1
|
Zhang J, Xiong C, Wei X, Yang H, Zhao C. Modeling ncRNA Synergistic Regulation in Cancer. Methods Mol Biol 2025; 2883:377-402. [PMID: 39702718 DOI: 10.1007/978-1-0716-4290-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cancer seriously threatens human life and health, and the structure and function of genes within cancer cells have changed relative to normal cells. Essentially, cancer is a polygenic disorder, and the core of its occurrence and development is caused by polygenic synergy. Non-coding RNAs (ncRNAs) act as regulators to modulate gene expression levels, and they provide theoretical basis and new technology for the diagnosis and preventive treatment of cancer. However, the study of ncRNA regulation and its role as biomarkers in cancer remain largely unearthed. Driven by multi-omics data, an abundance of computational methods, tools, and databases have been developed for predicting ncRNA-cancer association/causality, inferring ncRNA regulation, and modeling ncRNA synergistic regulation. This chapter aims to provide a comprehensive perspective of modeling ncRNA synergistic regulation. Since the ncRNAs involved in cancer contribute to modeling cancer-associated ncRNA synergistic regulation, we first review the databases and tools of cancer-related ncRNAs. Then we investigate the existing tools or methods for modeling ncRNA-directed and ncRNA-mediated regulation. In addition, we survey the available computational tools or methods for modeling ncRNA synergistic regulation, including synergistic interaction and synergistic competition. Finally, we discuss the future directions and challenges in modeling ncRNA synergistic regulation.
Collapse
Affiliation(s)
- Junpeng Zhang
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Chenchen Xiong
- School of Engineering, Dali University, Dali, Yunnan, China
- Beijing CapitalBio Pharma Technology Co., Ltd., Beijing, China
| | - Xuemei Wei
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Haolin Yang
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Chunwen Zhao
- School of Engineering, Dali University, Dali, Yunnan, China
| |
Collapse
|
2
|
Zhang J, Wei X, Zhao C, Yang H. Protocol to infer and analyze miRNA sponge modules in heterogeneous data using miRSM 2.0. STAR Protoc 2024; 5:103317. [PMID: 39292559 PMCID: PMC11424997 DOI: 10.1016/j.xpro.2024.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/20/2024] Open
Abstract
MicroRNA (miRNA) sponges synergistically modulate physiological and pathological processes in the form of modules or clusters. Here, we present a protocol for inferring and analyzing miRNA sponge modules in heterogeneous data using the R package miRSM 2.0. We describe steps for identifying gene modules, inferring miRNA sponge modules at multi-sample and single-sample levels, and performing modular analysis. From the perspective of computational biology, miRSM 2.0 has the potential to advance our understanding of the role of miRNA sponges in diseases. For complete details on the use and execution of this protocol, please refer to Zhang et al.1,2,3.
Collapse
Affiliation(s)
- Junpeng Zhang
- School of Engineering, Dali University, Yunnan 671003, China.
| | - Xuemei Wei
- School of Engineering, Dali University, Yunnan 671003, China
| | - Chunwen Zhao
- School of Engineering, Dali University, Yunnan 671003, China
| | - Haolin Yang
- School of Engineering, Dali University, Yunnan 671003, China
| |
Collapse
|
3
|
Li W, Zheng L, Luo P, Chen T, Zou J, Chen Q, Cheng L, Gan L, Zhang F, Qian B. Critical role of non-coding RNA-mediated ferroptosis in urologic malignancies. Front Immunol 2024; 15:1486229. [PMID: 39544949 PMCID: PMC11560455 DOI: 10.3389/fimmu.2024.1486229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Urologic malignancies, characterized by their high aggressiveness and metastatic potential, pose a significant public health challenge globally. Ferroptosis, a novel mode of cell death, typically arises from intracellular iron ion overload and the accumulation of lipid peroxides. This process has been shown to play a crucial regulatory role in various pathological conditions, particularly in cancer, including urologic cancers. However, the comprehensive regulatory mechanisms underlying ferroptosis remain poorly understood, which somewhat limits its broader application in cancer therapy. Non-coding RNAs (ncRNAs), which encompass microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are non-coding transcripts that play pivotal roles in various physiological processes, such as proliferation, differentiation, apoptosis, and cell cycle regulation, by modulating the expression of target genes. The biological functions and potential regulatory mechanisms of ncRNAs in the context of cancer-related ferroptosis have been partially elucidated. Research indicates that ncRNAs can influence the progression of urologic cancers by affecting cell proliferation, migration, and drug resistance through the regulation of ferroptosis. Consequently, this review aims to clarify the functions and mechanisms of the ncRNA-ferroptosis axis in urologic cancers and to evaluate the clinical significance of ferroptosis-related ncRNAs, thereby providing new insights into cancer biology and therapeutic strategies that may ultimately benefit a diverse range of cancer patients.
