1
|
Wiarda JE, Shircliff AL, Becker SR, Stasko JB, Sivasankaran SK, Ackermann MR, Loving CL. Conserved B cell signaling, activation, and differentiation in porcine jejunal and ileal Peyer's patches despite distinct immune landscapes. Mucosal Immunol 2024; 17:1222-1241. [PMID: 39147277 DOI: 10.1016/j.mucimm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Peyer's patches (PPs) are B cell-rich sites of intestinal immune induction, yet PP-associated B cell signaling, activation, and differentiation are poorly defined. Single-cell and spatial transcriptomics were completed to study B cells from porcine jejunum and ileum containing PPs. Intestinal locations had distinct immune landscapes, including more follicular B cells in ileum and increased MHC-II-encoding gene expression in jejunal B cells. Despite distinct landscapes, conserved B cell dynamics were detected across intestinal locations, including B cell signaling to CD4+ macrophages that are putative phagocytic, cytotoxic, effector cells and deduced routes of B cell activation/differentiation, including resting B cells migrating into follicles to replicate/divide or differentiate into antibody-secreting cells residing in intestinal crypts. A six-biomarker panel recapitulated transcriptomics findings of B cell phenotypes, frequencies, and spatial locations via ex vivo and in situ staining. Findings convey conserved B cell dynamics across intestinal locations containing PPs, despite location-specific immune environments. Results establish a benchmark of B cell dynamics for understanding intestinal immune induction important to promoting gut/overall health.
Collapse
Affiliation(s)
- Jayne E Wiarda
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA; Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, USA
| | - Adrienne L Shircliff
- Microscopy Services Laboratory, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sage R Becker
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA; Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, USA; Immunobiology Graduate Program, Iowa State University, Ames, IA, USA
| | - Judith B Stasko
- Microscopy Services Laboratory, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sathesh K Sivasankaran
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA; Genome Informatics Facility, Iowa State University, Ames, IA, USA
| | - Mark R Ackermann
- Office of the Director, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.
| |
Collapse
|
2
|
Weber LL, Reiman D, Roddur MS, Qi Y, El-Kebir M, Khan AA. Isotype-aware inference of B cell clonal lineage trees from single-cell sequencing data. CELL GENOMICS 2024; 4:100637. [PMID: 39208795 PMCID: PMC11480863 DOI: 10.1016/j.xgen.2024.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/19/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) enables comprehensive characterization of the micro-evolutionary processes of B cells during an adaptive immune response, capturing features of somatic hypermutation (SHM) and class switch recombination (CSR). Existing phylogenetic approaches for reconstructing B cell evolution have primarily focused on the SHM process alone. Here, we present tree inference of B cell clonal lineages (TRIBAL), an algorithm designed to optimally reconstruct the evolutionary history of B cell clonal lineages undergoing both SHM and CSR from scRNA-seq data. Through simulations, we demonstrate that TRIBAL produces more comprehensive and accurate B cell lineage trees compared to existing methods. Using real-world datasets, TRIBAL successfully recapitulates expected biological trends in a model affinity maturation system while reconstructing evolutionary histories with more parsimonious class switching than state-of-the-art methods. Thus, TRIBAL significantly improves B cell lineage tracing, useful for modeling vaccine responses, disease progression, and the identification of therapeutic antibodies.
Collapse
Affiliation(s)
- Leah L Weber
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Derek Reiman
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
| | - Mrinmoy S Roddur
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuanyuan Qi
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mohammed El-Kebir
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Aly A Khan
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Chan Zuckerberg Biohub Chicago, Chicago, IL 60642, USA.
| |
Collapse
|
3
|
Manakkat Vijay GK, Zhou M, Thakkar K, Rothrauff A, Chawla AS, Chen D, Lau LCW, Gerges PH, Chetal K, Chhibbar P, Fan J, Das J, Joglekar A, Borghesi L, Salomonis N, Xu H, Singh H. Temporal dynamics and genomic programming of plasma cell fates. Nat Immunol 2024; 25:1097-1109. [PMID: 38698087 DOI: 10.1038/s41590-024-01831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/04/2024] [Indexed: 05/05/2024]
Abstract
Affinity-matured plasma cells (PCs) of varying lifespans are generated through a germinal center (GC) response. The developmental dynamics and genomic programs of antigen-specific PC precursors remain to be elucidated. Here, using a model antigen in mice, we demonstrate biphasic generation of PC precursors, with those generating long-lived bone marrow PCs preferentially produced in the late phase of GC response. Clonal tracing using single-cell RNA sequencing and B cell antigen receptor sequencing in spleen and bone marrow compartments, coupled with adoptive transfer experiments, reveals a new PC transition state that gives rise to functionally competent PC precursors. The latter undergo clonal expansion, dependent on inducible expression of TIGIT. We propose a model for the proliferation and programming of precursors of long-lived PCs, based on extended antigen encounters in the GC.
