1
|
Toker D, Thum JA, Guang J, Miyamoto H, Yamakawa K, Vespa PM, Schnakers C, Bari AA, Hudson A, Pouratian N, Monti MM. An AI-Driven Model of Consciousness, Its Disorders, and Their Treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618720. [PMID: 39463979 PMCID: PMC11507942 DOI: 10.1101/2024.10.16.618720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Understanding the neural signatures of consciousness and the mechanisms underlying its disorders, such as coma and unresponsive wakefulness syndrome, remains a critical challenge in neuroscience. In this study, we present a novel computational approach for the in silico discovery of neural correlates of consciousness, the mechanisms driving its disorders, and potential treatment strategies. Inspired by generative adversarial networks, which have driven recent advancements in generative artificial intelligence (AI), we trained deep neural networks to detect consciousness across multiple brain areas and species, including humans. These networks were then integrated with a genetic algorithm to optimize a brain-wide mean-field model of neural electrodynamics. The result is a realistic simulation of conscious brain states and disorders of consciousness (DOC), which not only recapitulates known mechanisms of unconsciousness but also predicts novel causes expected to lead to these conditions. Beyond simulating DOC, our model provides a platform for exploring therapeutic interventions, specifically deep brain stimulation (DBS), which has shown promise in improving levels of awareness in DOC in over five decades of study. We systematically applied simulated DBS to various brain regions at a wide range of frequencies to identify an optimal paradigm for reigniting consciousness in this cohort. Our findings suggest that in addition to previously studied thalamic and pallidal stimulation, high-frequency stimulation of the subthalamic nucleus, a relatively underexplored target in DOC, may hold significant promise for restoring consciousness in this set of disorders.
Collapse
|
2
|
Müller EJ, Munn BR, Redinbaugh MJ, Lizier J, Breakspear M, Saalmann YB, Shine JM. The non-specific matrix thalamus facilitates the cortical information processing modes relevant for conscious awareness. Cell Rep 2023; 42:112844. [PMID: 37498741 DOI: 10.1016/j.celrep.2023.112844] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/25/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
The neurobiological mechanisms of arousal and anesthesia remain poorly understood. Recent evidence highlights the key role of interactions between the cerebral cortex and the diffusely projecting matrix thalamic nuclei. Here, we interrogate these processes in a whole-brain corticothalamic neural mass model endowed with targeted and diffusely projecting thalamocortical nuclei inferred from empirical data. This model captures key features seen in propofol anesthesia, including diminished network integration, lowered state diversity, impaired susceptibility to perturbation, and decreased corticocortical coherence. Collectively, these signatures reflect a suppression of information transfer across the cerebral cortex. We recover these signatures of conscious arousal by selectively stimulating the matrix thalamus, recapitulating empirical results in macaque, as well as wake-like information processing states that reflect the thalamic modulation of large-scale cortical attractor dynamics. Our results highlight the role of matrix thalamocortical projections in shaping many features of complex cortical dynamics to facilitate the unique communication states supporting conscious awareness.
Collapse
Affiliation(s)
- Eli J Müller
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; School of Computer Science, The University of Sydney, Sydney, NSW, Australia.