Collapse
Affiliation(s)
- Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Jiangxi, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
4
|
Salim Abed H, Oghenemaro EF, Kubaev A, Jeddoa ZMA, S R, Sharma S, Vashishth R, Jabir MS, Jawad SF, Zwamel AH. Non-coding RNAs as a Critical Player in the Regulation of Inflammasome in Inflammatory Bowel Diseases; Emphasize on lncRNAs. Cell Biochem Biophys 2024:10.1007/s12013-024-01585-2. [PMID: 39424765 DOI: 10.1007/s12013-024-01585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic disease caused by a dysregulated immune response to host intestinal microflora. A hyperactive inflammatory and immunological response in the gut has been shown to be one of the disease's long-term causes despite the complexity of the clinical pathology of IBD. The innate immune system activator known as human gut inflammasome is thought to be a significant underlying cause of pathology and is closely linked to the development of IBD. It is essential to comprehend the function of inflammasome activation in IBD to treat it effectively. Systemic inflammasome regulation may be a proper therapeutic and clinical strategy to manage IBD symptoms since inflammasomes may have a significant function in IBD. Non-coding RNAs (ncRNAs) are a type of RNA transcript that is incapable of encoding proteins or peptides. In IBD, inflammation develops and worsens as a result of its imbalance. Culminating evidence has been shown that ncRNAs, and particularly long non-coding RNAs (lncRNAs), may play a role in the regulation of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in IBD. The relationship between IBD and the gut inflammasome, as well as current developments in IBD research and treatment approaches, have been the main topics of this review. We have covered inflammasomes and their constituents, results from in vivo research, inflammasome inhibitors, and advancements in inflammasome-targeted therapeutics for IBD.
Collapse
Affiliation(s)
- Hussein Salim Abed
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Ramadi, Iraq
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria.
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, 140100, Uzbekistan
| | | | - RenukaJyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Karbala, Iraq
| | - Sabrean Farhan Jawad
- Department of Biochemistry, College of Science, Al-Mustaqbal University, 51001, Babil, Iraq
| | - Ahmed Hussein Zwamel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Wu L, Li ZZ, Yang H, Cao LZ, Wang XY, Wang DL, Chatterjee E, Li YF, Huang G. Cardioprotection of voluntary exercise against breast cancer-induced cardiac injury via STAT3. Basic Res Cardiol 2024:10.1007/s00395-024-01076-8. [PMID: 39158697 DOI: 10.1007/s00395-024-01076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Exercise is an effective way to alleviate breast cancer-induced cardiac injury to a certain extent. However, whether voluntary exercise (VE) activates cardiac signal transducer and activator of transcription 3 (STAT3) and the underlying mechanisms remain unclear. This study investigated the role of STAT3-microRNA(miRNA)-targeted protein axis in VE against breast cancer-induced cardiac injury.VE for 4 weeks not only improved cardiac function of transgenic breast cancer female mice [mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT +)] compared with littermate mice with no cancer (MMTV-PyMT -), but also increased myocardial STAT3 tyrosine 705 phosphorylation. Significantly more obvious cardiac fibrosis, smaller cardiomyocyte size, lower cell viability, and higher serum tumor necrosis factor (TNF)-α were shown in MMTV-PyMT + mice compared with MMTV-PyMT - mice, which were ameliorated by VE. However, VE did not influence the tumor growth. MiRNA sequencing identified that miR-181a-5p was upregulated and miR-130b-3p was downregulated in VE induced-cardioprotection. Myocardial injection of Adeno-associated virus serotype 9 driving STAT3 tyrosine 705 mutations abolished cardioprotective effects above. Myocardial STAT3 was identified as the transcription factor binding the promoters of pri-miR-181a (the precursor of miR-181a-5p) and HOX transcript antisense RNA (HOTAIR, sponged miR-130b-3p) in isolated cardiomyocytes. Furthermore, miR-181a-5p targeting PTEN and miR-130b-3p targeting Zinc finger and BTB domain containing protein 20 (Zbtb20) were proved in AC-16 cells. These findings indicated that VE protects against breast cancer-induced cardiac injury via activating STAT3 to promote miR-181a-5p targeting PTEN and to promote HOTAIR to sponge miR-130b-3p targeting Zbtb20, helping to develop new targets in exercise therapy for breast cancer-induced cardiac injury.
Collapse
Affiliation(s)
- Lan Wu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
- School of Basic Medical Science, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Zhi-Zheng Li
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Li-Zhi Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiao-Ying Wang
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Dong-Liang Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yan-Fei Li
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
6
|
Zhang J, Liu L, Wei X, Zhao C, Li S, Li J, Le TD. Pan-cancer characterization of ncRNA synergistic competition uncovers potential carcinogenic biomarkers. PLoS Comput Biol 2023; 19:e1011308. [PMID: 37812646 PMCID: PMC10586676 DOI: 10.1371/journal.pcbi.1011308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/19/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Non-coding RNAs (ncRNAs) act as important modulators of gene expression and they have been confirmed to play critical roles in the physiology and development of malignant tumors. Understanding the synergism of multiple ncRNAs in competing endogenous RNA (ceRNA) regulation can provide important insights into the mechanisms of malignant tumors caused by ncRNA regulation. In this work, we present a framework, SCOM, for identifying ncRNA synergistic competition. We systematically construct the landscape of ncRNA synergistic competition across 31 malignant tumors, and reveal that malignant tumors tend to share hub ncRNAs rather than the ncRNA interactions involved in the synergistic competition. In addition, the synergistic competition ncRNAs (i.e. ncRNAs involved in the synergistic competition) are likely to be involved in drug resistance, contribute to distinguishing molecular subtypes of malignant tumors, and participate in immune regulation. Furthermore, SCOM can help to infer ncRNA synergistic competition across malignant tumors and uncover potential diagnostic and prognostic biomarkers of malignant tumors. Altogether, the SCOM framework (https://github.com/zhangjunpeng411/SCOM/) and the resulting web-based database SCOMdb (https://comblab.cn/SCOMdb/) serve as a useful resource for exploring ncRNA regulation and to accelerate the identification of carcinogenic biomarkers.
