04/25/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Dynamic communication caused by mutation affects protein stability. The main objective of this study is to explore how mutations affect communication and to provide further insight into the relationship between heat resistance and signal propagation of Bacillus subtilis lipase (Lip A). METHODS The relationship between dynamic communication and Lip A thermostability is studied by long-time MD simulation and residue interaction network. The Dijkstra algorithm is used to get the shortest path of each residue pair. Subsequently, time-series frequent paths and spatio-temporal frequent paths are mined through an Apriori-like algorithm. RESULTS Time-series frequent paths show that the communication between residue pairs, both in wild-type lipase (WTL) and mutant 6B, becomes chaotic with an increase in temperature; however, more residues in 6B can maintain stable communication at high temperature, which may be associated with the structural rigidity. Furthermore, spatio-temporal frequent paths reflect the interactions among secondary structures. For WTL at 300K, β7, αC, αB, the longest loop, αA and αF contact frequently. The 310-helix between β3 and αA is penetrated by spatio-temporal frequent paths. At 400K, only αC can be frequently transmitted. For 6B, when at 300K, αA and αF are in more tight contact by spatio-temporal frequent paths though I157M and N166Y. Moreover, the rigidity of the active site His156 and the C-terminal of Lip A are increased, as reflected by the spatio-temporal frequent paths. At 400K, αA and αF, 310-helix between β3 and αA, the longest loop, and the loop where the active site Asp133 is located can still maintain stable communication. CONCLUSION From the perspective of residue dynamic communication, it is obviously found that mutations cause changes in interactions between secondary structures and enhance the rigidity of the structure, contributing to the thermal stability and functional activity of 6B.
Collapse
Affiliation(s)
- Qian Xia
- Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yanrui Ding
- Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
27
|
Changes of Thermostability, Organic Solvent, and pH Stability in Geobacillus zalihae HT1 and Its Mutant by Calcium Ion. Int J Mol Sci 2019; 20:ijms20102561. [PMID: 31137725 PMCID: PMC6566366 DOI: 10.3390/ijms20102561] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022] Open
Abstract
Thermostable T1 lipase from Geobacillus zalihae has been crystallized using counter-diffusion method under space and Earth conditions. The comparison of the three-dimensional structures from both crystallized proteins show differences in the formation of hydrogen bond and ion interactions. Hydrogen bond and ion interaction are important in the stabilization of protein structure towards extreme temperature and organic solvents. In this study, the differences of hydrogen bond interactions at position Asp43, Thr118, Glu250, and Asn304 and ion interaction at position Glu226 was chosen to imitate space-grown crystal structure, and the impact of these combined interactions in T1 lipase-mutated structure was studied. Using space-grown T1 lipase structure as a reference, subsequent simultaneous mutation D43E, T118N, E226D, E250L, and N304E was performed on recombinant wild-type T1 lipase (wt-HT1) to generate a quintuple mutant term as 5M mutant lipase. This mutant lipase shared similar characteristics to its wild-type in terms of optimal pH and temperature. The stability of mutant 5M lipase improved significantly in acidic and alkaline pH as compared to wt-HT1. 5M lipase was highly stable in organic solvents such as dimethyl sulfoxide (DMSO), methanol, and n-hexane compared to wt-HT1. Both wild-type and mutant lipases were found highly activated in calcium as compared to other metal ions due to the presence of calcium-binding site for thermostability. The presence of calcium prolonged the half-life of mutant 5M and wt-HT1, and at the same time increased their melting temperature (Tm). The melting temperature of 5M and wt-HT1 lipases increased at 8.4 and 12.1 °C, respectively, in the presence of calcium as compared to those without. Calcium enhanced the stability of mutant 5M in 25% (v/v) DMSO, n-hexane, and n-heptane. The lipase activity of wt-HT1 also increased in 25% (v/v) ethanol, methanol, acetonitrile, n-hexane, and n-heptane in the presence of calcium. The current study showed that the accumulation of amino acid substitutions D43E, T118N, E226D, E250L, and N304E produced highly stable T1 mutant when hydrolyzing oil in selected organic solvents such as DMSO, n-hexane, and n-heptane. It is also believed that calcium ion plays important role in regulating lipase thermostability.
