1
|
Schaufelberger SA, Schaettin M, Azzarito G, Rosselli M, Leeners B, Dubey RK. 2-Methoxyestradiol, an Endogenous 17β-Estradiol Metabolite, Induces Antimitogenic and Apoptotic Actions in Oligodendroglial Precursor Cells and Triggers Endoreduplication via the p53 Pathway. Cells 2024; 13:1086. [PMID: 38994940 PMCID: PMC11240791 DOI: 10.3390/cells13131086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
The abnormal growth of oligodendrocyte precursor cells (OPCs) significantly contributes to the progression of glioblastoma tumors. Hence, molecules that block OPC growth may be of therapeutic importance in treating gliomas. 2-Methoxyestradiol (2ME), an endogenous tubulin-interacting metabolite of estradiol, is effective against multiple proliferative disorders. Based on its anti-carcinogenic and anti-angiogenic actions, it is undergoing phase II clinical trials. We hypothesize that 2ME may prevent glioma growth by targeting OPC growth. Here, we tested this hypothesis by assessing the impact of 2ME on the growth of an OPC line, "Oli-neu", and dissected the underlying mechanism(s). Treatment with 2ME inhibited OPC growth in a concentration-dependent manner, accompanied by significant upregulation in the expression of p21 and p27, which are negative cell-cycle regulators. Moreover, treatment with 2ME altered OPC morphology from multi-arm processes to rounded cells. At concentrations of 1uM and greater, 2ME induced apoptosis, with increased expressions of caspase 3, PARP, and caspase-7 fragments, externalized phosphatidylserine staining/APOPercentage, and increased mitochondrial activity. Flow cytometry and microscopic analysis demonstrated that 2ME triggers endoreduplication in a concentration-dependent fashion. Importantly, 2ME induced cyclin E, JNK1/2, and p53 expression, as well as OPC fusion, which are key mechanisms driving endoreduplication and whole-genome duplication. Importantly, the inhibition of p53 with pifithrin-α rescued 2ME-induced endoreduplication. The pro-apoptotic and endoreduplication actions of 2ME were accompanied by the upregulation of survivin, cyclin A, Cyclin B, Cyclin D2, and ppRB. Similar growth inhibitory, apoptotic, and endoreduplication effects of 2ME were observed in CG4 cells. Taken together, our findings provide evidence that 2ME not only inhibits OPC growth and triggers apoptosis, but also activates OPCs into survival (fight or flight) mode, leading to endoreduplication. This inherent survival characteristic of OPCs may, in part, be responsible for drug resistance in gliomas, as observed for many tubulin-interacting drugs. Importantly, the fate of OPCs after 2ME treatment may depend on the cell-cycle status of individual cells. Combining tubulin-interfering molecules with drugs such as pifithrin-α that inhibit endoreduplication may help inhibit OPC/glioma growth and limit drug resistance.
Collapse
Affiliation(s)
- Sara A Schaufelberger
- Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Martina Schaettin
- Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Giovanna Azzarito
- Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Marinella Rosselli
- Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Brigitte Leeners
- Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Raghvendra K Dubey
- Department of Obstetrics and Gynaecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
2
|
Park JH, Lee HK. Current Understanding of Hypoxia in Glioblastoma Multiforme and Its Response to Immunotherapy. Cancers (Basel) 2022; 14:1176. [PMID: 35267480 PMCID: PMC8909860 DOI: 10.3390/cancers14051176] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is a hallmark of glioblastoma multiforme (GBM), the most aggressive cancer of the central nervous system, and is associated with multiple aspects of tumor pathogenesis. For example, hypoxia induces resistance to conventional cancer therapies and inhibits antitumor immune responses. Thus, targeting hypoxia is an attractive strategy for GBM therapy. However, traditional studies on hypoxia have largely excluded the immune system. Recently, the critical role of the immune system in the defense against multiple tumors has become apparent, leading to the development of effective immunotherapies targeting numerous cancer types. Critically, however, GBM is classified as a "cold tumor" due to poor immune responses. Thus, to improve GBM responsiveness against immunotherapies, an improved understanding of both immune function in GBM and the role of hypoxia in mediating immune responses within the GBM microenvironment is needed. In this review, we discuss the role of hypoxia in GBM from a clinical, pathological, and immunological perspective.