Collapse
Affiliation(s)
- Junpeng Zhang
- School of Engineering, Dali University, Dali, Yunnan, People’s Republic of China
| | - Lin Liu
- UniSA STEM, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Xuemei Wei
- School of Engineering, Dali University, Dali, Yunnan, People’s Republic of China
| | - Chunwen Zhao
- School of Engineering, Dali University, Dali, Yunnan, People’s Republic of China
| | - Sijing Li
- School of Engineering, Dali University, Dali, Yunnan, People’s Republic of China
| | - Jiuyong Li
- UniSA STEM, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Thuc Duy Le
- UniSA STEM, University of South Australia, Mawson Lakes, South Australia, Australia
| |
Collapse
|
7
|
Han C, Qi Y, She Y, Zhang M, Xie H, Zhang J, Zhao Z, Peng C, Liu Y, Lin Y, Wang J, Zeng D. Long noncoding RNA SENCR facilitates the progression of acute myeloid leukemia through the miR-4731-5p/IRF2 pathway. Pathol Res Pract 2023; 245:154483. [PMID: 37120908 DOI: 10.1016/j.prp.2023.154483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a type of hematological tumor caused by malignant clone hematopoietic stem cells. The relationship between lncRNAs and tumor occurrence and progression has been gaining attention. Research has shown that Smooth muscle and endothelial cell-enriched migration/differentiation-associated lncRNA (SENCR) is abnormally expressed in various diseases, whereas its role in AML is still poorly understood. METHODS The expression of SENCR, microRNA-4731-5p (miR-4731-5p) and Interferon regulatory factor 2 (IRF2) were measured using qRT-PCR. The proliferation, cycle and apoptosis of AML cells with or without knockdown of SENCR were detected by CCK-8 assay, EdU assay, flow cytometry, western blotting and TUNEL assay, respectively. Consistently, SENCR knockdown was impaired the AML progression in immunodeficient mice. In addition, the binding of miR-4731-5p to SENCR or IRF2 was confirmed by luciferase reporter genes assay. Finally, rescue experiments were conducted to confirm the role of SENCR/miR-4731-5p/IRF2 axis in AML. RESULTS SENCR is highly expressed in AML patients and cell lines. The patients with high SENCR expression had poorer prognosis compared with those with low SENCR expression. Interestingly, knockdown of SENCR inhibits the growth of AML cells. Further results demonstrated that the reduction of SENCR slows the progression of AML in vivo. SENCR could function as a competing endogenous RNA (ceRNA) to negatively regulate miR-4731-5p in AML cells. Furthermore, IRF2 was validated as a direct target gene of miR-4731-5p in AML cells. CONCLUSIONS Our findings underscore the important role of SENCR in regulating the malignant phenotype of AML cells by targeting the miR-4731-5p/IRF2 axis.
Collapse
Affiliation(s)
- Changhao Han
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yan Qi
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yuanting She
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Meijuan Zhang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Huan Xie
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Jing Zhang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Zhongyue Zhao
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Cuicui Peng
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yu Liu
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yizhang Lin
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Jin Wang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Dongfeng Zeng
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China.
| |
Collapse
|
8
|
Emerging RNA-Based Therapeutic and Diagnostic Options: Recent Advances and Future Challenges in Genitourinary Cancers. Int J Mol Sci 2023; 24:ijms24054601. [PMID: 36902032 PMCID: PMC10003365 DOI: 10.3390/ijms24054601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Renal cell carcinoma, bladder cancer, and prostate cancer are the most widespread genitourinary tumors. Their treatment and diagnosis have significantly evolved over recent years, due to an increasing understanding of oncogenic factors and the molecular mechanisms involved. Using sophisticated genome sequencing technologies, the non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have all been implicated in the occurrence and progression of genitourinary cancers. Interestingly, DNA, protein, and RNA interactions with lncRNAs and other biological macromolecules drive some of these cancer phenotypes. Studies on the molecular mechanisms of lncRNAs have identified new functional markers that could be potentially useful as biomarkers for effective diagnosis and/or as targets for therapeutic intervention. This review focuses on the mechanisms underlying abnormal lncRNA expression in genitourinary tumors and discusses their role in diagnostics, prognosis, and treatment.