| | - Brandon R Munn
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | | | - Joseph Lizier
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | | | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin National Primate Research Centre, Madison, WI, USA
| | - James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Georgiades MJ, Shine JM, Gilat M, McMaster J, Owler B, Mahant N, Lewis SJ. Subthalamic Nucleus Activity during Cognitive Load and Gait Dysfunction in Parkinson's Disease. Mov Disord 2023; 38:1549-1554. [PMID: 37226972 PMCID: PMC10946988 DOI: 10.1002/mds.29455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Gait freezing is a common, disabling symptom of Parkinson's disease characterized by sudden motor arrest during walking. Adaptive deep brain stimulation devices that detect freezing and deliver real-time, symptom-specific stimulation are a potential treatment strategy. Real-time alterations in subthalamic nucleus firing patterns have been demonstrated with lower limb freezing, however, whether similar abnormal signatures occur with freezing provoked by cognitive load, is unknown. METHODS We obtained subthalamic nucleus microelectrode recordings from eight Parkinson's disease patients performing a validated virtual reality gait task, requiring responses to on-screen cognitive cues while maintaining motor output. RESULTS Signal analysis during 15 trials containing freezing or significant motor output slowing precipitated by dual-tasking demonstrated reduced θ frequency (3-8 Hz) firing compared to 18 unaffected trials. CONCLUSIONS These preliminary results reveal a potential neurobiological basis for the interplay between cognitive factors and gait disturbances including freezing in Parkinson's disease, informing development of adaptive deep brain stimulation protocols. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Matthew J. Georgiades
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
- Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - James M. Shine
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
- Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| | - Moran Gilat
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
- KU Leuven, Department of Rehabilitation SciencesNeurorehabilitation Research Group (eNRGy)Belgium
| | | | - Brian Owler
- Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
- Westmead Private HospitalSydneyNew South WalesAustralia
| | - Neil Mahant
- Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
- Westmead Private HospitalSydneyNew South WalesAustralia
| | - Simon J.G. Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
- Sydney Medical SchoolThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
4
|
Saalmann YB, Mofakham S, Mikell CB, Djuric PM. Microscale multicircuit brain stimulation: Achieving real-time brain state control for novel applications. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100071. [PMID: 36619175 PMCID: PMC9816916 DOI: 10.1016/j.crneur.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
Neurological and psychiatric disorders typically result from dysfunction across multiple neural circuits. Most of these disorders lack a satisfactory neuromodulation treatment. However, deep brain stimulation (DBS) has been successful in a limited number of disorders; DBS typically targets one or two brain areas with single contacts on relatively large electrodes, allowing for only coarse modulation of circuit function. Because of the dysfunction in distributed neural circuits - each requiring fine, tailored modulation - that characterizes most neuropsychiatric disorders, this approach holds limited promise. To develop the next generation of neuromodulation therapies, we will have to achieve fine-grained, closed-loop control over multiple neural circuits. Recent work has demonstrated spatial and frequency selectivity using microstimulation with many small, closely-spaced contacts, mimicking endogenous neural dynamics. Using custom electrode design and stimulation parameters, it should be possible to achieve bidirectional control over behavioral outcomes, such as increasing or decreasing arousal during central thalamic stimulation. Here, we discuss one possible approach, which we term microscale multicircuit brain stimulation (MMBS). We discuss how machine learning leverages behavioral and neural data to find optimal stimulation parameters across multiple contacts, to drive the brain towards desired states associated with behavioral goals. We expound a mathematical framework for MMBS, where behavioral and neural responses adjust the model in real-time, allowing us to adjust stimulation in real-time. These technologies will be critical to the development of the next generation of neurostimulation therapies, which will allow us to treat problems like disorders of consciousness and cognition.
Collapse
Affiliation(s)
- Yuri B. Saalmann
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Sima Mofakham
- Department of Neurological Surgery, Stony Brook University Hospital, Stony Brook, NY, USA
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Charles B. Mikell
- Department of Neurological Surgery, Stony Brook University Hospital, Stony Brook, NY, USA
| | - Petar M. Djuric
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
5
|
Fujikawa J, Morigaki R, Yamamoto N, Oda T, Nakanishi H, Izumi Y, Takagi Y. Therapeutic Devices for Motor Symptoms in Parkinson’s Disease: Current Progress and a Systematic Review of Recent Randomized Controlled Trials. Front Aging Neurosci 2022; 14:807909. [PMID: 35462692 PMCID: PMC9020378 DOI: 10.3389/fnagi.2022.807909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background Pharmacotherapy is the first-line treatment option for Parkinson’s disease, and levodopa is considered the most effective drug for managing motor symptoms. However, side effects such as motor fluctuation and dyskinesia have been associated with levodopa treatment. For these conditions, alternative therapies, including invasive and non-invasive medical devices, may be helpful. This review sheds light on current progress in the development of devices to alleviate motor symptoms in Parkinson’s disease. Methods We first conducted a narrative literature review to obtain an overview of current invasive and non-invasive medical devices and thereafter performed a systematic review of recent randomized controlled trials (RCTs) of these devices. Results Our review revealed different characteristics of each device and their effectiveness for motor symptoms. Although invasive medical devices are usually highly effective, surgical procedures can be burdensome for patients and have serious side effects. In contrast, non-pharmacological/non-surgical devices have fewer complications. RCTs of non-invasive devices, especially non-invasive brain stimulation and mechanical peripheral stimulation devices, have proven effectiveness on motor symptoms. Nearly no non-invasive devices have yet received Food and Drug Administration certification or a CE mark. Conclusion Invasive and non-invasive medical devices have unique characteristics, and several RCTs have been conducted for each device. Invasive devices are more effective, while non-invasive devices are less effective and have lower hurdles and risks. It is important to understand the characteristics of each device and capitalize on these.
