1
|
Lyu B, Gou W, Xu F, Chen L, Wang Z, Ren Z, Liu G, Li Y, Hou W. Target Discovery Driven by Chemical Biology and Computational Biology. CHEM REC 2025:e202400182. [PMID: 39811950 DOI: 10.1002/tcr.202400182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Target identification is crucial for drug screening and development because it can reveal the mechanism of drug action and ensure the reliability and accuracy of the results. Chemical biology, an interdisciplinary field combining chemistry and biology, can assist in this process by studying the interactions between active molecular compounds and proteins and their physiological effects. It can also help predict potential drug targets or candidates, develop new biomarker assays and diagnostic reagents, and evaluate the selectivity and range of active compounds to reduce the risk of off-target effects. Chemical biology can achieve these goals using techniques such as changing protein thermal stability, enzyme sensitivity, and molecular structure and applying probes, isotope labeling and mass spectrometry. Concurrently, computational biology employs a diverse array of computational models to predict drug targets. This approach also offers innovative avenues for repurposing existing drugs. In this paper, we review the reported chemical biology and computational biology techniques for identifying different types of targets that can provide valuable insights for drug target discovery.
Collapse
Affiliation(s)
- Bohai Lyu
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenfeng Gou
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Feifei Xu
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Leyuan Chen
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Zhiyun Wang
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Zhonghao Ren
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Gaiting Liu
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yiliang Li
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Wenbin Hou
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China
| |
Collapse
|
2
|
Rodriguez DCP, Weber KC, Sundberg B, Glasgow A. MAGPIE: An interactive tool for visualizing and analyzing protein-ligand interactions. Protein Sci 2024; 33:e5027. [PMID: 38989559 PMCID: PMC11237554 DOI: 10.1002/pro.5027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 07/12/2024]
Abstract
Quantitative tools to compile and analyze biomolecular interactions among chemically diverse binding partners would improve therapeutic design and aid in studying molecular evolution. Here we present Mapping Areas of Genetic Parsimony In Epitopes (MAGPIE), a publicly available software package for simultaneously visualizing and analyzing thousands of interactions between a single protein or small molecule ligand (the "target") and all of its protein binding partners ("binders"). MAGPIE generates an interactive three-dimensional visualization from a set of protein complex structures that share the target ligand, as well as sequence logo-style amino acid frequency graphs that show all the amino acids from the set of protein binders that interact with user-defined target ligand positions or chemical groups. MAGPIE highlights all the salt bridge and hydrogen bond interactions made by the target in the visualization and as separate amino acid frequency graphs. Finally, MAGPIE collates the most common target-binder interactions as a list of "hotspots," which can be used to analyze trends or guide the de novo design of protein binders. As an example of the utility of the program, we used MAGPIE to probe how different antibody fragments bind a viral antigen; how a common metabolite binds diverse protein partners; and how two ligands bind orthologs of a well-conserved glycolytic enzyme for a detailed understanding of evolutionarily conserved interactions involved in its activation and inhibition. MAGPIE is implemented in Python 3 and freely available at https://github.com/glasgowlab/MAGPIE, along with sample datasets, usage examples, and helper scripts to prepare input structures.
Collapse
Affiliation(s)
- Daniel C. Pineda Rodriguez
- Department of Biochemistry and Molecular BiophysicsColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Kyle C. Weber
- Department of Biochemistry and Molecular BiophysicsColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Belen Sundberg
- Department of Biochemistry and Molecular BiophysicsColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Anum Glasgow
- Department of Biochemistry and Molecular BiophysicsColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
3
|
Dutta C, Lopez V, Preston C, Rudra N, Chavez AMV, Rogers AM, Solomon LA. Controlling heme redox properties in peptide amphiphile fibers with sequence and heme loading ratio. Biophys J 2024; 123:1781-1791. [PMID: 38783603 PMCID: PMC11267424 DOI: 10.1016/j.bpj.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Controlling the reduction midpoint potential of heme B is a key factor in many bioelectrochemical reactions, including long-range electron transport. Currently, there are a number of globular model protein systems to study this biophysical parameter; however, there are none for large polymeric protein model systems (e.g., the OmcS protein from G. sulfurreducens). Peptide amphiphiles, short peptides with a lipid tail that polymerize into fibrous structures, fill this gap. Here, we show a peptide amphiphile model system where one can tune the electrochemical potential of heme B by changing the loading ratio and peptide sequence. Changing the loading ratio resulted in the most significant increase, with values as high as -22 mV down to -224 mV. Circular dichroism spectra of certain sequences show Cotton effects at lower loading ratios that disappear as more heme B is added, indicating an ordered environment that becomes disrupted if heme B is overpacked. These findings can contribute to the design of functional self-assembling biomaterials.
