1
|
López-González I, Sánchez-Cárdenas C, De la Vega-Beltrán JL, Alvarado-Quevedo B, Ocelotl-Oviedo JP, González-Cota AL, Aldana A, Orta G, Darszon A. ATP increases head volume in capacitated human sperm via a purinergic channel. Biochem Biophys Res Commun 2023; 671:318-326. [PMID: 37327703 DOI: 10.1016/j.bbrc.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
Scanning ion-conductance microscopy allowed us to document an external Ca2+ dependent ATP driven volume increase (ATPVI) in capacitated human sperm heads. We examined the involvement of purinergic receptors (PRs) P2X2R and P2X4R in ATPVI using their co-agonists progesterone and Ivermectin (Iver), and Cu2+, which co-activates P2X2Rs and inhibits P2X4Rs. Iver enhanced ATPVI and Cu2+ and 5BDBD inhibited it, indicating P2X4Rs contributed to this response. Moreover, Cu2+ and 5BDBD inhibited the ATP-induced acrosome reaction (AR) which was enhanced by Iver. ATP increased the concentration of intracellular Ca2+ ([Ca2+]i) in >45% of individual sperm, most of which underwent AR monitored using FM4-64. Our findings suggest that human sperm P2X4R activation by ATP increases [Ca2+]i mainly due to Ca2+ influx which leads to a sperm head volume increase, likely involving acrosomal swelling, and resulting in AR.
Collapse
Affiliation(s)
- I López-González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico.
| | - C Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - J L De la Vega-Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - B Alvarado-Quevedo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - J P Ocelotl-Oviedo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - A L González-Cota
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - A Aldana
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - G Orta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - A Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
2
|
Poshtkohi A, Wade J, McDaid L, Liu J, Dallas M, Bithell A. Mathematical modelling of human P2X-mediated plasma membrane electrophysiology and calcium dynamics in microglia. PLoS Comput Biol 2021; 17:e1009520. [PMID: 34723961 PMCID: PMC8584768 DOI: 10.1371/journal.pcbi.1009520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 11/11/2021] [Accepted: 10/02/2021] [Indexed: 01/14/2023] Open
Abstract
Regulation of cytosolic calcium (Ca2+) dynamics is fundamental to microglial function. Temporal and spatial Ca2+ fluxes are induced from a complicated signal transduction pathway linked to brain ionic homeostasis. In this paper, we develop a novel biophysical model of Ca2+ and sodium (Na+) dynamics in human microglia and evaluate the contribution of purinergic receptors (P2XRs) to both intracellular Ca2+ and Na+ levels in response to agonist/ATP binding. This is the first comprehensive model that integrates P2XRs to predict intricate Ca2+ and Na+ transient responses in microglia. Specifically, a novel compact biophysical model is proposed for the capture of whole-cell patch-clamp currents associated with P2X4 and P2X7 receptors, which is composed of only four state variables. The entire model shows that intricate intracellular ion dynamics arise from the coupled interaction between P2X4 and P2X7 receptors, the Na+/Ca2+ exchanger (NCX), Ca2+ extrusion by the plasma membrane Ca2+ ATPase (PMCA), and Ca2+ and Na+ leak channels. Both P2XRs are modelled as two separate adenosine triphosphate (ATP) gated Ca2+ and Na+ conductance channels, where the stoichiometry is the removal of one Ca2+ for the hydrolysis of one ATP molecule. Two unique sets of model parameters were determined using an evolutionary algorithm to optimise fitting to experimental data for each of the receptors. This allows the proposed model to capture both human P2X7 and P2X4 data (hP2X7 and hP2X4). The model architecture enables a high degree of simplicity, accuracy and predictability of Ca2+ and Na+ dynamics thus providing quantitative insights into different behaviours of intracellular Na+ and Ca2+ which will guide future experimental research. Understanding the interactions between these receptors and other membrane-bound transporters provides a step forward in resolving the qualitative link between purinergic receptors and microglial physiology and their contribution to brain pathology. Mathematical modelling and computer simulation are powerful