Collapse
|
28
|
Characterization and mutation anaylsis of a cold-active bacterial hormone-sensitive lipase from Salinisphaera sp. P7-4. Arch Biochem Biophys 2019; 663:132-142. [DOI: 10.1016/j.abb.2019.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 11/18/2022]
|
29
|
Sun Z, Liu Q, Qu G, Feng Y, Reetz MT. Utility of B-Factors in Protein Science: Interpreting Rigidity, Flexibility, and Internal Motion and Engineering Thermostability. Chem Rev 2019; 119:1626-1665. [PMID: 30698416 DOI: 10.1021/acs.chemrev.8b00290] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
30
|
Filling the Void: Introducing Aromatic Interactions into Solvent Tunnels To Enhance Lipase Stability in Methanol. Appl Environ Microbiol 2018; 84:AEM.02143-18. [PMID: 30217852 DOI: 10.1128/aem.02143-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 12/17/2022] Open
Abstract
An enhanced stability of enzymes in organic solvents is desirable under industrial conditions. The potential of lipases as biocatalysts is mainly limited by their denaturation in polar alcohols. In this study, we focused on selected solvent tunnels in lipase from Geobacillus stearothermophilus T6 to improve its stability in methanol during biodiesel synthesis. Using rational mutagenesis, bulky aromatic residues were incorporated to occupy solvent channels and induce aromatic interactions leading to a better inner core packing. The chemical and structural characteristics of each solvent tunnel were systematically analyzed. Selected residues were replaced with Phe, Tyr, or Trp. Overall, 16 mutants were generated and screened in 60% methanol, from which 3 variants showed an enhanced stability up to 81-fold compared with that of the wild type. All stabilizing mutations were found in the longest tunnel detected in the "closed-lid" X-ray structure. The combination of Phe substitutions in an A187F/L360F double mutant resulted in an increase in unfolding temperature (Tm ) of 7°C in methanol and a 3-fold increase in biodiesel synthesis yield from waste chicken oil. A kinetic analysis with p-nitrophenyl laurate revealed that all mutants displayed lower hydrolysis rates (k cat), though their stability properties mostly determined the transesterification capability. Seven crystal structures of different variants were solved, disclosing new π-π or CH/π intramolecular interactions and emphasizing the significance of aromatic interactions for improved solvent stability. This rational approach could be implemented for the stabilization of other enzymes in organic solvents.IMPORTANCE Enzymatic synthesis in organic solvents holds increasing industrial opportunities in many fields; however, one major obstacle is the limited stability of biocatalysts in such a denaturing environment. Aromatic interactions play a major role in protein folding and stability, and we were inspired by this to redesign enzyme voids. The rational protein engineering of solvent tunnels of lipase from Geobacillus stearothermophilus is presented here, offering a promising approach to introduce new aromatic interactions within the enzyme core. We discovered that longer tunnels leading from the surface to the enzyme active site were more beneficial targets for mutagenesis for improving lipase stability in methanol during biodiesel biosynthesis. A structural analysis of the variants confirmed the generation of new interactions involving aromatic residues. This work provides insights into stability-driven enzyme design by targeting the solvent channel void.
Collapse
|
31
|
Budday D, Leyendecker S, van den Bedem H. Kinematic Flexibility Analysis: Hydrogen Bonding Patterns Impart a Spatial Hierarchy of Protein Motion. J Chem Inf Model 2018; 58:2108-2122. [PMID: 30240209 DOI: 10.1021/acs.jcim.8b00267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elastic network models (ENMs) and constraint-based, topological rigidity analysis are two distinct, coarse-grained approaches to study conformational flexibility of macromolecules. In the two decades since their introduction, both have contributed significantly to insights into protein molecular mechanisms and function. However, despite a shared purpose of these approaches, the topological nature of rigidity analysis, and thereby the absence of motion modes, has impeded a direct comparison. Here, we present an alternative, kinematic approach to rigidity analysis, which circumvents these drawbacks. We introduce a novel protein hydrogen bond network spectral decomposition, which provides an orthonormal basis for collective motions modulated by noncovalent interactions, analogous to the eigenspectrum of normal modes. The zero modes decompose proteins into rigid clusters identical to those from topological rigidity, while nonzero modes rank protein motions by their hydrogen bond collective energy penalty. Our kinematic flexibility analysis bridges topological rigidity theory and ENM, enabling a detailed analysis of motion modes obtained from both approaches. Analysis of a large, structurally diverse data set revealed that collectivity of protein motions, reported by the Shannon entropy, is significantly reduced for rigidity theory compared to normal mode approaches. Strikingly, kinematic flexibility analysis suggests that the hydrogen bonding network encodes a protein-fold specific, spatial hierarchy of motions, which goes nearly undetected in ENM. This hierarchy reveals distinct motion regimes that rationalize experimental and simulated protein stiffness variations. Kinematic motion modes highly correlate with reported crystallographic B factors and molecular dynamics simulations of adenylate kinase. A formal expression for changes in free energy derived from the spectral decomposition indicates that motions across nearly 40% of modes obey enthalpy-entropy compensation. Taken together, our results suggest that hydrogen bond networks have evolved to modulate protein structure and dynamics, which can be efficiently probed by kinematic flexibility analysis.