Collapse
|
9
|
Yan X, Jia H, Zhao J. LncRNA MEG3 attenuates the malignancy of retinoblastoma cells through inactivating PI3K /Akt/mTOR signaling pathway. Exp Eye Res 2023; 226:109340. [PMID: 36476400 DOI: 10.1016/j.exer.2022.109340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Retinoblastoma (RB) is the most common neoplasm found in the eye of children. There are increasing interests to develop targeted gene therapy for this disease. This study was performed to investigate the impact of long non-coding RNA (lncRNA) MEG3 on the biological features of RB cells. Vector overexpressing MEG3 was constructed and introduced into two RB cell lines. Transfected RB cells were assessed for proliferation, apoptosis, migration ability, expression levels of important genes in the PI3K/Akt/mTOR signaling pathway using qRT-PCR and Western blot analysis. Xenograft mouse models were constructed to determine the tumorigenicity of RB cells overexpressing MEG3. MEG3 mRNA level was significantly lower in RB cells than in non-cancer cells (p < 0.01). Overexpressing MEG3 resulted in significant reduction in cell proliferation (p < 0.05), migration (p < 0.01) and significant increase in apoptosis (p < 0.01). After overexpressing MEG3, p-PI3K, p-Akt and p-mTOR levels were significantly downregulated (p < 0.01). Furthermore, in the xenograft model, RB cells overexpressing MEG3 generated significantly smaller tumors as compared to RB cells that did not overexpress MEG3 (p < 0.05). Our data suggest that MEG3 increases apoptosis and reduces tumorigenicity of RB cells through inactivating the PI3K/Akt/mTOR pathway. Therefore, MEG3 could be further investigated as a potential new therapeutic agent and target for RB therapy.
Collapse
Affiliation(s)
- Xiaoxiao Yan
- Department of Ophthalmology, Handan Central Hospital, Handan, China
| | - Haibo Jia
- Department of Neurosurgery, Handan Central Hospital, Handan, China.
| | - Junbo Zhao
- Department of Ophthalmology, Handan Central Hospital, Handan, China
| |
Collapse
|
10
|
Balasubramanian R, Vinod PK. Inferring miRNA sponge modules across major neuropsychiatric disorders. Front Mol Neurosci 2022; 15:1009662. [PMID: 36385761 PMCID: PMC9650411 DOI: 10.3389/fnmol.2022.1009662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/05/2022] [Indexed: 12/01/2022] Open
Abstract
The role of non-coding RNAs in neuropsychiatric disorders (NPDs) is an emerging field of study. The long non-coding RNAs (lncRNAs) are shown to sponge the microRNAs (miRNAs) from interacting with their target mRNAs. Investigating the sponge activity of lncRNAs in NPDs will provide further insights into biological mechanisms and help identify disease biomarkers. In this study, a large-scale inference of the lncRNA-related miRNA sponge network of pan-neuropsychiatric disorders, including autism spectrum disorder (ASD), schizophrenia (SCZ), and bipolar disorder (BD), was carried out using brain transcriptomic (RNA-Seq) data. The candidate miRNA sponge modules were identified based on the co-expression pattern of non-coding RNAs, sharing of miRNA binding sites, and sensitivity canonical correlation. miRNA sponge modules are associated with chemical synaptic transmission, nervous system development, metabolism, immune system response, ribosomes, and pathways in cancer. The identified modules showed similar and distinct gene expression patterns depending on the neuropsychiatric condition. The preservation of miRNA sponge modules was shown in the independent brain and blood-transcriptomic datasets of NPDs. We also identified miRNA sponging lncRNAs that may be potential diagnostic biomarkers for NPDs. Our study provides a comprehensive resource on miRNA sponging in NPDs.
Collapse
|
11
|
Zhang J, Liu L, Zhang W, Li X, Zhao C, Li S, Li J, Le TD. miRspongeR 2.0: an enhanced R package for exploring miRNA sponge regulation. BIOINFORMATICS ADVANCES 2022; 2:vbac063. [PMID: 36699386 PMCID: PMC9710667 DOI: 10.1093/bioadv/vbac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 02/01/2023]
Abstract
Summary MicroRNA (miRNA) sponges influence the capability of miRNA-mediated gene silencing by competing for shared miRNA response elements and play significant roles in many physiological and pathological processes. It has been proved that computational or dry-lab approaches are useful to guide wet-lab experiments for uncovering miRNA sponge regulation. However, all of the existing tools only allow the analysis of miRNA sponge regulation regarding a group of samples, rather than the miRNA sponge regulation unique to individual samples. Furthermore, most existing tools do not allow parallel computing for the fast identification of miRNA sponge regulation. Here, we present an enhanced version of our R/Bioconductor package, miRspongeR 2.0. Compared with the original version introduced in 2019, this package extends the resolution of miRNA sponge regulation from the multi-sample level to the single-sample level. Moreover, it supports the identification of miRNA sponge networks using parallel computing, and the construction of sample-sample correlation networks. It also provides more computational methods to infer miRNA sponge regulation and expands the ground truth for validation. With these new features, we anticipate that miRspongeR 2.0 will further accelerate the research on miRNA sponges with higher resolution and more utilities. Availability and implementation http://bioconductor.org/packages/miRspongeR/. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | - Lin Liu
- UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Wu Zhang
