1
|
Snipas M, Gudaitis L, Kraujaliene L, Kraujalis T, Verselis VK. Modeling and analysis of voltage gating of gap junction channels at a single-channel level. Biophys J 2023; 122:4176-4193. [PMID: 37766427 PMCID: PMC10645554 DOI: 10.1016/j.bpj.2023.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/20/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
The advancement of single-channel-level recording via the patch-clamp technique has provided a powerful means of assessing the detailed behaviors of various types of ion channels in native and exogenously expressed cellular environments. However, such recordings of gap junction (GJ) channels are hampered by unique challenges that are related to their unusual intercellular configuration and natural clustering into densely packed plaques. Thus, the methods for reliable cross-correlation of data recorded at macroscopic and single-channel levels are lacking in studies of GJs. To address this issue, we combined our previously published four-state model (4SM) of GJ channel gating by voltage with maximum likelihood estimation (MLE)-based analyses of electrophysiological recordings of GJ channel currents. First, we consider evaluation of single-channel characteristics and the methods for efficient stochastic simulation of single GJ channels from the kinetic scheme described by 4SM using data obtained from macroscopic recordings. We then present an MLE-based methodology for extraction of information about transition rates for GJ channels and, ultimately, gating parameters defined in 4SM from recordings with visible unitary events. The validity of the proposed methodology is illustrated using stochastic simulations of single GJ channels and is extended to electrophysiological data recorded in cells expressing connexin 43 tagged with enhanced green fluorescent protein.
Collapse
Affiliation(s)
- Mindaugas Snipas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania; Department of Mathematical Modelling, Kaunas University of Technology, Kaunas, Lithuania.
| | - Lukas Gudaitis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Lina Kraujaliene
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Tadas Kraujalis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania; Department of Applied Informatics, Kaunas University of Technology, Kaunas, Lithuania
| | - Vytas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York
| |
Collapse
|
2
|
Masoli S, Rizza MF, Tognolina M, Prestori F, D’Angelo E. Computational models of neurotransmission at cerebellar synapses unveil the impact on network computation. Front Comput Neurosci 2022; 16:1006989. [PMID: 36387305 PMCID: PMC9649760 DOI: 10.3389/fncom.2022.1006989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
The neuroscientific field benefits from the conjoint evolution of experimental and computational techniques, allowing for the reconstruction and simulation of complex models of neurons and synapses. Chemical synapses are characterized by presynaptic vesicle cycling, neurotransmitter diffusion, and postsynaptic receptor activation, which eventually lead to postsynaptic currents and subsequent membrane potential changes. These mechanisms have been accurately modeled for different synapses and receptor types (AMPA, NMDA, and GABA) of the cerebellar cortical network, allowing simulation of their impact on computation. Of special relevance is short-term synaptic plasticity, which generates spatiotemporal filtering in local microcircuits and controls burst transmission and information flow through the network. Here, we present how data-driven computational models recapitulate the properties of neurotransmission at cerebellar synapses. The simulation of microcircuit models is starting to reveal how diverse synaptic mechanisms shape the spatiotemporal profiles of circuit activity and computation.
Collapse
Affiliation(s)
- Stefano Masoli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | | | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Brain Connectivity Center, Pavia, Italy
| |
Collapse
|
3
|
Intrinsic Sources and Functional Impacts of Asymmetry at Electrical Synapses. eNeuro 2022; 9:ENEURO.0469-21.2022. [PMID: 35135867 PMCID: PMC8925721 DOI: 10.1523/eneuro.0469-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/14/2022] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
Electrical synapses couple inhibitory neurons across the brain, underlying a variety of functions that are modifiable by activity. Despite recent advances, many functions and contributions of electrical synapses within neural circuitry remain underappreciated. Among these are the sources and impacts of electrical synapse asymmetry. Using multi-compartmental models of neurons coupled through dendritic electrical synapses, we investigated intrinsic factors that contribute to effective synaptic asymmetry and that result in modulation of spike timing and synchrony between coupled cells. We show that electrical synapse location along a dendrite, input resistance, internal dendritic resistance, or directional conduction of the electrical synapse itself each alter asymmetry as measured by coupling between cell somas. Conversely, we note that asymmetrical gap junction (GJ) conductance can be masked by each of these properties. Furthermore, we show that asymmetry modulates spike timing and latency of coupled cells by up to tens of milliseconds, depending on direction of conduction or dendritic location of the electrical synapse. Coordination of rhythmic activity between two cells also depends on asymmetry. These simulations illustrate that causes of asymmetry are diverse, may not be apparent in somatic measurements of electrical coupling, influence dendritic processing, and produce a variety of outcomes on spiking and synchrony of coupled cells. Our findings highlight aspects of electrical synapses that should always be included in experimental demonstrations of coupling, and when assembling simulated networks containing electrical synapses.