Collapse
Affiliation(s)
- Chiranjit Dutta
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia
| | - Virginia Lopez
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia
| | - Conner Preston
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia
| | - Nimesh Rudra
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia
| | | | - Abigail M Rogers
- Department of Biology, George Mason University, Fairfax, Virginia
| | - Lee A Solomon
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia.
| |
Collapse
|
4
|
O'Connor E, Micklefield J, Cai Y. Searching for the optimal microbial factory: high-throughput biosensors and analytical techniques for screening small molecules. Curr Opin Biotechnol 2024; 87:103125. [PMID: 38547587 DOI: 10.1016/j.copbio.2024.103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 06/09/2024]
Abstract
High-throughput screening technologies have been lacking in comparison to the plethora of high-throughput genetic diversification techniques developed in biotechnology. This review explores the challenges and advancements in high-throughput screening for high-value natural products, focusing on the critical need to expand ligand targets for biosensors and increase the throughput of analytical techniques in screening microbial cell libraries for optimal strain performance. The engineering techniques to broaden the scope of ligands for biosensors, such as transcription factors, G protein-coupled receptors and riboswitches are discussed. On the other hand, integration of microfluidics with traditional analytical methods is explored, covering fluorescence-activated cell sorting, Raman-activated cell sorting and mass spectrometry, emphasising recent developments in maximising throughput.
Collapse
Affiliation(s)
- Eloise O'Connor
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jason Micklefield
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
5
|
Zhang K, Tang Y, Yu H, Yang J, Tao L, Xiang P. Discovery of lupus nephritis targeted inhibitors based on De novo molecular design: comprehensive application of vinardo scoring, ADMET analysis, and molecular dynamics simulation. J Biomol Struct Dyn 2024:1-14. [PMID: 38501728 DOI: 10.1080/07391102.2024.2329293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
Lupus Nephritis (LN) is an autoimmune disease affecting the kidneys, and conventional drug studies have limitations due to its imprecise and complex pathogenesis. Therefore, the aim of this study was to design a novel Lupus Nephritis-targeted drug with good clinical due potential, high potency and selectivity by computer-assisted approach.NIK belongs to the serine/threonine protein kinase, which is gaining attention as a drug target for Lupus Nephritis. we used bioinformatics, homology modelling and sequence comparison analysis, small molecule ab initio design, ADMET analysis, molecular docking, molecular dynamics simulation, and MM/PBSA analysis to design and explore the selectivity and efficiency of a novel Lupus Nephritis-targeting drug, ClImYnib, and a classical NIK inhibitor, NIK SMI1. We used bioinformatics techniques to determine the correlation between lupus nephritis and the NF-κB signaling pathway. De novo drugs design was used to create a NIK-targeted inhibitor, ClImYnib, with lower toxicity, after which we used molecular dynamics to simulate NIK SMI1 against ClImYnib, and the simulation results showed that ClImYnib had better selectivity and efficiency. Our research delves into the molecular mechanism of protein ligands, and we have designed and validated an excellent NIK inhibitor using multiple computational simulation methods. More importantly, it provides an idea of target designing small molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kaiyuan Zhang
- School of Clinical Medicine, Bengbu Medical College, China
| | - Yingkai Tang
- Department of Anatomy, School of basic Medicine, Bengbu Medical College, China
| | - Haiyue Yu
- School of Clinical Medicine, Bengbu Medical College, China
| | - Jingtao Yang
- School of Clinical Medicine, Bengbu Medical College, China
| | - Lu Tao
- Central Laboratory, The Frist Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Ping Xiang
- Central Laboratory, The Frist Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
6
|
Sankar S, Vasudevan S, Chandra N. CRD: A de novo design algorithm for the prediction of cognate protein receptors for small molecule ligands. Structure 2024; 32:362-375.e4. [PMID: 38194962 DOI: 10.1016/j.str.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/20/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
While predicting a ligand that binds to a protein is feasible with current methods, the opposite, i.e., the prediction of a receptor for a ligand remains challenging. We present an approach for predicting receptors of a given ligand that uses de novo design and structural bioinformatics. We have developed the algorithm CRD, comprising multiple modules combining fragment-based sub-site finding, a machine learning function to estimate the size of the site, a genetic algorithm that encodes knowledge on protein structures and a physics-based fitness scoring scheme. CRD includes a pseudo-receptor design component followed by a mapping component to identify proteins that might contain these sites. CRD recovers the sites and receptors of several natural ligands. It designs similar sites for similar ligands, yet to some extent can distinguish between closely related ligands. CRD correctly predicts receptor classes for several drugs and might become a valuable tool for drug discovery.