tools by which we can analyse complex biological systems, particularly, neural phenomena involved in brain dysfunction. In this research, we develop a theoretical foundation for studying P2X-mediated calcium and sodium signalling in human microglial cells. Microglia, which are brain-resident macrophages, restructure their intracellular actin cytoskeleton to enable motility; this restructuring requires a complex molecular cascade involving a set of ionic channels, membrane-coupled receptors and cytosolic components. Recent studies highlight the importance for increasing our understanding of microglia physiology, since their functions play critical roles in both normal physiological and pathological dynamics of the brain. There is a need to develop reliable human cellular models to investigate the biology of microglia aimed at understanding the influence of purinergic signalling in brain dysfunction to provide novel drug discovery targets. In this work, a detailed mathematical model is built for the dynamics of human P2XRs in microglia. Subsequently, experimental whole-cell currents are used to derive P2X-mediated electrophysiology of human microglia (i.e. sodium and calcium dynamics, and membrane potential). Our predictions reveal new quantitative insights into P2XRs on how they regulate ionic concentrations in terms of physiological interactions and transient responses.
Collapse
Affiliation(s)
- Alireza Poshtkohi
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
- * E-mail:
| | - John Wade
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| | - Liam McDaid
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| | - Junxiu Liu
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| | - Mark Dallas
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Angela Bithell
- School of Pharmacy, University of Reading, Reading, United Kingdom
| |
Collapse
|
3
|
Mikolajewicz N, Smith D, Komarova SV, Khadra A. High-affinity P2Y2 and low-affinity P2X7 receptor interaction modulates ATP-mediated calcium signaling in murine osteoblasts. PLoS Comput Biol 2021; 17:e1008872. [PMID: 34153025 PMCID: PMC8248741 DOI: 10.1371/journal.pcbi.1008872] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/01/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
The P2 purinergic receptor family implicated in many physiological processes, including neurotransmission, mechanical adaptation and inflammation, consists of ATP-gated non-specific cation channels P2XRs and G-protein coupled receptors P2YRs. Different cells, including bone forming osteoblasts, express multiple P2 receptors; however, how P2X and P2Y receptors interact in generating cellular responses to various doses of [ATP] remains poorly understood. Using primary bone marrow and compact bone derived osteoblasts and BMP2-expressing C2C12 osteoblastic cells, we demonstrated conserved features in the P2-mediated Ca2+ responses to ATP, including a transition of Ca2+ response signatures from transient at low [ATP] to oscillatory at moderate [ATP], and back to transient at high [ATP], and a non-monotonic changes in the response magnitudes which exhibited two troughs at 10-4 and 10-2 M [ATP]. We identified P2Y2 and P2X7 receptors as predominantly contributing to these responses and constructed a mathematical model of P2Y2R-induced inositol trisphosphate (IP3) mediated Ca2+ release coupled to a Markov model of P2X7R dynamics to study this system. Model predictions were validated using parental and CRISPR/Cas9-generated P2Y2 and P2Y7 knockouts in osteoblastic C2C12-BMP cells. Activation of P2Y2 by progressively increasing [ATP] induced a transition from transient to oscillatory to transient Ca2+ responses due to the biphasic nature of IP3Rs and the interaction of SERCA pumps with IP3Rs. At high [ATP], activation of P2X7R modulated the response magnitudes through an interplay between the biphasic nature of IP3Rs and the desensitization kinetics of P2X7Rs. Moreover, we found that P2Y2 activity may alter the kinetics of P2X7 towards favouring naïve state activation. Finally, we demonstrated the functional consequences of lacking P2Y2 or P2X7 in osteoblast mechanotransduction. This study thus provides important insights into the biophysical mechanisms underlying ATP-dependent Ca2+ response signatures, which are important in mediating bone mechanoadaptation.