- Department of Molecular Biology, School of Agriculture and Biological Sciences, Dali University, Dali 671003, China
| | - Xiaomei Li
- UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Chunwen Zhao
- Department of Information and Electronic Engineering, School of Engineering, Dali University, Dali 671003, China
| | - Sijing Li
- Department of Information and Electronic Engineering, School of Engineering, Dali University, Dali 671003, China
| | - Jiuyong Li
- UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Thuc Duy Le
- To whom correspondence should be addressed. or
| |
Collapse
|
12
|
Liu G, Zhang Y, Zhang X, Liu Y, Xu Y, Cui S, Li G, Wang J. LncRNA MNX1-AS1 contributes to lung adenocarcinoma progression by targeting the miR-34a/SIRT1 axis. Am J Transl Res 2022; 14:4977-4989. [PMID: 35958481 PMCID: PMC9360842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
LncRNA MNX1-AS1 is known to be involved in progression of several tumor types. However, few studies have investigated the molecular mechanism of MNX1-AS1 in lung adenocarcinoma (LAC). To explore the function of MNX1-AS1 in the pathogenesis of LAC, qRT-PCR was performed to show MNX1-AS1 expression. MNX1-AS1 expression in LAC cells was suppressed by siRNA to detect the biologic behavior. The relationships among miR-34a, MNX1-AS1 and SIRT1 were confirmed by pull-down and dual-luciferase reporter assay. Whether MNX1-AS1 was involved in LAC by targeting miR-34a/SIRT1 axis was verified. MNX1-AS1 was up-regulated in LAC, and over-expression of MNX1-AS1 was significantly associated with lymph node metastasis and poor prognosis. In A549 and H1299 cells, cell proliferation, migration, and invasion were suppressed, the cell cycle was regulated, as well as apoptosis was increased after silencing MNX1-AS1. Mechanistically, MNX1-AS1 served as a ceRNA of miR-34a to down-regulate miR-34a expression. SIRT1 is targeted by miR-34a and its expression is regulated by MNX1-AS1 and miR-34a. Up-regulation of SIRT1 salvaged the effect of silencing MNX1-AS1 on A549 and H1299 cells, to some extent. These results showed that MNX1-AS1 contributes to LAC progression by targeting the miR-34a/SIRT1 axis.
Collapse
Affiliation(s)
- Gaofeng Liu
- Department of Cardiothoracic Surgery, The 988th Hospital of PLA Joint Logistics SupportZhengzhou 450042, Henan, China
| | - Yong Zhang
- Department of Cardiothoracic Surgery, The 988th Hospital of PLA Joint Logistics SupportZhengzhou 450042, Henan, China
| | - Xiaozhen Zhang
- Department of Cardiothoracic Surgery, The 988th Hospital of PLA Joint Logistics SupportZhengzhou 450042, Henan, China
| | - Yan Liu
- Department of Cardiothoracic Surgery, The 988th Hospital of PLA Joint Logistics SupportZhengzhou 450042, Henan, China
| | - Yanbin Xu
- Department of Cardiothoracic Surgery, The 988th Hospital of PLA Joint Logistics SupportZhengzhou 450042, Henan, China
| | - Sujuan Cui
- Department of Cardiothoracic Surgery, The 988th Hospital of PLA Joint Logistics SupportZhengzhou 450042, Henan, China
| | - Gang Li
- Department of Cardiothoracic Surgery, The 988th Hospital of PLA Joint Logistics SupportZhengzhou 450042, Henan, China
| | - Jianjun Wang
- Department of Thoracic Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan UniversityZhengzhou 450008, Henan, China
| |
Collapse
|
13
|
Marinelli LM, Kisiel JB, Slettedahl SW, Mahoney DW, Lemens MA, Shridhar V, Taylor WR, Staub JK, Cao X, Foote PH, Burger KN, Berger CK, O'Connell MC, Doering KA, Giakoumopoulos M, Berg H, Volkmann C, Solsrud A, Allawi HT, Kaiser M, Vaccaro AM, Albright Crawford C, Moehlenkamp C, Shea G, Deist MS, Schoolmeester JK, Kerr SE, Sherman ME, Bakkum-Gamez JN. Methylated DNA markers for plasma detection of ovarian cancer: Discovery, validation, and clinical feasibility. Gynecol Oncol 2022; 165:568-576. [PMID: 35370009 PMCID: PMC9133226 DOI: 10.1016/j.ygyno.2022.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Aberrant DNA methylation is an early event in carcinogenesis which could be leveraged to detect ovarian cancer (OC) in plasma. METHODS DNA from frozen OC tissues, benign fallopian tube epithelium (FTE), and buffy coats from cancer-free women underwent reduced representation bisulfite sequencing (RRBS) to identify OC MDMs. Candidate MDM selection was based on receiver operating characteristic (ROC) discrimination, methylation fold change, and low background methylation among controls. Blinded biological validation was performed using methylated specific PCR on DNA extracted from independent OC and FTE FFPE tissues. MDMs were tested using Target Enrichment Long-probe Quantitative Amplified Signal (TELQAS) assays in pre-treatment plasma from women newly diagnosed with OC and population-sampled healthy women. A random forest modeling analysis was performed to generate predictive probability of disease; results were 500-fold in silico cross-validated. RESULTS Thirty-three MDMs showed marked methylation fold changes (10 to >1000) across all OC subtypes vs FTE. Eleven MDMs (GPRIN1, CDO1, SRC, SIM2, AGRN, FAIM2, CELF2, RIPPLY3, GYPC, CAPN2, BCAT1) were tested on plasma from 91 women with OC (73 (80%) high-grade serous (HGS)) and 91 without OC; the cross-validated 11-MDM panel highly discriminated OC from controls (96% (95% CI, 89-99%) specificity; 79% (69-87%) sensitivity, and AUC 0.91 (0.86-0.96)). Among the 5 stage I/II HGS OCs included, all were correctly identified. CONCLUSIONS Whole methylome sequencing, stringent filtering criteria, and biological validation yielded candidate MDMs for OC that performed with high sensitivity and specificity in plasma. Larger plasma-based OC MDM studies, including testing of pre-diagnostic specimens, are warranted.