Collapse
Affiliation(s)
- Santhosh Sankar
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sneha Vasudevan
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India; Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
7
|
Kortemme T. De novo protein design-From new structures to programmable functions. Cell 2024; 187:526-544. [PMID: 38306980 PMCID: PMC10990048 DOI: 10.1016/j.cell.2023.12.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 02/04/2024]
Abstract
Methods from artificial intelligence (AI) trained on large datasets of sequences and structures can now "write" proteins with new shapes and molecular functions de novo, without starting from proteins found in nature. In this Perspective, I will discuss the state of the field of de novo protein design at the juncture of physics-based modeling approaches and AI. New protein folds and higher-order assemblies can be designed with considerable experimental success rates, and difficult problems requiring tunable control over protein conformations and precise shape complementarity for molecular recognition are coming into reach. Emerging approaches incorporate engineering principles-tunability, controllability, and modularity-into the design process from the beginning. Exciting frontiers lie in deconstructing cellular functions with de novo proteins and, conversely, constructing synthetic cellular signaling from the ground up. As methods improve, many more challenges are unsolved.
Collapse
Affiliation(s)
- Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
8
|
Xi C, Diao J, Moon TS. Advances in ligand-specific biosensing for structurally similar molecules. Cell Syst 2023; 14:1024-1043. [PMID: 38128482 PMCID: PMC10751988 DOI: 10.1016/j.cels.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023]
Abstract
The specificity of biological systems makes it possible to develop biosensors targeting specific metabolites, toxins, and pollutants in complex medical or environmental samples without interference from structurally similar compounds. For the last two decades, great efforts have been devoted to creating proteins or nucleic acids with novel properties through synthetic biology strategies. Beyond augmenting biocatalytic activity, expanding target substrate scopes, and enhancing enzymes' enantioselectivity and stability, an increasing research area is the enhancement of molecular specificity for genetically encoded biosensors. Here, we summarize recent advances in the development of highly specific biosensor systems and their essential applications. First, we describe the rational design principles required to create libraries containing potential mutants with less promiscuity or better specificity. Next, we review the emerging high-throughput screening techniques to engineer biosensing specificity for the desired target. Finally, we examine the computer-aided evaluation and prediction methods to facilitate the construction of ligand-specific biosensors.
Collapse
Affiliation(s)
- Chenggang Xi
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jinjin Diao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
9
|
Tellechea-Luzardo J, Stiebritz MT, Carbonell P. Transcription factor-based biosensors for screening and dynamic regulation. Front Bioeng Biotechnol 2023; 11:1118702. [PMID: 36814719 PMCID: PMC9939652 DOI: 10.3389/fbioe.2023.1118702] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Advances in synthetic biology and genetic engineering are bringing into the spotlight a wide range of bio-based applications that demand better sensing and control of biological behaviours. Transcription factor (TF)-based biosensors are promising tools that can be used to detect several types of chemical compounds and elicit a response according to the desired application. However, the wider use of this type of device is still hindered by several challenges, which can be addressed by increasing the current metabolite-activated transcription factor knowledge base, developing better methods to identify new transcription factors, and improving the overall workflow for the design of novel biosensor circuits. These improvements are particularly important in the bioproduction field, where researchers need better biosensor-based approaches for screening production-strains and precise dynamic regulation strategies. In this work, we summarize what is currently known about transcription factor-based biosensors, discuss recent experimental and computational approaches targeted at their modification and improvement, and suggest possible future research directions based on two applications: bioproduction screening and dynamic regulation of genetic circuits.