Collapse
|
4
|
Fricker B, Heckman E, Cunningham PC, Wang H, Haas JS. Activity-dependent long-term potentiation of electrical synapses in the mammalian thalamus. J Neurophysiol 2020; 125:476-488. [PMID: 33146066 DOI: 10.1152/jn.00471.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Activity-dependent changes of synapse strength have been extensively characterized at chemical synapses, but the relationship between physiological forms of activity and strength at electrical synapses remains poorly characterized and understood. For mammalian electrical synapses comprising hexamers of connexin36, physiological forms of neuronal activity in coupled pairs have thus far only been linked to long-term depression; activity that results in strengthening of electrical synapses has not yet been identified. Here, we performed dual whole-cell current-clamp recordings in acute slices of P11-P15 Sprague-Dawley rats of electrically coupled neurons of the thalamic reticular nucleus (TRN), a central brain area that regulates cortical input from and attention to the sensory surround. Using TTA-A2 to limit bursting, we show that tonic spiking in one neuron of a pair results in long-term potentiation of electrical synapses. We use experiments and computational modeling to show that the magnitude of plasticity expressed alters the functionality of the synapse. Potentiation is expressed asymmetrically, indicating that regulation of connectivity depends on the direction of use. Furthermore, calcium pharmacology and imaging indicate that potentiation depends on calcium flux. We thus propose a calcium-based activity rule for bidirectional plasticity of electrical synapse strength. Because electrical synapses dominate intra-TRN connectivity, these synapses and their activity-dependent modifications are key dynamic regulators of thalamic attention circuitry. More broadly, we speculate that bidirectional modifications of electrical synapses may be a widespread and powerful principle for ongoing, dynamic reorganization of neuronal circuitry across the brain.NEW & NOTEWORTHY This work reveals a physiologically relevant form of activity pairing in coupled neurons that results in long-term potentiation of mammalian electrical synapses. These findings, in combination with previous work, allow the authors to propose a bidirectional calcium-based rule for plasticity of electrical synapses, similar to those demonstrated for chemical synapses. These new insights inform the field on how electrical synapse plasticity may modify the neural circuits that incorporate them.
Collapse
Affiliation(s)
- Brandon Fricker
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Emily Heckman
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | | | - Huaixing Wang
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Julie S Haas
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
5
|
Snipas M, Kraujalis T, Maciunas K, Kraujaliene L, Gudaitis L, Verselis VK. Four-State Model for Simulating Kinetic and Steady-State Voltage-Dependent Gating of Gap Junctions. Biophys J 2020; 119:1640-1655. [PMID: 32950074 DOI: 10.1016/j.bpj.2020.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/03/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022] Open
Abstract
Gap junction (GJ) channels, formed of connexin (Cx) proteins, provide a direct pathway for metabolic and electrical cell-to-cell communication. These specialized channels are not just passive conduits for the passage of ions and metabolites but have been shown to gate robustly in response to transjunctional voltage, Vj, the voltage difference between two coupled cells. Voltage gating of GJs could play a physiological role, particularly in excitable cells, which can generate large transients in membrane potential during the propagation of action potentials. We present a mathematical/computational model of GJ channel voltage gating to assess properties of GJ channels that takes into account contingent gating of two series hemichannels and the distribution of Vj across each hemichannel. From electrophysiological recordings in cell cultures expressing Cx43 or Cx45, the principal isoforms expressed in cardiac tissue, various data sets were fitted simultaneously using global optimization. The results showed that the model is capable of describing both steady-state and kinetic properties of homotypic and heterotypic GJ channels composed of these Cxs. Moreover, mathematical analyses showed that the model can be simplified to a reversible two-state system and solved analytically using a rapid equilibrium assumption. Given that excitable cells are arranged in interconnected networks, the equilibrium assumption allows for a substantial reduction in computation time, which is useful in simulations of large clusters of coupled cells. Overall, this model can serve as a tool for the studying of GJ channel gating and its effects on the spread of excitation in networks of electrically coupled cells.