Collapse
Affiliation(s)
- Lisa M Marinelli
- Department of Pathology and Area Laboratory Services, San Antonio Military Medical Center, San Antonio, TX, United States of America
| | - John B Kisiel
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Seth W Slettedahl
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States of America
| | - Douglas W Mahoney
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States of America
| | - Maureen A Lemens
- Obstetrics and Gynecology, Division of Gynecologic Oncology Surgery, Mayo Clinic, Rochester, MN, United States of America
| | - Vijayalakshmi Shridhar
- Department of Laboratory Medicine and Pathology, Experimental Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - William R Taylor
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Julie K Staub
- Department of Laboratory Medicine and Pathology, Experimental Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Xiaoming Cao
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Patrick H Foote
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Kelli N Burger
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States of America
| | - Calise K Berger
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Maria C O'Connell
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Karen A Doering
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | | | - Hannah Berg
- Exact Sciences, Madison, WI, United States of America
| | | | - Adam Solsrud
- Exact Sciences, Madison, WI, United States of America
| | | | | | | | | | | | - Gracie Shea
- Exact Sciences, Madison, WI, United States of America
| | | | - J Kenneth Schoolmeester
- Department of Laboratory Medicine and Pathology, Anatomic Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Sarah E Kerr
- Hospital Pathology Associates, Minneapolis, MN, United States of America
| | - Mark E Sherman
- Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Jamie N Bakkum-Gamez
- Obstetrics and Gynecology, Division of Gynecologic Oncology Surgery, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
14
|
The Emerging Roles of Long Non-Coding RNAs in Intellectual Disability and Related Neurodevelopmental Disorders. Int J Mol Sci 2022; 23:ijms23116118. [PMID: 35682796 PMCID: PMC9181295 DOI: 10.3390/ijms23116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
In the human brain, long non-coding RNAs (lncRNAs) are widely expressed in an exquisitely temporally and spatially regulated manner, thus suggesting their contribution to normal brain development and their probable involvement in the molecular pathology of neurodevelopmental disorders (NDD). Bypassing the classic protein-centric conception of disease mechanisms, some studies have been conducted to identify and characterize the putative roles of non-coding sequences in the genetic pathogenesis and diagnosis of complex diseases. However, their involvement in NDD, and more specifically in intellectual disability (ID), is still poorly documented and only a few genomic alterations affecting the lncRNAs function and/or expression have been causally linked to the disease endophenotype. Considering that a significant fraction of patients still lacks a genetic or molecular explanation, we expect that a deeper investigation of the non-coding genome will unravel novel pathogenic mechanisms, opening new translational opportunities. Here, we present evidence of the possible involvement of many lncRNAs in the etiology of different forms of ID and NDD, grouping the candidate disease-genes in the most frequently affected cellular processes in which ID-risk genes were previously collected. We also illustrate new approaches for the identification and prioritization of NDD-risk lncRNAs, together with the current strategies to exploit them in diagnosis.
Collapse
|
15
|
Long Noncoding RNA Mediated Regulation in Human Embryogenesis, Pluripotency, and Reproduction. Stem Cells Int 2022; 2022:8051717. [PMID: 35103065 PMCID: PMC8800634 DOI: 10.1155/2022/8051717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), a class of noncoding RNAs with more than 200 bp in length, are produced by pervasive transcription in mammalian genomes and regulate gene expression through various action mechanisms. Accumulating data indicate that lncRNAs mediate essential biological functions in human development, including early embryogenesis, induction of pluripotency, and germ cell development. Comprehensive analysis of sequencing data highlights that lncRNAs are expressed in a stage-specific and human/primate-specific pattern during early human development. They contribute to cell fate determination through interacting with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. Furthermore, the expression of a few of lncRNAs is highly associated with the pathogenesis and progression of many reproductive diseases, suggesting that they could serve as candidate biomarkers for diagnosis or novel targets for treatment. Here, we review research on lncRNAs and their roles in embryogenesis, pluripotency, and reproduction. We aim to identify the underlying molecular mechanisms essential for human development and provide novel insight into the causes and treatments of human reproductive diseases.