Collapse
Affiliation(s)
- Dominik Budday
- Chair of Applied Dynamics , University of Erlangen-Nuremberg , 91058 Erlangen , Germany
| | - Sigrid Leyendecker
- Chair of Applied Dynamics , University of Erlangen-Nuremberg , 91058 Erlangen , Germany
| | - Henry van den Bedem
- Biosciences Division, SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , United States.,Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , California 94158 , United States
| |
Collapse
|
32
|
|
33
|
Carugo O. Atomic displacement parameters in structural biology. Amino Acids 2018; 50:775-786. [DOI: 10.1007/s00726-018-2574-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/19/2018] [Indexed: 01/14/2023]
|
34
|
Stetz G, Tse A, Verkhivker GM. Ensemble-based modeling and rigidity decomposition of allosteric interaction networks and communication pathways in cyclin-dependent kinases: Differentiating kinase clients of the Hsp90-Cdc37 chaperone. PLoS One 2017; 12:e0186089. [PMID: 29095844 PMCID: PMC5667858 DOI: 10.1371/journal.pone.0186089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022] Open
Abstract
The overarching goal of delineating molecular principles underlying differentiation of protein kinase clients and chaperone-based modulation of kinase activity is fundamental to understanding activity of many oncogenic kinases that require chaperoning of Hsp70 and Hsp90 systems to attain a functionally competent active form. Despite structural similarities and common activation mechanisms shared by cyclin-dependent kinase (CDK) proteins, members of this family can exhibit vastly different chaperone preferences. The molecular determinants underlying chaperone dependencies of protein kinases are not fully understood as structurally similar kinases may often elicit distinct regulatory responses to the chaperone. The regulatory divergences observed for members of CDK family are of particular interest as functional diversification among these kinases may be related to variations in chaperone dependencies and can be exploited in drug discovery of personalized therapeutic agents. In this work, we report the results of a computational investigation of several members of CDK family (CDK5, CDK6, CDK9) that represented a broad repertoire of chaperone dependencies—from nonclient CDK5, to weak client CDK6, and strong client CDK9. By using molecular simulations of multiple crystal structures we characterized conformational ensembles and collective dynamics of CDK proteins. We found that the elevated dynamics of CDK9 can trigger imbalances in cooperative collective motions and reduce stability of the active fold, thus creating a cascade of favorable conditions for chaperone intervention. The ensemble-based modeling of residue interaction networks and community analysis determined how differences in modularity of allosteric networks and topography of communication pathways can be linked with the client status of CDK proteins. This analysis unveiled depleted modularity of the allosteric network in CDK9 that alters distribution of communication pathways and leads to impaired signaling in the client kinase. According to our results, these network features may uniquely define chaperone dependencies of CDK clients. The perturbation response scanning and rigidity decomposition approaches identified regulatory hotspots that mediate differences in stability and cooperativity of allosteric interaction networks in the CDK structures. By combining these synergistic approaches, our study revealed dynamic and network signatures that can differentiate kinase clients and rationalize subtle divergences in the activation mechanisms of CDK family members. The therapeutic implications of these results are illustrated by identifying structural hotspots of pathogenic mutations that preferentially target regions of the increased flexibility to enable modulation of activation changes. Our study offers a network-based perspective on dynamic kinase mechanisms and drug design by unravelling relationships between protein kinase dynamics, allosteric communications and chaperone dependencies.