Collapse
Affiliation(s)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| |
Collapse
|
3
|
Adenis L, Plaszczynski S, Grammaticos B, Pallud J, Badoual M. The Effect of Radiotherapy on Diffuse Low-Grade Gliomas Evolution: Confronting Theory with Clinical Data. J Pers Med 2021; 11:jpm11080818. [PMID: 34442462 PMCID: PMC8401413 DOI: 10.3390/jpm11080818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
Diffuse low-grade gliomas are slowly growing tumors that always recur after treatment. In this paper, we revisit the modeling of the evolution of the tumor radius before and after the radiotherapy process and propose a novel model that is simple yet biologically motivated and that remedies some shortcomings of previously proposed ones. We confront this with clinical data consisting of time series of tumor radii from 43 patient records by using a stochastic optimization technique and obtain very good fits in all cases. Since our model describes the evolution of a tumor from the very first glioma cell, it gives access to the possible age of the tumor. Using the technique of profile likelihood to extract all of the information from the data, we build confidence intervals for the tumor birth age and confirm the fact that low-grade gliomas seem to appear in the late teenage years. Moreover, an approximate analytical expression of the temporal evolution of the tumor radius allows us to explain the correlations observed in the data.
Collapse
Affiliation(s)
- Léo Adenis
- CNRS/IN2P3, IJCLab, Université Paris-Saclay, 91405 Orsay, France; (L.A.); (B.G.); (M.B.)
- IJCLab, Université de Paris, 91405 Orsay, France
| | - Stéphane Plaszczynski
- CNRS/IN2P3, IJCLab, Université Paris-Saclay, 91405 Orsay, France; (L.A.); (B.G.); (M.B.)
- IJCLab, Université de Paris, 91405 Orsay, France
- Correspondence:
| | - Basile Grammaticos
- CNRS/IN2P3, IJCLab, Université Paris-Saclay, 91405 Orsay, France; (L.A.); (B.G.); (M.B.)
- IJCLab, Université de Paris, 91405 Orsay, France
| | - Johan Pallud
- Department of Neurosurgery, GHU Paris, Sainte-Anne Hospital, 75014 Paris, France;
- Université de Paris, Sorbonne Paris Cité, 75014 Paris, France
- Inserm, U1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, 75014 Paris, France
| | - Mathilde Badoual
- CNRS/IN2P3, IJCLab, Université Paris-Saclay, 91405 Orsay, France; (L.A.); (B.G.); (M.B.)
- IJCLab, Université de Paris, 91405 Orsay, France
| |
Collapse
|
4
|
Liu Y, Wang Y, Yuan W, Dong F, Zhen F, Liu J, Yang L, Qu X, Yao R. Reelin promotes oligodendrocyte precursors migration via the Wnt/β-catenin signaling pathway. Neurol Res 2021; 43:543-552. [PMID: 33616025 DOI: 10.1080/01616412.2021.1888604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
Objectives: The extracellular matrix glycoprotein Reelin plays an important role in the development of the central nervous system and is involved in neurogenesis, neuronal polarization and migration. Although it has been reported that Reelin and its receptor are expressed in oligodendrocyte precursors (OPCs), the main functions and possible mechanism of Reelin in OPCs remain unclear.Methods: In this study, immunofluorescence staining was used to detect the expressions of A2B5, PDGFRα, Reelin, VLDLR and Dab1 in OPCs. The expression of p-Dab1 in OPCs which was treated with Reelin at different concentrations was assayed by western blot. Effects of Reelin on the proliferation of OPCs was measured by EdU and CCK-8. Annexin V-FITC/PI assayed the effect of Reelin on the apoptosis of OPCs. Effects of Reelin on the migration ability of OPCs were detected by the scratch test and transwell experiments. Immunoblotting was used to measure the activation of Wnt/β-catenin signaling with Reelin, while transwell experiments were performed to verify the migration of OPCs under the activation of Wnt/β-catenin signaling.Results: Results showed that the receptor of Reelin, very-low-density lipoprotein receptor (VLDLR), and its adaptor protein, Dab1, are highly expressed in A2B5/PDGFRα double-positive OPCs. Recombinant Reelin protein promoted OPCs migration in vitro but had no obvious effects on proliferation or apoptosis. Reelin also promoted the phosphorylation of Dab1 and increased the expression of β-catenin in OPCs. WIKI4, an inhibitor of Wnt/β-catenin signaling, suppressed the migration of OPCs induced by Reelin.Conclusion: The present study indicated that Reelin promotes OPCs migration via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yaping Liu
- Laboratory of National Experimental Teaching and Demonstration Center of Basic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| | - Yuanyuan Wang
- Pediatrics, Nanjing Tongren Hospital, Nanjing, Jiangsu, PRC
| | - Wen Yuan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| | - Fuxing Dong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| | - Fei Zhen
- Department of Pathology, Hongze District People's Hospital, Huai 'an, Jiangsu, PRC
| | - Jing Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| | - Lihua Yang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| | - Xuebin Qu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, PRC
| |
Collapse
|
5
|