Collapse
|
16
|
Hu CY, Wu KY, Lin TY, Chen CC. The Crosstalk of Long Non-Coding RNA and MicroRNA in Castration-Resistant and Neuroendocrine Prostate Cancer: Their Interaction and Clinical Importance. Int J Mol Sci 2021; 23:ijms23010392. [PMID: 35008817 PMCID: PMC8745162 DOI: 10.3390/ijms23010392] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/02/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is featured by its heterogeneous nature, which indicates a different prognosis. Castration-resistant prostate cancer (CRPC) is a hallmark of the treatment-refractory stage, and the median survival of patients is only within two years. Neuroendocrine prostate cancer (NEPC) is an aggressive variant that arises from de novo presentation of small cell carcinoma or treatment-related transformation with a median survival of 1–2 years from the time of diagnosis. The epigenetic regulators, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been proven involved in multiple pathologic mechanisms of CRPC and NEPC. LncRNAs can act as competing endogenous RNAs to sponge miRNAs that would inhibit the expression of their targets. After that, miRNAs interact with the 3’ untranslated region (UTR) of target mRNAs to repress the step of translation. These interactions may modulate gene expression and influence cancer development and progression. Otherwise, epigenetic regulators and genetic mutation also promote neuroendocrine differentiation and cancer stem-like cell formation. This step may induce neuroendocrine prostate cancer development. This review aims to provide an integrated, synthesized overview under current evidence to elucidate the crosstalk of lncRNAs with miRNAs and their influence on castration resistance or neuroendocrine differentiation of prostate cancer. Notably, we also discuss the mechanisms of lncRNA–miRNA interaction in androgen receptor-independent prostate cancer, such as growth factors, oncogenic signaling pathways, cell cycle dysregulation, and cytokines or other transmembrane proteins. Conclusively, we underscore the potential of these communications as potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Che-Yuan Hu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Kuan-Yu Wu
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Tsung-Yen Lin
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Division of Urology, Department of Surgery, Dou-Liou Branch, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Yunlin 640, Taiwan
- Correspondence: (T.-Y.L.); (C.-C.C.); Tel.: +886-6235-3535 (ext. 5251) (T.-Y.L.); +886-5276-5041 (ext. 7521) (C.-C.C.)
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Correspondence: (T.-Y.L.); (C.-C.C.); Tel.: +886-6235-3535 (ext. 5251) (T.-Y.L.); +886-5276-5041 (ext. 7521) (C.-C.C.)
| |
Collapse
|
17
|
Tian Q, Niu H, Liu D, Ta N, Yang Q, Norton V, Wu Y, Maiti AK, Wu H, Zheng Z. Expression Signatures of Long Noncoding RNAs in Left Ventricular Noncompaction. Front Cardiovasc Med 2021; 8:763858. [PMID: 34859074 PMCID: PMC8631435 DOI: 10.3389/fcvm.2021.763858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023] Open
Abstract
Long noncoding RNAs have gained widespread attention in recent years for their crucial role in biological regulation. They have been implicated in a range of developmental processes and diseases including cancer, cardiovascular, and neuronal diseases. However, the role of long noncoding RNAs (lncRNAs) in left ventricular noncompaction (LVNC) has not been explored. In this study, we investigated the expression levels of lncRNAs in the blood of LVNC patients and healthy subjects to identify differentially expressed lncRNA that develop LVNC specific biomarkers and targets for developing therapies using biological pathways. We used Agilent Human lncRNA array that contains both updated lncRNAs and mRNAs probes. We identified 1,568 upregulated and 1,141 downregulated (log fold-change > 2.0) lncRNAs that are differentially expressed between LVNC and the control group. Among them, RP11-1100L3.7 and XLOC_002730 are the most upregulated and downregulated lncRNAs. Using quantitative real-time reverse transcription polymerase chain reaction (RT-QPCR), we confirmed the differential expression of three top upregulated and downregulated lncRNAs along with two other randomly picked lncRNAs. Gene Ontology (GO) and KEGG pathways analysis with these differentially expressed lncRNAs provide insight into the cellular pathway leading to LVNC pathogenesis. We also identified 1,066 upregulated and 1,017 downregulated mRNAs. Gene set enrichment analysis (GSEA) showed that G2M, Estrogen, and inflammatory pathways are enriched in differentially expressed genes (DEG). We also identified miRNA targets for these differentially expressed genes. In this study, we first report the use of LncRNA microarray to understand the pathogenesis of LVNC and to identify several lncRNA and genes and their targets as potential biomarkers.
Collapse
Affiliation(s)
- Qingshan Tian
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hanxiao Niu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Functional Examination, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Dingyang Liu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Na Ta
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Postoperative Cardiac Intensive Care Unit, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Qing Yang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Vikram Norton
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Yujing Wu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Emergency, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Amit K Maiti
- Mydnavar, Department of Genetics and Genomics, Troy, MI, United States
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Zhenzhong Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Pungpapong V. Incorporating biological networks into high-dimensional Bayesian survival analysis using an ICM/M algorithm. J Bioinform Comput Biol 2021; 19:2150027. [PMID: 34693885 DOI: 10.1142/s021972002150027x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Cox proportional hazards model has been widely used in cancer genomic research that aims to identify genes from high-dimensional gene expression space associated with the survival time of patients. With the increase in expertly curated biological pathways, it is challenging to incorporate such complex networks in fitting a high-dimensional Cox model. This paper considers a Bayesian framework that employs the Ising prior to capturing relations among genes represented by graphs. A spike-and-slab prior is also assigned to each of the coefficients for the purpose of variable selection. The iterated conditional modes/medians (ICM/M) algorithm is proposed for the implementation for Cox models. The ICM/M estimates hyperparameters using conditional modes and obtains coefficients through conditional medians. This procedure produces some coefficients that are exactly zero, making the model more interpretable. Comparisons of the ICM/M and other regularized Cox models were carried out with both simulated and real data. Compared to lasso, adaptive lasso, elastic net, and DegreeCox, the ICM/M yielded more parsimonious models with consistent variable selection. The ICM/M model also provided a smaller number of false positives than the other methods and showed promising results in terms of predictive accuracy. In terms of computing times among the network-aware methods, the ICM/M algorithm is substantially faster than DegreeCox even when incorporating a large complex network. The implementation of the ICM/M algorithm for Cox regression model is provided in R package icmm, available on the Comprehensive R Archive Network (CRAN).