Collapse
Affiliation(s)
- Mindaugas Snipas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania; Department of Mathematical Modelling, Kaunas University of Technology, Kaunas, Lithuania.
| | - Tadas Kraujalis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania; Department of Applied Informatics, Kaunas University of Technology, Kaunas, Lithuania
| | - Kestutis Maciunas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Lina Kraujaliene
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Lukas Gudaitis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytas K Verselis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York
| |
Collapse
|
6
|
Spray DC, Verselis VK, Bennett MVL. Introduction to Connexins and Pannexins in the Healthy and Diseased Nervous System with Thanks to Felikas Bukauskas. Neurosci Lett 2019; 695:1-3. [PMID: 30926049 DOI: 10.1016/j.neulet.2019.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- David C Spray
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY.
| | - Vytautas K Verselis
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
| | - Michael V L Bennett
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
7
|
Michalikova M, Remme MW, Schmitz D, Schreiber S, Kempter R. Spikelets in pyramidal neurons: generating mechanisms, distinguishing properties, and functional implications. Rev Neurosci 2019; 31:101-119. [DOI: 10.1515/revneuro-2019-0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/13/2019] [Indexed: 11/15/2022]
Abstract
Abstract
Spikelets are small spike-like depolarizations that are found in somatic recordings of many neuron types. Spikelets have been assigned important functions, ranging from neuronal synchronization to the regulation of synaptic plasticity, which are specific to the particular mechanism of spikelet generation. As spikelets reflect spiking activity in neuronal compartments that are electrotonically distinct from the soma, four modes of spikelet generation can be envisaged: (1) dendritic spikes or (2) axonal action potentials occurring in a single cell as well as action potentials transmitted via (3) gap junctions or (4) ephaptic coupling in pairs of neurons. In one of the best studied neuron type, cortical pyramidal neurons, the origins and functions of spikelets are still unresolved; all four potential mechanisms have been proposed, but the experimental evidence remains ambiguous. Here we attempt to reconcile the scattered experimental findings in a coherent theoretical framework. We review in detail the various mechanisms that can give rise to spikelets. For each mechanism, we present the biophysical underpinnings as well as the resulting properties of spikelets and compare these predictions to experimental data from pyramidal neurons. We also discuss the functional implications of each mechanism. On the example of pyramidal neurons, we illustrate that several independent spikelet-generating mechanisms fulfilling vastly different functions might be operating in a single cell.