Collapse
Affiliation(s)
| | - Ming Zhou
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, Westlake University, Hangzhou, China
| | - Kairavee Thakkar
- Division of Biomedical Informatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA
- Department of Pharmacology and Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Abigail Rothrauff
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanpreet Singh Chawla
- Division of Immunobiology, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA
| | - Dianyu Chen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, Westlake University, Hangzhou, China
| | - Louis Chi-Wai Lau
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Habib Gerges
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA
| | - Prabal Chhibbar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingyu Fan
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jishnu Das
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alok Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa Borghesi
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA.
| | - Heping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- School of Medicine, Westlake University, Hangzhou, China.
| | - Harinder Singh
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Ng JCF, Montamat Garcia G, Stewart AT, Blair P, Mauri C, Dunn-Walters DK, Fraternali F. sciCSR infers B cell state transition and predicts class-switch recombination dynamics using single-cell transcriptomic data. Nat Methods 2024; 21:823-834. [PMID: 37932398 PMCID: PMC11093741 DOI: 10.1038/s41592-023-02060-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/02/2023] [Indexed: 11/08/2023]
Abstract
Class-switch recombination (CSR) is an integral part of B cell maturation. Here we present sciCSR (pronounced 'scissor', single-cell inference of class-switch recombination), a computational pipeline that analyzes CSR events and dynamics of B cells from single-cell RNA sequencing (scRNA-seq) experiments. Validated on both simulated and real data, sciCSR re-analyzes scRNA-seq alignments to differentiate productive heavy-chain immunoglobulin transcripts from germline 'sterile' transcripts. From a snapshot of B cell scRNA-seq data, a Markov state model is built to infer the dynamics and direction of CSR. Applying sciCSR on severe acute respiratory syndrome coronavirus 2 vaccination time-course scRNA-seq data, we observe that sciCSR predicts, using data from an earlier time point in the collected time-course, the isotype distribution of B cell receptor repertoires of subsequent time points with high accuracy (cosine similarity ~0.9). Using processes specific to B cells, sciCSR identifies transitions that are often missed by conventional RNA velocity analyses and can reveal insights into the dynamics of B cell CSR during immune response.
Collapse
Affiliation(s)
- Joseph C F Ng
- Department of Structural and Molecular Biology, Division of Biosciences and Institute of Structural and Molecular Biology, University College London, London, UK.
| | - Guillem Montamat Garcia
- Division of Infection and Immunity and Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | | | - Paul Blair
- Division of Infection and Immunity and Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Claudia Mauri
- Division of Infection and Immunity and Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | | | - Franca Fraternali
- Department of Structural and Molecular Biology, Division of Biosciences and Institute of Structural and Molecular Biology, University College London, London, UK.
| |
Collapse
|
5
|
Weber LL, Reiman D, Roddur MS, Qi Y, El-Kebir M, Khan AA. TRIBAL: Tree Inference of B cell Clonal Lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568874. [PMID: 38076836 PMCID: PMC10705245 DOI: 10.1101/2023.11.27.568874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
B cells are a critical component of the adaptive immune system, responsible for producing antibodies that help protect the body from infections and foreign substances. Single cell RNA-sequencing (scRNA-seq) has allowed for both profiling of B cell receptor (BCR) sequences and gene expression. However, understanding the adaptive and evolutionary mechanisms of B cells in response to specific stimuli remains a significant challenge in the field of immunology. We introduce a new method, TRIBAL, which aims to infer the evolutionary history of clonally related B cells from scRNA-seq data. The key insight of TRIBAL is that inclusion of isotype data into the B cell lineage inference problem is valuable for reducing phylogenetic uncertainty that arises when only considering the receptor sequences. Consequently, the TRIBAL inferred B cell lineage trees jointly capture the somatic mutations introduced to the B cell receptor during affinity maturation and isotype transitions during class switch recombination. In addition, TRIBAL infers isotype transition probabilities that are valuable for gaining insight into the dynamics of class switching. Via in silico experiments, we demonstrate that TRIBAL infers isotype transition probabilities with the ability to distinguish between direct versus sequential switching in a B cell population. This results in more accurate B cell lineage trees and corresponding ancestral sequence and class switch reconstruction compared to competing methods. Using real-world scRNA-seq datasets, we show that TRIBAL recapitulates expected biological trends in a model affinity maturation system. Furthermore, the B cell lineage trees inferred by TRIBAL were equally plausible for the BCR sequences as those inferred by competing methods but yielded lower entropic partitions for the isotypes of the sequenced B cell. Thus, our method holds the potential to further advance our understanding of vaccine responses, disease progression, and the identification of therapeutic antibodies.