Collapse
Affiliation(s)
- Jonathan Tellechea-Luzardo
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Martin T. Stiebritz
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
- Institute for Integrative Systems Biology I2SysBio, Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
10
|
Yang KK, Zanichelli N, Yeh H. Masked inverse folding with sequence transfer for protein representation learning. Protein Eng Des Sel 2023; 36:gzad015. [PMID: 37883472 DOI: 10.1093/protein/gzad015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Self-supervised pretraining on protein sequences has led to state-of-the art performance on protein function and fitness prediction. However, sequence-only methods ignore the rich information contained in experimental and predicted protein structures. Meanwhile, inverse folding methods reconstruct a protein's amino-acid sequence given its structure, but do not take advantage of sequences that do not have known structures. In this study, we train a masked inverse folding protein masked language model parameterized as a structured graph neural network. During pretraining, this model learns to reconstruct corrupted sequences conditioned on the backbone structure. We then show that using the outputs from a pretrained sequence-only protein masked language model as input to the inverse folding model further improves pretraining perplexity. We evaluate both of these models on downstream protein engineering tasks and analyze the effect of using information from experimental or predicted structures on performance.
Collapse
Affiliation(s)
- Kevin K Yang
- Microsoft Research, 1 Memorial Drive, Cambridge, MA, USA
| | | | - Hugh Yeh
- Pritzker School of Medicine, University of Chicago, 924 E 57th Street, Chicago, IL, USA
| |
Collapse
|
11
|
Talluri S. Algorithms for protein design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:1-38. [PMID: 35534105 DOI: 10.1016/bs.apcsb.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Computational Protein Design has the potential to contribute to major advances in enzyme technology, vaccine design, receptor-ligand engineering, biomaterials, nanosensors, and synthetic biology. Although Protein Design is a challenging problem, proteins can be designed by experts in Protein Design, as well as by non-experts whose primary interests are in the applications of Protein Design. The increased accessibility of Protein Design technology is attributable to the accumulated knowledge and experience with Protein Design as well as to the availability of software and online resources. The objective of this review is to serve as a guide to the relevant literature with a focus on the novel methods and algorithms that have been developed or applied for Protein Design, and to assist in the selection of algorithms for Protein Design. Novel algorithms and models that have been introduced to utilize the enormous amount of experimental data and novel computational hardware have the potential for producing substantial increases in the accuracy, reliability and range of applications of designed proteins.
Collapse
Affiliation(s)
- Sekhar Talluri
- Department of Biotechnology, GITAM, Visakhapatnam, India.
| |
Collapse
|
12
|
Kretschmer S, Kortemme T. Advances in the Computational Design of Small-Molecule-Controlled Protein-Based Circuits for Synthetic Biology. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2022; 110:659-674. [PMID: 36531560 PMCID: PMC9754107 DOI: 10.1109/jproc.2022.3157898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Synthetic biology approaches living systems with an engineering perspective and promises to deliver solutions to global challenges in healthcare and sustainability. A critical component is the design of biomolecular circuits with programmable input-output behaviors. Such circuits typically rely on a sensor module that recognizes molecular inputs, which is coupled to a functional output via protein-level circuits or regulating the expression of a target gene. While gene expression outputs can be customized relatively easily by exchanging the target genes, sensing new inputs is a major limitation. There is a limited repertoire of sensors found in nature, and there are often difficulties with interfacing them with engineered circuits. Computational protein design could be a key enabling technology to address these challenges, as it allows for the engineering of modular and tunable sensors that can be tailored to the circuit's application. In this article, we review recent computational approaches to design protein-based sensors for small-molecule inputs with particular focus on those based on the widely used Rosetta software suite. Furthermore, we review mechanisms that have been harnessed to couple ligand inputs to functional outputs. Based on recent literature, we illustrate how the combination of protein design and synthetic biology enables new sensors for diverse applications ranging from biomedicine to metabolic engineering. We conclude with a perspective on how strategies to address frontiers in protein design and cellular circuit design may enable the next generation of sense-response networks, which may increasingly be assembled from de novo components to display diverse and engineerable input-output behaviors.