Collapse
Affiliation(s)
- Martina Michalikova
- Institute for Theoretical Biology, Department of Biology , Humboldt-Universität zu Berlin , D-10115 Berlin , Germany
| | - Michiel W.H. Remme
- Institute for Theoretical Biology, Department of Biology , Humboldt-Universität zu Berlin , D-10115 Berlin , Germany
| | - Dietmar Schmitz
- Neuroscience Research Center, Charite-University Medicine , D-10117 Berlin , Germany
- Bernstein Center for Computational Neuroscience Berlin , D-10115 Berlin , Germany
- Einstein Center for Neurosciences Berlin , D-10117 Berlin , Germany
- Berlin Institute of Health , D-10178 Berlin , Germany
- Cluster of Excellence NeuroCure , D-10117 Berlin , Germany
| | - Susanne Schreiber
- Institute for Theoretical Biology, Department of Biology , Humboldt-Universität zu Berlin , D-10115 Berlin , Germany
- Einstein Center for Neurosciences Berlin , D-10117 Berlin , Germany
- Bernstein Center for Computational Neuroscience Berlin , Philippstr. 13, D-10115 Berlin , Germany
| | - Richard Kempter
- Institute for Theoretical Biology, Department of Biology , Humboldt-Universität zu Berlin , D-10115 Berlin , Germany
- Einstein Center for Neurosciences Berlin , D-10117 Berlin , Germany
- Bernstein Center for Computational Neuroscience Berlin , Philippstr. 13, D-10115 Berlin , Germany
| |
Collapse
|
8
|
Magnesium Is a Key Player in Neuronal Maturation and Neuropathology. Int J Mol Sci 2019; 20:ijms20143439. [PMID: 31336935 PMCID: PMC6678825 DOI: 10.3390/ijms20143439] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
Magnesium (Mg) is the second most abundant cation in mammalian cells, and it is essential for numerous cellular processes including enzymatic reactions, ion channel functions, metabolic cycles, cellular signaling, and DNA/RNA stabilities. Because of the versatile and universal nature of Mg2+, the homeostasis of intracellular Mg2+ is physiologically linked to growth, proliferation, differentiation, energy metabolism, and death of cells. On the cellular and tissue levels, maintaining Mg2+ within optimal levels according to the biological context, such as cell types, developmental stages, extracellular environments, and pathophysiological conditions, is crucial for development, normal functions, and diseases. Hence, Mg2+ is pathologically involved in cancers, diabetes, and neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and demyelination. In the research field regarding the roles and mechanisms of Mg2+ regulation, numerous controversies caused by its versatility and complexity still exist. As Mg2+, at least, plays critical roles in neuronal development, healthy normal functions, and diseases, appropriate Mg2+ supplementation exhibits neurotrophic effects in a majority of cases. Hence, the control of Mg2+ homeostasis can be a candidate for therapeutic targets in neuronal diseases. In this review, recent results regarding the roles of intracellular Mg2+ and its regulatory system in determining the cell phenotype, fate, and diseases in the nervous system are summarized, and an overview of the comprehensive roles of Mg2+ is provided.
Collapse
|
9
|
Mammano F. Inner Ear Connexin Channels: Roles in Development and Maintenance of Cochlear Function. Cold Spring Harb Perspect Med 2019; 9:a033233. [PMID: 30181354 PMCID: PMC6601451 DOI: 10.1101/cshperspect.a033233] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Connexin 26 and connexin 30 are the prevailing isoforms in the epithelial and connective tissue gap junction systems of the developing and mature cochlea. The most frequently encountered variants of the genes that encode these connexins, which are transcriptionally coregulated, determine complete loss of protein function and are the predominant cause of prelingual hereditary deafness. Reducing connexin 26 expression by Cre/loxP recombination in the inner ear of adult mice results in a decreased endocochlear potential, increased hearing thresholds, and loss of >90% of outer hair cells, indicating that this connexin is essential for maintenance of cochlear function. In the developing cochlea, connexins are necessary for intercellular calcium signaling activity. Ribbon synapses and basolateral membrane currents fail to mature in inner hair cells of mice that are born with reduced connexin expression, even though hair cells do not express any connexin. In contrast, pannexin 1, an alternative mediator of intercellular signaling, is dispensable for hearing acquisition and auditory function.