Adenis L, Gontran E, Deroulers C, Grammaticos B, Juchaux M, Seksek O, Badoual M. Experimental and modeling study of the formation of cell aggregates with differential substrate adhesion. PLoS One 2020; 15:e0222371. [PMID: 32023245 PMCID: PMC7001941 DOI: 10.1371/journal.pone.0222371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
The study of cell aggregation in vitro has a tremendous importance these days. In cancer biology, aggregates and spheroids serve as model systems and are considered as pseudo-tumors that are more realistic than 2D cell cultures. Recently, in the context of brain tumors (gliomas), we developed a new poly(ethylene glycol) (PEG)-based hydrogel, with adhesive properties that can be controlled by the addition of poly(L-lysine) (PLL), and a stiffness close to the brain’s. This substrate allows the motion of individual cells and the formation of cell aggregates (within one day), and we showed that on a non-adhesive substrate (PEG without PLL is inert for cells), the aggregates are bigger and less numerous than on an adhesive substrate (with PLL). In this article, we present new experimental results on the follow-up of the formation of aggregates on our hydrogels, from the early stages (individual cells) to the late stages (aggregate compaction), in order to compare, for two cell lines (F98 and U87), the aggregation process on the adhesive and non-adhesive substrates. We first show that a spaceless model of perikinetic aggregation can reproduce the experimental evolution of the number of aggregates, but not of the mean area of the aggregates. We thus develop a minimal off-lattice agent-based model, with a few simple rules reproducing the main processes that are at stack during aggregation. Our spatial model can reproduce very well the experimental temporal evolution of both the number of aggregates and their mean area, on adhesive and non-adhesive soft gels and for the two different cell lines. From the fit of the experimental data, we were able to infer the quantitative values of the speed of motion of each cell line, its rate of proliferation in aggregates and its ability to organize in 3D. We also found qualitative differences between the two cell lines regarding the ability of aggregates to compact. These parameters could be inferred for any cell line, and correlated with clinical properties such as aggressiveness and invasiveness.
Collapse
Affiliation(s)
- Léo Adenis
- CNRS UMR 8165, Laboratoire IMNC, Univ Paris-Sud, Univ Paris Diderot, 91405 Orsay, France
| | - Emilie Gontran
- ICPH Interactions Cellulaires et Physiopathologie Hépatique, UMR S 1174 INSERM, Univ Paris-Sud, 91405 Orsay, France
| | - Christophe Deroulers
- Univ Paris Diderot, Laboratoire IMNC, UMR 8165 CNRS, Univ Paris-Sud, 91405 Orsay, France
| | - Basile Grammaticos
- CNRS UMR 8165, Laboratoire IMNC, Univ Paris-Sud, Univ Paris Diderot, 91405 Orsay, France
| | - Marjorie Juchaux
- CNRS UMR 8165, Laboratoire IMNC, Univ Paris-Sud, Univ Paris Diderot, 91405 Orsay, France
| | - Olivier Seksek
- CNRS UMR 8165, Laboratoire IMNC, Univ Paris-Sud, Univ Paris Diderot, 91405 Orsay, France
| | - Mathilde Badoual
- Univ Paris Diderot, Laboratoire IMNC, UMR 8165 CNRS, Univ Paris-Sud, 91405 Orsay, France
- * E-mail:
| |
Collapse
|
6
|
Pérez-García VM, Ayala-Hernández LE, Belmonte-Beitia J, Schucht P, Murek M, Raabe A, Sepúlveda J. Computational design of improved standardized chemotherapy protocols for grade II oligodendrogliomas. PLoS Comput Biol 2019; 15:e1006778. [PMID: 31306418 PMCID: PMC6629055 DOI: 10.1371/journal.pcbi.1006778] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/24/2019] [Indexed: 11/18/2022] Open
Abstract
Here we put forward a mathematical model describing the response of low-grade (WHO grade II) oligodendrogliomas (LGO) to temozolomide (TMZ). The model describes the longitudinal volumetric dynamics of tumor response to TMZ of a cohort of 11 LGO patients treated with TMZ. After finding patient-specific parameters, different therapeutic strategies were tried computationally on the 'in-silico twins' of those patients. Chemotherapy schedules with larger-than-standard rest periods between consecutive cycles had either the same or better long-term efficacy than the standard 28-day cycles. The results were confirmed in a large trial of 2000 virtual patients. These long-cycle schemes would also have reduced toxicity and defer the appearance of resistances. On the basis of those results, a combination scheme consisting of five induction TMZ cycles given monthly plus 12 maintenance cycles given every three months was found to provide substantial survival benefits for the in-silico twins of the 11 LGO patients (median 5.69 years, range: 0.67 to 68.45 years) and in a large virtual trial including 2000 patients. We used 220 sets of experiments in-silico to show that a clinical trial incorporating 100 patients per arm (standard intensive treatment versus 5 + 12 scheme) could demonstrate the superiority of the novel scheme after a follow-up period of 10 years. Thus, the proposed treatment plan could be the basis for a standardized TMZ treatment for LGO patients with survival benefits.