Collapse
Affiliation(s)
- Nicholas Mikolajewicz
- Faculty of Dentistry, McGill University, Montreal, Canada
- Shriners Hospitals for Children–Canada, Montreal, Canada
| | - Delaney Smith
- Department of Physiology, McGill University, Montreal, Canada
| | - Svetlana V. Komarova
- Faculty of Dentistry, McGill University, Montreal, Canada
- Shriners Hospitals for Children–Canada, Montreal, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
4
|
Sivcev S, Slavikova B, Ivetic M, Knezu M, Kudova E, Zemkova H. Lithocholic acid inhibits P2X2 and potentiates P2X4 receptor channel gating. J Steroid Biochem Mol Biol 2020; 202:105725. [PMID: 32652201 DOI: 10.1016/j.jsbmb.2020.105725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 02/02/2023]
Abstract
The family of ATP-gated purinergic P2X receptors comprises seven bunits (P2X1-7) that are unevenly distributed in the central and peripheral nervous systems as well as other organs. Endogenous modulators of P2X receptors are phospholipids, steroids and neurosteroids. Here, we analyzed whether bile acids, which are natural products derived from cholesterol, affect P2X receptor activity. We examined the effects of primary and secondary bile acids and newly synthesized derivatives of lithocholic acid on agonist-induced responses in HEK293T cells expressing rat P2X2, P2X4 and P2X7 receptors. Electrophysiology revealed that low micromolar concentrations of lithocholic acid and its structural analog 4-dafachronic acid strongly inhibit ATP-stimulated P2X2 but potentiate P2X4 responses, whereas primary bile acids and other secondary bile acids exhibit no or reduced effects only at higher concentrations. Agonist-stimulated P2X7 responses are significantly potentiated by lithocholic acid at moderate concentrations. Structural modifications of lithocholic acid at positions C-3, C-5 or C-17 abolish both inhibitory and potentiation effects to varying degrees, and the 3α-hydroxy group contributes to the ability of the molecule to switch between potentiation and inhibition. Lithocholic acid allosterically modulates P2X2 and P2X4 receptor sensitivity to ATP, reduces the rate of P2X4 receptor desensitization and antagonizes the effect of ivermectin on P2X4 receptor deactivation. Alanine-scanning mutagenesis of the upper halve of P2X4 transmembrane domain-1 revealed that residues Phe48, Val43 and Tyr42 are important for potentiating effect of lithocholic acid, indicating that modulatory sites for lithocholic acid and ivermectin partly overlap. Lithocholic acid also inhibits ATP-evoked currents in pituitary gonadotrophs expressing native P2X2, and potentiates ATP currents in nonidentified pituitary cells expressing P2X4 receptors. These results indicate that lithocholic acid is a bioactive steroid that may help to further unveil the importance of the P2X2, and P2X4 receptors in many physiological processes.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Slavikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Milorad Ivetic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Knezu
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
5
|
Sivcev S, Slavikova B, Rupert M, Ivetic M, Nekardova M, Kudova E, Zemkova H. Synthetic testosterone derivatives modulate rat P2X2 and P2X4 receptor channel gating. J Neurochem 2019; 150:28-43. [PMID: 31069814 DOI: 10.1111/jnc.14718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022]
Abstract
P2X receptors (P2XRs) are ATP-gated cationic channels that are allosterically modulated by numerous compounds, including steroids and neurosteroids. These compounds may both inhibit and potentiate the activity of P2XRs, but sex steroids such as 17β-estradiol or progesterone are reported to be inactive. Here, we tested a hypothesis that testosterone, another sex hormone, modulates activity of P2XRs. We examined actions of native testosterone and a series of testosterone derivatives on the gating of recombinant P2X2R, P2X4R and P2X7R and native channels expressed in pituitary cells and hypothalamic neurons. The 17β-ester derivatives of testosterone rapidly and positively