Collapse
Affiliation(s)
- Joji Fujikawa
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- *Correspondence: Ryoma Morigaki,
| | - Nobuaki Yamamoto
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Teruo Oda
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Hiroshi Nakanishi
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yuishin Izumi
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| |
Collapse
|
6
|
Oscillation suppression effects of intermittent noisy deep brain stimulation induced by coordinated reset pattern based on a computational model. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Ferdousi M, Babaie-Janvier T, Robinson PA. Nonlinear wave-wave interactions in the brain. J Theor Biol 2020; 500:110308. [PMID: 32389568 DOI: 10.1016/j.jtbi.2020.110308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 03/30/2020] [Accepted: 04/27/2020] [Indexed: 11/24/2022]
Abstract
Neural field theory of the corticothalamic system is used to analyze nonlinear wave-wave interactions in steady state visual evoked potential responses. The nonlinear power spectrum is analytically calculated by convolving the linear power spectrum with itself and other factors. Periodic sine and square wave stimuli are used to generate steady state visual evoked potential responses and to study stimulus-driven nonlinear corticothalamic dynamic interactions. Moreover, we use dual sine drives to analyze the driven dynamics. Numerical analysis shows that the nonlinear power spectrum embodies key nonlinear features, including harmonic and subharmonic generation, entrainment of the alpha rhythm to periodic stimuli at the drive frequency, sum and difference frequencies due to wave-wave coalescence and decay. Further, the scaling properties of the key phenomena observed in nonlinear interactions are studied, verifying some of the theoretical predictions for these being generated by three-wave processes.
Collapse
Affiliation(s)
- M Ferdousi
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia.
| | - T Babaie-Janvier
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
8
|
Khawaldeh S, Tinkhauser G, Shah SA, Peterman K, Debove I, Nguyen TAK, Nowacki A, Lachenmayer ML, Schuepbach M, Pollo C, Krack P, Woolrich M, Brown P. Subthalamic nucleus activity dynamics and limb movement prediction in Parkinson's disease. Brain 2020; 143:582-596. [PMID: 32040563 PMCID: PMC7009471 DOI: 10.1093/brain/awz417] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 11/19/2019] [Indexed: 02/01/2023] Open
Abstract
Whilst exaggerated bursts of beta frequency band oscillatory synchronization in the subthalamic nucleus have been associated with motor impairment in Parkinson's disease, a plausible mechanism linking the two phenomena has been lacking. Here we test the hypothesis that increased synchronization denoted by beta bursting might compromise information coding capacity in basal ganglia networks. To this end we recorded local field potential activity in the subthalamic nucleus of 18 patients with Parkinson's disease as they executed cued upper and lower limb movements. We used the accuracy of local field potential-based classification of the limb to be moved on each trial as an index of the information held by the system with respect to intended action. Machine learning using the naïve Bayes conditional probability model was used for classification. Local field potential dynamics allowed accurate prediction of intended movements well ahead of their execution, with an area under the receiver operator characteristic curve of 0.80 ± 0.04 before imperative cues when the demanded action was known ahead of time. The presence of bursts of local field potential activity in the alpha, and even more so, in the beta frequency band significantly compromised the prediction of the limb to be moved. We conclude that low frequency bursts, particularly those in the beta band, restrict the capacity of the basal ganglia system to encode physiologically relevant information about intended actions. The current findings are also important as they suggest that local subthalamic activity may potentially be decoded to enable effector selection, in addition to force control in restorative brain-machine interface applications.