Collapse
Affiliation(s)
- Víctor M. Pérez-García
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), Universidad de Castilla-La Mancha, Avda. Camilo José Cela, 3, 13071 Ciudad Real, Spain
| | - Luis E. Ayala-Hernández
- Departamento de Ciencias Exactas y Tecnología Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, Mexico
| | - Juan Belmonte-Beitia
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), Universidad de Castilla-La Mancha, Avda. Camilo José Cela, 3, 13071 Ciudad Real, Spain
| | - Philippe Schucht
- Universitätsklinik für Neurochirurgie, Bern University Hospital, CH-3010 Bern, Switzerland
| | - Michael Murek
- Universitätsklinik für Neurochirurgie, Bern University Hospital, CH-3010 Bern, Switzerland
| | - Andreas Raabe
- Universitätsklinik für Neurochirurgie, Bern University Hospital, CH-3010 Bern, Switzerland
| | - Juan Sepúlveda
- Oncology Unit, Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| |
Collapse
|
7
|
Stiehl T, Marciniak-Czochra A. How to Characterize Stem Cells? Contributions from Mathematical Modeling. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-00155-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Lehotzky D, Zupanc GKH. Cellular Automata Modeling of Stem-Cell-Driven Development of Tissue in the Nervous System. Dev Neurobiol 2019; 79:497-517. [PMID: 31102334 DOI: 10.1002/dneu.22686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022]
Abstract
Mathematical and computational modeling enables biologists to integrate data from observations and experiments into a theoretical framework. In this review, we describe how developmental processes associated with stem-cell-driven growth of tissue in both the embryonic and adult nervous system can be modeled using cellular automata (CA). A cellular automaton is defined by its discrete nature in time, space, and state. The discrete space is represented by a uniform grid or lattice containing agents that interact with other agents within their local neighborhood. This possibility of local interactions of agents makes the cellular automata approach particularly well suited for studying through modeling how complex patterns at the tissue level emerge from fundamental developmental processes (such as proliferation, migration, differentiation, and death) at the single-cell level. As part of this review, we provide a primer for how to define biologically inspired rules governing these processes so that they can be implemented into a CA model. We then demonstrate the power of the CA approach by presenting simulations (in the form of figures and movies) based on building models of three developmental systems: the formation of the enteric nervous system through invasion by neural crest cells; the growth of normal and tumorous neurospheres induced by proliferation of adult neural stem/progenitor cells; and the neural fate specification through lateral inhibition of embryonic stem cells in the neurogenic region of Drosophila.
Collapse
Affiliation(s)
- Dávid Lehotzky
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, Massachusetts
| | - Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, Massachusetts
| |
Collapse
|
9
|
Abstract
Neuron-glia antigen 2-expressing glial cells (NG2 glia) serve as oligodendrocyte progenitors during development and adulthood. However, recent studies have shown that these cells represent not only a transitional stage along the oligodendroglial lineage, but also constitute a specific cell type endowed with typical properties and functions. Namely, NG2 glia (or subsets of NG2 glia) establish physical and functional interactions with neurons and other central nervous system (CNS) cell types, that allow them to constantly monitor the surrounding neuropil. In addition to operating as sensors, NG2 glia have features that are expected for active modulators of neuronal activity, including the expression and release of a battery of neuromodulatory and neuroprotective factors. Consistently, cell ablation strategies targeting NG2 glia demonstrate that, beyond their role in myelination, these cells contribute to CNS homeostasis and development. In this review, we summarize and discuss the advancements achieved over recent years toward the understanding of such functions, and propose novel approaches for further investigations aimed at elucidating the multifaceted roles of NG2 glia.
Collapse
|