Collapse
Affiliation(s)
- Vitara Pungpapong
- Department of Statistics, Greater Data Science Lab, Chulalongkorn Business School, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok, Thailand
| |
Collapse
|
19
|
Zhang J, Liu L, Xu T, Zhang W, Li J, Rao N, Le TD. Time to infer miRNA sponge modules. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1686. [PMID: 34342388 DOI: 10.1002/wrna.1686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023]
Abstract
Inferring competing endogenous RNA (ceRNA) or microRNA (miRNA) sponge modules is a challenging and meaningful task for revealing ceRNA regulation mechanism at the module level. Modules in this context refer to groups of miRNA sponges which have mutual competitions and act as functional units for achieving biological processes. The recent development of computational methods based on heterogeneous data provides a novel way to discern the competitive effects of miRNA sponges on human complex diseases. This article aims to provide a comprehensive perspective of miRNA sponge module discovery methods. We first review the publicly available databases of cancer-related miRNA sponges, as the miRNA sponges involved in human cancers contribute to the discovery of cancer-associated modules. Then we review the existing computational methods for inferring miRNA sponge modules. Furthermore, we conduct an assessment on the performance of the module discovery methods with the pan-cancer dataset, and the comparison study indicates that it is useful to infer biologically meaningful miRNA sponge modules by directly mapping heterogeneous data to the competitive modules. Finally, we discuss the future directions and associated challenges in developing in silico methods to infer miRNA sponge modules. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Junpeng Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,School of Engineering, Dali University, Dali, Yunnan, China
| | - Lin Liu
- UniSA STEM, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Taosheng Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Wu Zhang
- School of Agriculture and Biological Sciences, Dali University, Dali, Yunnan, China
| | - Jiuyong Li
- UniSA STEM, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Nini Rao
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Thuc Duy Le
- UniSA STEM, University of South Australia, Mawson Lakes, South Australia, Australia
| |
Collapse
|
20
|
Zhang J, Liu L, Xu T, Zhang W, Zhao C, Li S, Li J, Rao N, Le TD. miRSM: an R package to infer and analyse miRNA sponge modules in heterogeneous data. RNA Biol 2021; 18:2308-2320. [PMID: 33822666 DOI: 10.1080/15476286.2021.1905341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In molecular biology, microRNA (miRNA) sponges are RNA transcripts which compete with other RNA transcripts for binding with miRNAs. Research has shown that miRNA sponges have a fundamental impact on tissue development and disease progression. Generally, to achieve a specific biological function, miRNA sponges tend to form modules or communities in a biological system. Until now, however, there is still a lack of tools to aid researchers to infer and analyse miRNA sponge modules from heterogeneous data. To fill this gap, we develop an R/Bioconductor package, miRSM, for facilitating the procedure of inferring and analysing miRNA sponge modules. miRSM provides a collection of 50 co-expression analysis methods to identify gene co-expression modules (which are candidate miRNA sponge modules), four module discovery methods to infer miRNA sponge modules and seven modular analysis methods for investigating miRNA sponge modules. miRSM will enable researchers to quickly apply new datasets to infer and analyse miRNA sponge modules, and will consequently accelerate the research on miRNA sponges.
Collapse
Affiliation(s)
- Junpeng Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,School of Engineering, Dali University, Dali, Yunnan, China
| | - Lin Liu
- UniSA STEM, University of South Australia, Mawson Lakes, SA, Australia
| | - Taosheng Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Wu Zhang
- School of Agriculture and Biological Sciences, Dali University, Dali, Yunnan, China
| | - Chunwen Zhao
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Sijing Li
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Jiuyong Li
- UniSA STEM, University of South Australia, Mawson Lakes, SA, Australia
| | - Nini Rao
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Thuc Duy Le
- UniSA STEM, University of South Australia, Mawson Lakes, SA, Australia
| |
Collapse
|
21
|
LncRNAs and Immunity: Coding the Immune System with Noncoding Oligonucleotides. Int J Mol Sci 2021; 22:ijms22041741. [PMID: 33572313 PMCID: PMC7916124 DOI: 10.3390/ijms22041741] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) represent key regulators of gene transcription during the inflammatory response. Recent findings showed lncRNAs to be dysregulated in human diseases, such as inflammatory bowel disease, diabetes, allergies, asthma, and cancer. These noncoding RNAs are crucial for immune mechanism, as they are involved in differentiation, cell migration and in the production of inflammatory mediators through regulating protein–protein interactions or their ability to assemble with RNA and DNA. The last interaction can occur in cis or trans and is responsible for all the possible lncRNAs biological effects. Our proposal is to provide an overview on lncRNAs roles and functions related to immunity and immune mediated diseases, since these elucidations could be beneficial to untangle the complex bond between them.
Collapse
|