modulate the 1 µM ATP-evoked currents in P2X2R- and P2X4R-expressing cells, but not agonist-evoked currents in P2X7R-expressing cells. In general, most of the tested testosterone derivatives are more potent modulators than endogenous testosterone. The comparison of chemical structures and whole-cell recordings revealed that their interactions with P2XRs depend on the lipophilicity and length of the alkyl chain at position C-17. Pre-treatment with testosterone butyrate or valerate increases the sensitivity of P2X2R and P2X4R to ATP by several fold, reduces the rate of P2X4R desensitization, accelerates resensitization, and enhances ethidium uptake by P2X4R. Native channels are also potentiated by testosterone derivatives, while endogenously expressed GABA receptors type A are inhibited. The effect of ivermectin, a P2X4R-specific allosteric modulator, on deactivation is antagonized by testosterone derivatives in a concentration-dependent manner. Together, our results provide evidence for potentiation of particular subtypes of P2XRs by testosterone derivatives and suggest a potential role of ivermectin binding site for steroid-induced modulation. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Slavikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Marian Rupert
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Milorad Ivetic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Nekardova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Chun BJ, Stewart BD, Vaughan DD, Bachstetter AD, Kekenes-Huskey PM. Simulation of P2X-mediated calcium signalling in microglia. J Physiol 2018; 597:799-818. [PMID: 30462840 DOI: 10.1113/jp277377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS A computational model of P2X channel activation in microglia was developed that includes downfield Ca2+ -dependent signalling pathways. This model provides quantitative insights into how diverse signalling pathways in microglia converge to control microglial function. ABSTRACT Microglia function is orchestrated through highly coupled signalling pathways that depend on calcium (Ca2+ ). In response to extracellular ATP, transient increases in intracellular Ca2+ driven through the activation of purinergic receptors, P2X and P2Y, are sufficient to promote cytokine synthesis. Although the steps comprising the pathways bridging purinergic receptor activation with transcriptional responses have been probed in great detail, a quantitative model for how these steps collectively control cytokine production has not been established. Here we developed a minimal computational model that quantitatively links extracellular stimulation of two prominent ionotropic purinergic receptors, P2X4 and P2X7, with the graded production of a gene product, namely the tumour necrosis factor α (TNFα) cytokine. In addition to Ca2+ handling mechanisms common to eukaryotic cells, our model includes microglia-specific processes including ATP-dependent P2X4 and P2X7 activation, activation of nuclear factor of activated T-cells (NFAT) transcription factors, and TNFα production. Parameters for this model were optimized to reproduce published data for these processes, where available. With this model, we determined the propensity for TNFα production in microglia, subject to a wide range of ATP exposure amplitudes, frequencies and durations that the cells could encounter in vivo. Furthermore, we have investigated the extent to which modulation of the signal transduction pathways influence TNFα production. Our results suggest that pulsatile stimulation of P2X4 via micromolar ATP may be sufficient to promote TNFα production, whereas high-amplitude ATP exposure is necessary for production via P2X7. Furthermore, under conditions that increase P2X4 expression, for instance, following activation by pathogen-associated molecular factors, P2X4-associated TNFα production is greatly enhanced. Given that Ca2+ homeostasis in microglia is profoundly important to its function, this computational model provides a quantitative framework to explore hypotheses pertaining to microglial physiology.