Collapse
Affiliation(s)
- Simon Kretschmer
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA 94158 USA, and affiliated with the California Quantitative Biosciences Institute (QBI) at UCSF, San Francisco, CA 94158 USA
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA 94158 USA, and affiliated with the California Quantitative Biosciences Institute (QBI) at UCSF, San Francisco, CA 94158 USA
| |
Collapse
|
13
|
Pan X, Kortemme T. De novo protein fold families expand the designable ligand binding site space. PLoS Comput Biol 2021; 17:e1009620. [PMID: 34807909 PMCID: PMC8648124 DOI: 10.1371/journal.pcbi.1009620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 12/06/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
A major challenge in designing proteins de novo to bind user-defined ligands with high affinity is finding backbones structures into which a new binding site geometry can be engineered with high precision. Recent advances in methods to generate protein fold families de novo have expanded the space of accessible protein structures, but it is not clear to what extend de novo proteins with diverse geometries also expand the space of designable ligand binding functions. We constructed a library of 25,806 high-quality ligand binding sites and developed a fast protocol to place (“match”) these binding sites into both naturally occurring and de novo protein families with two fold topologies: Rossman and NTF2. Each matching step involves engineering new binding site residues into each protein “scaffold”, which is distinct from the problem of comparing already existing binding pockets. 5,896 and 7,475 binding sites could be matched to the Rossmann and NTF2 fold families, respectively. De novo designed Rossman and NTF2 protein families can support 1,791 and 678 binding sites that cannot be matched to naturally existing structures with the same topologies, respectively. While the number of protein residues in ligand binding sites is the major determinant of matching success, ligand size and primary sequence separation of binding site residues also play important roles. The number of matched binding sites are power law functions of the number of members in a fold family. Our results suggest that de novo sampling of geometric variations on diverse fold topologies can significantly expand the space of designable ligand binding sites for a wealth of possible new protein functions. De novo design of proteins that can bind to novel and highly diverse user-defined small molecule ligands could have broad biomedical and synthetic biology applications. Because ligand binding site geometries need to be accommodated by protein backbone scaffolds at high accuracy, the diversity of scaffolds is a major limitation for designing new ligand binding functions. Advances in computational protein structure design methods have significantly increased the number of accessible stable scaffold structures. Understanding how many new ligand binding sites can be designed into the de novo scaffolds is important for engineering novel ligand binding proteins. To answer this question, we constructed a large library of ligand binding sites from the Protein Data Bank (PDB). We tested the number of ligand binding sites that can be designed into de novo scaffolds and naturally existing scaffolds with the same fold topologies. The results showed that de novo scaffolds significantly expanded the potential ligand binding space of their respective fold topologies. We also identified factors that affect difficulties of binding site accommodation, as well as the relationship between the number of scaffolds and the accessible ligand binding site space. We believe our findings will benefit future method development and applications of ligand binding protein design.
Collapse
Affiliation(s)
- Xingjie Pan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (XP); (TK)
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
- * E-mail: (XP); (TK)
| |
Collapse
|
14
|
Atilgan AR, Atilgan C. Computational strategies for protein conformational ensemble detection. Curr Opin Struct Biol 2021; 72:79-87. [PMID: 34563946 DOI: 10.1016/j.sbi.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023]
Abstract
Protein function is constrained by the three-dimensional structure but is delineated by its dynamics. This framework must satisfy specificity of function along with adaptability to changing environments and evolvability under external constraints. The accessibility of the available regions of the energy landscape for a set of conditions and shifts in the populations upon their modulation have effects propagating across scales, from biomolecular interactions, to organisms, to populations. Developing the ability to detect and juggle protein conformations supplemented by a physics-based understanding has implications for not only in vivo problems but also for resistance impeding drug discovery and bionano-sensor design.
Collapse
Affiliation(s)
- Ali Rana Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey.
| |
Collapse
|
15
|
Michael E, Simonson T. How much can physics do for protein design? Curr Opin Struct Biol 2021; 72:46-54. [PMID: 34461593 DOI: 10.1016/j.sbi.2021.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/03/2023]
Abstract
Physics and physical chemistry are an important thread in computational protein design, complementary to knowledge-based tools. They provide molecular mechanics scoring functions that need little or no ad hoc parameter readjustment, methods to thoroughly sample equilibrium ensembles, and different levels of approximation for conformational flexibility. They led recently to the successful redesign of a small protein using a physics-based folded state energy. Adaptive Monte Carlo or molecular dynamics schemes were discovered where protein variants are populated as per their ligand-binding free energy or catalytic efficiency. Molecular dynamics have been used for backbone flexibility. Implicit solvent models have been refined, polarizable force fields applied, and many physical insights obtained.