Collapse
Affiliation(s)
- Gabrielle Stetz
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Amanda Tse
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
1-Deoxynojirimycin from Bacillus subtilis improves antioxidant and antibacterial activities of juvenile Yoshitomi tilapia. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
36
|
Skoczinski P, Volkenborn K, Fulton A, Bhadauriya A, Nutschel C, Gohlke H, Knapp A, Jaeger KE. Contribution of single amino acid and codon substitutions to the production and secretion of a lipase by Bacillus subtilis. Microb Cell Fact 2017; 16:160. [PMID: 28946879 PMCID: PMC5613506 DOI: 10.1186/s12934-017-0772-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/13/2017] [Indexed: 01/07/2023] Open
Abstract
Background Bacillus subtilis produces and secretes proteins in amounts of up to 20 g/l under optimal conditions. However, protein production can be challenging if transcription and cotranslational secretion are negatively affected, or the target protein is degraded by extracellular proteases. This study aims at elucidating the influence of a target protein on its own production by a systematic mutational analysis of the homologous B. subtilis model protein lipase A (LipA). We have covered the full natural diversity of single amino acid substitutions at 155 positions of LipA by site saturation mutagenesis excluding only highly conserved residues and qualitatively and quantitatively screened about 30,000 clones for extracellular LipA production. Identified variants with beneficial effects on production were sequenced and analyzed regarding B. subtilis growth behavior, extracellular lipase activity and amount as well as changes in lipase transcript levels. Results In total, 26 LipA variants were identified showing an up to twofold increase in either amount or activity of extracellular lipase. These variants harbor single amino acid or codon substitutions that did not substantially affect B. subtilis growth. Subsequent exemplary combination of beneficial single amino acid substitutions revealed an additive effect solely at the level of extracellular lipase amount; however, lipase amount and activity could not be increased simultaneously. Conclusions Single amino acid and codon substitutions can affect LipA secretion and production by B. subtilis. Several codon-related effects were observed that either enhance lipA transcription or promote a more efficient folding of LipA. Single amino acid substitutions could improve LipA production by increasing its secretion or stability in the culture supernatant. Our findings indicate that optimization of the expression system is not sufficient for efficient protein production in B. subtilis. The sequence of the target protein should also be considered as an optimization target for successful protein production. Our results further suggest that variants with improved properties might be identified much faster and easier if mutagenesis is prioritized towards elements that contribute to enzymatic activity or structural integrity. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0772-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pia Skoczinski
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.,Macromolecular Chemistry and New Polymeric Materials, Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Kristina Volkenborn
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Alexander Fulton
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.,Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
| | - Anuseema Bhadauriya
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Christina Nutschel
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) & Institute for Complex Systems - Structural Biochemistry (ICS6), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany. .,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
37
|
Kandhari N, Sinha S. Complex network analysis of thermostable mutants of Bacillus subtilis Lipase A. APPLIED NETWORK SCIENCE 2017; 2:18. [PMID: 30443573 PMCID: PMC6214246 DOI: 10.1007/s41109-017-0039-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/01/2017] [Indexed: 06/09/2023]
Abstract
Three-dimensional structures of proteins that regulate their functions can be modelled using complex network based approaches for understanding the structure-function relationship. The six mutants of the protein Lipase A from Bacillus subtilis, harbouring 2 to 12 mutations, retain their function at higher temperatures with negligible variation in their overall three-dimensional crystallographic structures. This enhanced thermostability of the mutants questions the structure-function paradigm. In this paper, a coarse-grained complex network approach is used to elucidate the structural basis of enhanced thermostability in the mutant proteins, by uncovering small but significant local changes distributed throughout the structure, rendering stability to the mutants at higher temperatures. Community structure analysis of the six mutant protein networks uncovers the specific reorganisations among the nodes/residues that occur, in absence of overall structural variations, which induce enhanced rigidity underlying the increased thermostability. This study offers a novel and significant application of complex network analysis that proposes to be useful in the understanding and designing of thermostable proteins.
Collapse
Affiliation(s)
- Nitika Kandhari
- Centre for Protein Science Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab 140306 India
| | - Somdatta Sinha
- Centre for Protein Science Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab 140306 India
| |
Collapse
|
38
|
Hermans SM, Pfleger C, Nutschel C, Hanke CA, Gohlke H. Rigidity theory for biomolecules: concepts, software, and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1311] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Susanne M.A. Hermans
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Christopher Pfleger
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Christina Nutschel
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Christian A. Hanke
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| |
Collapse
|
39
|
Silva SB, Pinheiro MP, Fuzo CA, Silva SR, Ferreira TL, Lourenzoni MR, Nonato MC, Vieira DS, Ward RJ. The role of local residue environmental changes in thermostable mutants of the GH11 xylanase from Bacillus subtilis. Int J Biol Macromol 2017; 97:574-584. [DOI: 10.1016/j.ijbiomac.2017.01.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 12/24/2022]
|
40
|
|
41
|
Goomber S, Chopra N, Kaur Bedi G, Kaur J. Comparative analysis of point mutations on protein COOH terminal near surface and its hydrophobic core provide insights on thermostability of Bacillus Lipase LipJ. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|