Collapse
Affiliation(s)
- Byeong Jae Chun
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | | | - Darin D Vaughan
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | | | | |
Collapse
|
7
|
Huo JF, Chen XB. P2X4R silence suppresses glioma cell growth through BDNF/TrkB/ATF4 signaling pathway. J Cell Biochem 2018; 120:6322-6329. [PMID: 30362154 DOI: 10.1002/jcb.27919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
Abstract
Purinergic receptor P2X 4 (P2X4R), a member of purinergic channels family and a subtype of ionotropic adenosine triphosphate receptors, plays a critical role in tumorigenesis. Evidence suggested that P2X4R is expressed in rat C6 glioma model, however, its role and the underlying mechanism of action are still unclear in human glioblastoma multiforme (GBM). In the current study, our aim is to examine the function and the molecular basis of P2X4R in GBM. We first observed that GBM cells, U251, T98, U87, U373, and A172 were all high expressed P2X4R, when compared with the normal human astrocytes (NHA) cells. To gain the function of P2X4R, P2X4R silence cells were constructed by transfection with P2X4R small interfering RNA (siRNA). We found that P2X4R deletion impeded T98 and U87 cell viability and proliferation, and further studies indicated that cell apoptosis and caspase-3 activity was increased in T98 and U87 cell transfected with P2X4R siRNA. Subsequently, we confirmed that P2X4R silence suppressed brain-derived neurotrophic factor (BDNF), Trk receptor tyrosine kinases (TrkB), and activating transcription factor 4 (ATF4) expression in T98 and U87 cells. And P2X4R siRNA-induced ATF4-expression inhibition dependent on BDNF/TrkB signaling pathway. The impact of P2X4R silence on T98 and U87 cell growth and apoptosis was reversed by ATF4 overexpression. In summary, this study provides the first evidence that P2X4R plays important roles in GBM cell growth and apoptosis.
Collapse
Affiliation(s)
- Jun-Feng Huo
- Second Ward, Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Xiao-Bing Chen
- Second Ward, Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
8
|
Adams C, Stroberg W, DeFazio RA, Schnell S, Moenter SM. Gonadotropin-Releasing Hormone (GnRH) Neuron Excitability Is Regulated by Estradiol Feedback and Kisspeptin. J Neurosci 2018; 38:1249-1263. [PMID: 29263236 PMCID: PMC5792479 DOI: 10.1523/jneurosci.2988-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/21/2017] [Accepted: 12/09/2017] [Indexed: 01/03/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons produce the central output controlling fertility and are regulated by steroid feedback. A switch from estradiol negative to positive feedback initiates the GnRH surge, ultimately triggering ovulation. This occurs on a daily basis in ovariectomized, estradiol-treated (OVX+E) mice; GnRH neurons are suppressed in the morning and activated in the afternoon. To test the hypotheses that estradiol and time of day signals alter GnRH neuron responsiveness to stimuli, GFP-identified GnRH neurons in brain slices from OVX+E or OVX female mice were recorded during the morning or afternoon. No differences were observed in baseline membrane potential. Current-clamp revealed GnRH neurons fired more action potentials in response to current injection during positive feedback relative to all other groups, which were not different from each other despite reports of differing ionic conductances. Kisspeptin increased GnRH neuron response in cells from OVX and OVX+E mice in the morning but not afternoon. Paradoxically, excitability in kisspeptin knock-out mice was similar to the maximum observed in control mice but was unchanged by time of day or estradiol. A mathematical model applying a Markov Chain Monte Carlo method to estimate probability distributions for estradiol- and time of day-dependent parameters was used to predict intrinsic properties underlying excitability changes. A single identifiable distribution of solutions accounted for similar GnRH neuron excitability in all groups other than positive feedback despite different underlying conductance properties; this was attributable to interdependence of voltage-gated potassium channel properties. In contrast, redundant solutions may explain positive feedback, perhaps indicative of the importance of this state for species survival.SIGNIFICANCE STATEMENT Infertility affects 15%-20% of couples; failure to ovulate is a common cause. Understanding how the brain controls ovulation is critical for new developments in both infertility treatment and contraception. Gonadotropin-releasing hormone (GnRH) neurons are the final common pathway for central neural control of ovulation. We studied how estradiol feedback regulates GnRH excitability, a key determinant of neural firing rate using laboratory and computational approaches. GnRH excitability is upregulated during positive feedback, perhaps driving increased neural firing rate at this time. Kisspeptin increased GnRH excitability and was essential for estradiol regulation of excitability. Modeling predicts that multiple combinations of changes to GnRH intrinsic conductances can produce the firing response in positive feedback, suggesting the brain has many ways to induce ovulation.