Collapse
Affiliation(s)
- Saed Khawaldeh
- MRC Brain Network Dynamics Unit, University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Gerd Tinkhauser
- MRC Brain Network Dynamics Unit, University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - Syed Ahmar Shah
- MRC Brain Network Dynamics Unit, University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Usher Institute of Population Health Sciences and Informatics, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
| | - Katrin Peterman
- Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - T A Khoa Nguyen
- Department of Neurosurgery, Bern University Hospital and University of Bern, Switzerland
| | - Andreas Nowacki
- Department of Neurosurgery, Bern University Hospital and University of Bern, Switzerland
| | - M Lenard Lachenmayer
- Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - Michael Schuepbach
- Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Bern University Hospital and University of Bern, Switzerland
| | - Paul Krack
- Department of Neurology, Bern University Hospital and University of Bern, Switzerland
| | - Mark Woolrich
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK.,Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Peter Brown
- MRC Brain Network Dynamics Unit, University of Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
9
|
Kahan J, Mancini L, Flandin G, White M, Papadaki A, Thornton J, Yousry T, Zrinzo L, Hariz M, Limousin P, Friston K, Foltynie T. Deep brain stimulation has state-dependent effects on motor connectivity in Parkinson's disease. Brain 2020; 142:2417-2431. [PMID: 31219504 DOI: 10.1093/brain/awz164] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/12/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022] Open
Abstract
Subthalamic nucleus deep brain stimulation is an effective treatment for advanced Parkinson's disease; however, its therapeutic mechanism is unclear. Previous modelling of functional MRI data has suggested that deep brain stimulation has modulatory effects on a number of basal ganglia pathways. This work uses an enhanced data collection protocol to collect rare functional MRI data in patients with subthalamic nucleus deep brain stimulation. Eleven patients with Parkinson's disease and subthalamic nucleus deep brain stimulation underwent functional MRI at rest and during a movement task; once with active deep brain stimulation, and once with deep brain stimulation switched off. Dynamic causal modelling and Bayesian model selection were first used to compare a series of plausible biophysical models of the cortico-basal ganglia circuit that could explain the functional MRI activity at rest in an attempt to reproduce and extend the findings from our previous work. General linear modelling of the movement task functional MRI data revealed deep brain stimulation-associated signal increases in the primary motor and cerebellar cortices. Given the significance of the cerebellum in voluntary movement, we then built a more complete model of the motor system by including cerebellar-basal ganglia interactions, and compared the modulatory effects deep brain stimulation had on different circuit components during the movement task and again using the resting state data. Consistent with previous results from our independent cohort, model comparison found that the rest data were best explained by deep brain stimulation-induced increased (effective) connectivity of the cortico-striatal, thalamo-cortical and direct pathway and reduced coupling of subthalamic nucleus afferent and efferent connections. No changes in cerebellar connectivity were identified at rest. In contrast, during the movement task, there was functional recruitment of subcortical-cerebellar pathways, which were additionally modulated by deep brain stimulation, as well as modulation of local (intrinsic) cortical and cerebellar circuits. This work provides in vivo evidence for the modulatory effects of subthalamic nucleus deep brain stimulation on effective connectivity within the cortico-basal ganglia loops at rest, as well as further modulations in the cortico-cerebellar motor system during voluntary movement. We propose that deep brain stimulation has both behaviour-independent effects on basal ganglia connectivity, as well as behaviour-dependent modulatory effects.
Collapse
Affiliation(s)
- Joshua Kahan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Laura Mancini
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, WC1N 3BG, UK.,Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Guillaume Flandin
- The Wellcome Centre for Human Neuroimaging, UCL, London, WC1N 3AR, UK
| | - Mark White
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, WC1N 3BG, UK.,Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Anastasia Papadaki
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, WC1N 3BG, UK.,Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - John Thornton
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, WC1N 3BG, UK.,Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Tarek Yousry
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, WC1N 3BG, UK.,Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Marwan Hariz
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL, London, WC1N 3AR, UK
| | - Tom Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
10
|
Rojas Cabrera JM, Price JB, Rusheen AE, Goyal A, Jondal D, Barath AS, Shin H, Chang SY, Bennet KE, Blaha CD, Lee KH, Oh Y. Advances in neurochemical measurements: A review of biomarkers and devices for the development of closed-loop deep brain stimulation systems. REVIEWS IN ANALYTICAL CHEMISTRY 2020; 39:188-199. [PMID: 33883813 PMCID: PMC8057673 DOI: 10.1515/revac-2020-0117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Neurochemical recording techniques have expanded our understanding of the pathophysiology of neurological disorders, as well as the mechanisms of action of treatment modalities like deep brain stimulation (DBS). DBS is used to treat diseases such as Parkinson's disease, Tourette syndrome, and obsessive-compulsive disorder, among others. Although DBS is effective at alleviating symptoms related to these diseases and improving the quality of life of these patients, the mechanism of action of DBS is currently not fully understood. A leading hypothesis is that DBS modulates the electrical field potential by modifying neuronal firing frequencies to non-pathological rates thus providing therapeutic relief. To address this gap in knowledge, recent advances in electrochemical sensing techniques have given insight into the importance of neurotransmitters, such as dopamine, serotonin, glutamate, and adenosine, in disease pathophysiology. These studies have also highlighted their potential use in tandem with electrophysiology to serve as biomarkers in disease diagnosis and progression monitoring, as well as characterize response to treatment. Here, we provide an overview of disease-relevant neurotransmitters and their roles and implications as biomarkers, as well as innovations to the biosensors used to record these biomarkers. Furthermore, we discuss currently available neurochemical and electrophysiological recording devices, and discuss their viability to be implemented into the development of a closed-loop DBS system.