Collapse
Affiliation(s)
- Leah L. Weber
- Department of Computer Science, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Derek Reiman
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
| | - Mrinmoy S. Roddur
- Department of Computer Science, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Yuanyuan Qi
- Department of Computer Science, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Mohammed El-Kebir
- Department of Computer Science, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Aly A. Khan
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Vijay GKM, Zhou M, Thakkar K, Rothrauff A, Chawla AS, Chen D, Lau LCW, Habib P, Chetal K, Chhibbar P, Fan J, Das J, Joglekar A, Borghesi L, Salomonis N, Xu H, Singh H. Temporal dynamics and genomic programming of plasma cell fates. RESEARCH SQUARE 2023:rs.3.rs-3296446. [PMID: 37720050 PMCID: PMC10503833 DOI: 10.21203/rs.3.rs-3296446/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Affinity-matured plasma cells (PCs) of varying lifespans are generated through a germinal center (GC) response. The developmental dynamics and genomic programs of antigen-specific PC precursors remain to be elucidated. Using a model antigen, we demonstrate biphasic generation of PC precursors, with those generating long-lived bone marrow PCs preferentially produced in the late phase of GC response. Clonal tracing using scRNA-seq+BCR-seq in spleen and bone marrow compartments, coupled with adoptive transfer experiments, reveal a novel PC transition state that gives rise to functionally competent PC precursors. The latter undergo clonal expansion, dependent on inducible expression of TIGIT. We propose a model for the proliferation and programming of precursors of long-lived PCs, based on extended antigen encounters followed by reduced antigen availability.
Collapse
Affiliation(s)
- Godhev Kumar Manakkat Vijay
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- These authors contributed equally
| | - Ming Zhou
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- These authors contributed equally
| | - Kairavee Thakkar
- Division of Bioinformatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio, USA
- Department of Pharmacology and Physiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
- These authors contributed equally
| | - Abigail Rothrauff
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanpreet Singh Chawla
- Division of Immunobiology, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dianyu Chen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Louis Chi-Wai Lau
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Habib
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kashish Chetal
- Division of Bioinformatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio, USA
| | - Prabal Chhibbar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingyu Fan
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jishnu Das
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alok Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa Borghesi
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan Salomonis
- Division of Bioinformatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio, USA
| | - Heping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Harinder Singh
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Manakkat Vijay GK, Singh H. Cell fate dynamics and genomic programming of plasma cell precursors. Immunol Rev 2021; 303:62-71. [PMID: 34195999 DOI: 10.1111/imr.13010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
This review is focused on the cellular dynamics and genomic programming of plasma cell (PC) precursors that arise during germinal center (GC) B cell responses in secondary lymphoid organs (SLOs) and give rise to PCs in the bone marrow. Considerable progress has been made in the phenotypic characterization of circulating and bone marrow PC precursors as well as their differentiated short-lived (SLPC) and long-lived (LLPC) counterparts, in the context of model antigen and vaccine responses. Importantly, it has been possible to infer the temporal dynamics of generation of PC precursors during a GC response. However, the nature of the PC precursors at their site of generation in SLOs, and their signaling and genomic states, remain to be elucidated. Our synthesis draws upon experimental studies conducted in murine models as well as in humans, the latter complemented with cell culture manipulations of PCs and their precursors. By integration of the studies in murine and human systems, which are being accelerated by new genomic methodologies, we highlight insights and hypotheses concerning the generation of PCs. This framework can be extended and explored from both fundamental and translational standpoints.
Collapse
Affiliation(s)
- Godhev K Manakkat Vijay
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Harinder Singh
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|