Collapse
Affiliation(s)
| | | | | | - Santiago Schnell
- Departments of Molecular and Integrative Physiology
- Computational Medicine and Bioinformatics
| | - Suzanne M Moenter
- Departments of Molecular and Integrative Physiology,
- Obstetrics and Gynecology, and
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
9
|
Latapiat V, Rodríguez FE, Godoy F, Montenegro FA, Barrera NP, Huidobro-Toro JP. P2X4 Receptor in Silico and Electrophysiological Approaches Reveal Insights of Ivermectin and Zinc Allosteric Modulation. Front Pharmacol 2017; 8:918. [PMID: 29326590 PMCID: PMC5737101 DOI: 10.3389/fphar.2017.00918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Protein allosteric modulation is a pillar of metabolic regulatory mechanisms; this concept has been extended to include ion channel regulation. P2XRs are ligand-gated channels activated by extracellular ATP, sensitive to trace metals and other chemicals. By combining in silico calculations with electrophysiological recordings, we investigated the molecular basis of P2X4R modulation by Zn(II) and ivermectin, an antiparasite drug currently used in veterinary medicine. To this aim, docking studies, molecular dynamics simulations and non-bonded energy calculations for the P2X4R in the apo and holo states or in the presence of ivermectin and/or Zn(II) were accomplished. Based on the crystallized Danio rerio P2X4R, the rat P2X4R, P2X2R, and P2X7R structures were modeled, to determine ivermectin binding localization. Calculations revealed that its allosteric site is restricted to transmembrane domains of the P2X4R; the role of Y42 and W46 plus S341 and non-polar residues were revealed as essential, and are not present in the homologous P2X2R or P2X7R transmembrane domains. This finding was confirmed by preferential binding conformations and electrophysiological data, revealing P2X4R modulator specificity. Zn(II) acts in the P2X4R extracellular domain neighboring the SS3 bridge. Molecular dynamics in the different P2X4R states revealed allosterism-induced stability. Pore and lateral fenestration measurements of the P2X4R showed conformational changes in the presence of both modulators compatible with a larger opening of the extracellular vestibule. Electrophysiological studies demonstrated additive effects in the ATP-gated currents by joint applications of ivermectin plus Zn(II). The C132A P2X4R mutant was insensitive to Zn(II); but IVM caused a 4.9 ± 0.7-fold increase in the ATP-evoked currents. Likewise, the simultaneous application of both modulators elicited a 7.1 ± 1.7-fold increase in the ATP-gated current. Moreover, the C126A P2X4R mutant evoked similar ATP-gated currents comparable to those of wild-type P2X4R. Finally, a P2X4/2R chimera did not respond to IVM but Zn(II) elicited a 2.7 ± 0.6-fold increase in the ATP-gated current. The application of IVM plus Zn(II) evoked a 2.7 ± 0.9-fold increase in the ATP-gated currents. In summary, allosteric modulators caused additive ATP-gated currents; consistent with lateral fenestration enlargement. Energy calculations demonstrated a favorable transition of the holo receptor state following both allosteric modulators binding, as expected for allosteric interactions.
Collapse
Affiliation(s)
- Verónica Latapiat
- Laboratorio de Farmacología de Nucleótidos, Departamento de Biología, Facultad de Química y Biología, Estación Central, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe E Rodríguez
- Laboratorio de Farmacología de Nucleótidos, Departamento de Biología, Facultad de Química y Biología, Estación Central, Universidad de Santiago de Chile, Santiago, Chile
| | - Francisca Godoy
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe A Montenegro
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nelson P Barrera
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan P Huidobro-Toro
- Laboratorio de Farmacología de Nucleótidos, Departamento de Biología, Facultad de Química y Biología, Estación Central, Universidad de Santiago de Chile, Santiago, Chile.,Centro Desarrollo de Nanociencia y Nanotecnología, CEDENNA, Estación Central, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|