Collapse
Affiliation(s)
- Juan M. Rojas Cabrera
- Department of Neurosurgery Research, Mayo Clinic, Rochester, MN 55902, United States
| | - J. Blair Price
- Department of Neurosurgery Research, Mayo Clinic, Rochester, MN 55902, United States
| | - Aaron E. Rusheen
- Department of Neurosurgery Research, Mayo Clinic, Rochester, MN 55902, United States
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55902, United States
| | - Abhinav Goyal
- Department of Neurosurgery Research, Mayo Clinic, Rochester, MN 55902, United States
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55902, United States
| | - Danielle Jondal
- Department of Neurosurgery Research, Mayo Clinic, Rochester, MN 55902, United States
| | - Abhijeet S. Barath
- Department of Neurosurgery Research, Mayo Clinic, Rochester, MN 55902, United States
| | - Hojin Shin
- Department of Neurosurgery Research, Mayo Clinic, Rochester, MN 55902, United States
| | - Su-Youne Chang
- Department of Neurosurgery Research, Mayo Clinic, Rochester, MN 55902, United States
| | - Kevin E. Bennet
- Department of Neurosurgery Research, Mayo Clinic, Rochester, MN 55902, United States
- Division of Engineering, Mayo Clinic, Rochester, MN 55902, United States
| | - Charles D. Blaha
- Department of Neurosurgery Research, Mayo Clinic, Rochester, MN 55902, United States
| | - Kendall H. Lee
- Department of Neurosurgery Research, Mayo Clinic, Rochester, MN 55902, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, United States
| | - Yoonbae Oh
- Department of Neurosurgery Research, Mayo Clinic, Rochester, MN 55902, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, United States
- Corresponding author:
| |
Collapse
|
11
|
Georgiades MJ, Shine JM, Gilat M, McMaster J, Owler B, Mahant N, Lewis SJG. Hitting the brakes: pathological subthalamic nucleus activity in Parkinson’s disease gait freezing. Brain 2019; 142:3906-3916. [DOI: 10.1093/brain/awz325] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/22/2019] [Indexed: 11/14/2022] Open
Abstract
The neurobiology of gait freezing in Parkinson’s disease is poorly understood and therapies are largely ineffective. Using a virtual reality task to elicit freezing intra-operatively during implantation of DBS electrodes, Georgiades et al. identify pathological subthalamic nucleus activity associated with freezing onset and discernible from that of volitional stopping.
Collapse
Affiliation(s)
- Matthew J Georgiades
- ForeFront Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia
- Sydney Medical School, The University of Sydney, Australia
| | - James M Shine
- ForeFront Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia
- Sydney Medical School, The University of Sydney, Australia
| | - Moran Gilat
- ForeFront Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia
- Research Group for Neuromotor Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Belgium
| | | | - Brian Owler
- Westmead Private Hospital, Sydney, Australia
| | - Neil Mahant
- Sydney Medical School, The University of Sydney, Australia
- Westmead Private Hospital, Sydney, Australia
| | - Simon J G Lewis
- ForeFront Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, Australia
- Sydney Medical School, The University of Sydney, Australia
| |
Collapse
|
12
|
Cisnal A, R Ihmig F, Fraile JC, Pérez-Turiel J, Muñoz-Martinez V. Application of a Novel Measurement Setup for Characterization of Graphene Microelectrodes and a Comparative Study of Variables Influencing Charge Injection Limits of Implantable Microelectrodes. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2725. [PMID: 31213039 PMCID: PMC6630677 DOI: 10.3390/s19122725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 11/21/2022]
Abstract
Depending on their use, electrodes must have a certain size and design so as not to compromise their electrical characteristics. It is fundamental to be aware of all dependences on external factors that vary the electrochemical characteristics of the electrodes. When using implantable electrodes, the maximum charge injection capacity (CIC) is the total amount of charge that can be injected into the tissue in a reversible way. It is fundamental to know the relations between the characteristics of the microelectrode itself and its maximum CIC in order to develop microelectrodes that will be used in biomedical applications. CIC is a very complex measure that depends on many factors: material, size (geometric and effectiveness area), and shape of the implantable microelectrode and long-term behavior, composition, and temperature of the electrolyte. In this paper, our previously proposed measurement setup and automated calculation method are used to characterize a graphene microelectrode and to measure the behavior of a set of microelectrodes that have been developed in the Fraunhofer Institute for Biomedical Engineering (IBMT) labs. We provide an electrochemical evaluation of CIC for these microelectrodes by examining the role of the following variables: pulse width of the stimulation signal, electrode geometry and size, roughness factor, solution, and long-term behavior. We hope the results presented in this paper will be useful for future studies and for the manufacture of advanced implantable microelectrodes.