Collapse
Affiliation(s)
- Fabio Mammano
- University of Padova, Department of Physics and Astronomy "G. Galilei," Padova 35129, Italy
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
10
|
Welzel G, Schuster S. A Direct Comparison of Different Measures for the Strength of Electrical Synapses. Front Cell Neurosci 2019; 13:43. [PMID: 30809130 PMCID: PMC6379294 DOI: 10.3389/fncel.2019.00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
During the last decades it became increasingly evident that electrical synapses are capable of activity-dependent plasticity. However, measuring the actual strength of electrical transmission remains difficult. Usually changes in coupling strength can only be inferred indirectly from measures such as the coupling coefficient and the coupling conductance. Because these are affected by both junctional and non-junctional conductance, plastic changes can potentially be due to both components. Furthermore, these techniques also require the blocking of chemical transmission, so that processes that involve crosstalk between chemical and electrical synapses will be suppressed. To directly examine the magnitude of errors that can occur, we use dual whole-cell current- and voltage-clamp recordings from the soma of the pair of easily accessible, electrically coupled Retzius cells in the leech to simultaneously determine coupling coefficients, coupling conductances and directly measured gap junctional currents. We present the first direct and comparative analysis of gap junction conductance using all three methods and analyze how each method would characterize the response of gap junctions to serotonin. The traditional coupling coefficients showed severe deficits in assessing the symmetry and strength of electrical synapses. These were reduced when coupling conductances were determined and were absent in the direct method. Additionally, both coupling coefficient and coupling conductance caused large and systematic errors in assessing the size and time course of the serotonin-induced changes of gap junctional currents. Most importantly, both measurements can easily be misinterpreted as implying long-term gap junctional plasticity, although the direct measurements confirm its absence. We thus show directly that coupling coefficients and coupling conductances can severely confound plastic changes in membrane and junctional conductance. Wherever possible, voltage clamp measurements should be chosen to accurately characterize the timing and strength of plasticity of electrical synapses. However, we also demonstrate that coupling coefficients can still yield a qualitatively correct picture when amended by independent measurements of the course of membrane resistance during the experiments.
Collapse
Affiliation(s)
- Georg Welzel
- Department of Animal Physiology, University of Bayreuth, Bayreuth, Germany
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
11
|
Abstract
As the physiology of synapses began to be explored in the 1950s, it became clear that electrical communication between neurons could not always be explained by chemical transmission. Instead, careful studies pointed to a direct intercellular pathway of current flow and to the anatomical structure that was (eventually) called the gap junction. The mechanism of intercellular current flow was simple compared with chemical transmission, but the consequences of electrical signaling in excitable tissues were not. With the recognition that channels were a means of passive ion movement across membranes, the character and behavior of gap junction channels came under scrutiny. It became evident that these gated channels mediated intercellular transfer of small molecules as well as atomic ions, thereby mediating chemical, as well as electrical, signaling. Members of the responsible protein family in vertebrates-connexins-were cloned and their channels studied by many of the increasingly biophysical techniques that were being applied to other channels. As described here, much of the evolution of the field, from electrical coupling to channel structure-function, has appeared in the pages of the Journal of General Physiology.
Collapse
Affiliation(s)
- Andrew L Harris
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
12
|
Abstract
Cortical oscillations are thought to be involved in many cognitive functions and processes. Several mechanisms have been proposed to regulate oscillations. One prominent but understudied mechanism is gap junction coupling. Gap junctions are ubiquitous in cortex between GABAergic interneurons. Moreover, recent experiments indicate their strength can be modified in an activity-dependent manner, similar to chemical synapses. We hypothesized that activity-dependent gap junction plasticity acts as a mechanism to regulate oscillations in the cortex. We developed a computational model of gap junction plasticity in a recurrent cortical network based on recent experimental findings. We showed that gap junction plasticity can serve as a homeostatic mechanism for oscillations by maintaining a tight balance between two network states: asynchronous irregular activity and synchronized oscillations. This homeostatic mechanism allows for robust communication between neuronal assemblies through two different mechanisms: transient oscillations and frequency modulation. This implies a direct functional role for gap junction plasticity in information transmission in cortex.
Collapse
Affiliation(s)
- Guillaume Pernelle
- Bioengineering Department, Imperial College London, London, United Kingdom
| | - Wilten Nicola
- Bioengineering Department, Imperial College London, London, United Kingdom
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|