Collapse
Affiliation(s)
- Ana Cisnal
- ITAP-Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, Spain.
| | - Frank R Ihmig
- Department of Biomedical Microsystems, Fraunhofer-Institut für Biomedizinische Technik (IBMT), 66280 Sulzbach/Saar, Germany.
| | - Juan-Carlos Fraile
- ITAP-Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, Spain.
| | - Javier Pérez-Turiel
- ITAP-Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, Spain.
| | - Víctor Muñoz-Martinez
- Escuela de Ingenierías Industriales, Universidad de Málaga, Doctor Ortiz Ramos s/n, 29071 Málaga, Spain.
| |
Collapse
|
13
|
Müller EJ, Robinson PA. Suppression of Parkinsonian Beta Oscillations by Deep Brain Stimulation: Determination of Effective Protocols. Front Comput Neurosci 2018; 12:98. [PMID: 30618692 PMCID: PMC6297248 DOI: 10.3389/fncom.2018.00098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/26/2018] [Indexed: 01/05/2023] Open
Abstract
A neural field model of the corticothalamic-basal ganglia system is developed that describes enhanced beta activity within subthalamic and pallidal circuits in Parkinson's disease (PD) via system resonances. A model of deep brain stimulation (DBS) of typical clinical targets, the subthalamic nucleus (STN) and globus pallidus internus (GPi), is added and studied for several distinct stimulation protocols that are used for treatment of the motor symptoms of PD and that reduce pathological beta band activity (13-30 Hz) in the corticothalamic-basal ganglia network. The resulting impact of DBS on enhanced beta activity in the STN and GPi, as well as cortico-subthalamic and cortico-pallidal coherence, are studied. Both STN-DBS and GPi-DBS are found to be effective for suppressing peak STN and GPi power in the beta band, with GPi-DBS being slightly more effective in both the STN and the GPi for all stimulus protocols tested. The largest decrease in cortico-STN coherence is observed during STN-DBS, whereas GPi-DBS is most effective for reducing cortico-GPi coherence. A reduction of the pathologically large STN connection strengths that define the parkinsonian state results in enhanced 6 Hz activity and could thus represent a compensatory mechanism that has the side effect of driving parkinsonian tremor-like oscillations. This model provides a method for systematically testing effective DBS protocols that agrees with experimental and clinical findings. Furthermore, the model suggests GPi-DBS and STN-DBS have distinct impacts on elevated synchronization between the basal ganglia and motor cortex in PD.
Collapse
Affiliation(s)
- Eli J Müller
- School of Physics, The University of Sydney, Sydney, NSW, Australia.,Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, Australia
| | - Peter A Robinson
- School of Physics, The University of Sydney, Sydney, NSW, Australia.,Center for Integrative Brain Function, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
A Measurement Setup and Automated Calculation Method to Determine the Charge Injection Capacity of Implantable Microelectrodes. SENSORS 2018; 18:s18124152. [PMID: 30486353 PMCID: PMC6308657 DOI: 10.3390/s18124152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 11/17/2022]
Abstract
The design of safe stimulation protocols for functional electrostimulation requires knowledge of the "maximum reversible charge injection capacity" of the implantable microelectrodes. One of the main difficulties encountered in characterizing such microelectrodes is the calculation of the access voltage Va. This paper proposes a method to calculate Va that does not require prior knowledge of the overpotential terms and of the electrolyte (or excitable tissue) resistance, which is an advantage for in vivo electrochemical characterization of microelectrodes. To validate this method, we compare the calculated results with those obtained from conventional methods for characterizing three flexible platinum microelectrodes by cyclic voltammetry and voltage transient measurements. This paper presents the experimental setup, the required instrumentation, and the signal processing.
Collapse
|