Collapse
Affiliation(s)
- Eleni Michael
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, 91128, Palaiseau, France
| | - Thomas Simonson
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, 91128, Palaiseau, France.
| |
Collapse
|
16
|
Pereira JM, Vieira M, Santos SM. Step-by-step design of proteins for small molecule interaction: A review on recent milestones. Protein Sci 2021; 30:1502-1520. [PMID: 33934427 PMCID: PMC8284594 DOI: 10.1002/pro.4098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 01/01/2023]
Abstract
Protein design is the field of synthetic biology that aims at developing de novo custom-made proteins and peptides for specific applications. Despite exploring an ambitious goal, recent computational advances in both hardware and software technologies have paved the way to high-throughput screening and detailed design of novel folds and improved functionalities. Modern advances in the field of protein design for small molecule targeting are described in this review, organized in a step-by-step fashion: from the conception of a new or upgraded active binding site, to scaffold design, sequence optimization, and experimental expression of the custom protein. In each step, contemporary examples are described, and state-of-the-art software is briefly explored.
Collapse
Affiliation(s)
- José M. Pereira
- CICECO & Departamento de QuímicaUniversidade de AveiroAveiroPortugal
| | - Maria Vieira
- CICECO & Departamento de QuímicaUniversidade de AveiroAveiroPortugal
| | - Sérgio M. Santos
- CICECO & Departamento de QuímicaUniversidade de AveiroAveiroPortugal
| |
Collapse
|
17
|
Ferrando J, Solomon LA. Recent Progress Using De Novo Design to Study Protein Structure, Design and Binding Interactions. Life (Basel) 2021; 11:life11030225. [PMID: 33802210 PMCID: PMC7999464 DOI: 10.3390/life11030225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
De novo protein design is a powerful methodology used to study natural functions in an artificial-protein context. Since its inception, it has been used to reproduce a plethora of reactions and uncover biophysical principles that are often difficult to extract from direct studies of natural proteins. Natural proteins are capable of assuming a variety of different structures and subsequently binding ligands at impressively high levels of both specificity and affinity. Here, we will review recent examples of de novo design studies on binding reactions for small molecules, nucleic acids, and the formation of protein-protein interactions. We will then discuss some new structural advances in the field. Finally, we will discuss some advancements in computational modeling and design approaches and provide an overview of some modern algorithmic tools being used to design these proteins.
Collapse
Affiliation(s)
- Juan Ferrando
- Department of Biology, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA;
| | - Lee A. Solomon
- Department of Chemistry and Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
- Correspondence: ; Tel.: +703-993-6418
| |
Collapse
|
18
|
Ferreira SS, Antunes MS. Re-engineering Plant Phenylpropanoid Metabolism With the Aid of Synthetic Biosensors. FRONTIERS IN PLANT SCIENCE 2021; 12:701385. [PMID: 34603348 PMCID: PMC8481569 DOI: 10.3389/fpls.2021.701385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/23/2021] [Indexed: 05/03/2023]
Abstract
Phenylpropanoids comprise a large class of specialized plant metabolites with many important applications, including pharmaceuticals, food nutrients, colorants, fragrances, and biofuels. Therefore, much effort has been devoted to manipulating their biosynthesis to produce high yields in a more controlled manner in microbial and plant systems. However, current strategies are prone to significant adverse effects due to pathway complexity, metabolic burden, and metabolite bioactivity, which still hinder the development of tailor-made phenylpropanoid biofactories. This gap could be addressed by the use of biosensors, which are molecular devices capable of sensing specific metabolites and triggering a desired response, as a way to sense the pathway's metabolic status and dynamically regulate its flux based on specific signals. Here, we provide a brief overview of current research on synthetic biology and metabolic engineering approaches to control phenylpropanoid synthesis and phenylpropanoid-related biosensors, advocating for the use of biosensors and genetic circuits as a step forward in plant synthetic biology to develop autonomously-controlled phenylpropanoid-producing plant biofactories.
Collapse
|
19
|
Pan X, Kortemme T. Recent advances in de novo protein design: Principles, methods, and applications. J Biol Chem 2021; 296:100558. [PMID: 33744284 PMCID: PMC8065224 DOI: 10.1016/j.jbc.2021.100558] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
The computational de novo protein design is increasingly applied to address a number of key challenges in biomedicine and biological engineering. Successes in expanding applications are driven by advances in design principles and methods over several decades. Here, we review recent innovations in major aspects of the de novo protein design and include how these advances were informed by principles of protein architecture and interactions derived from the wealth of structures in the Protein Data Bank. We describe developments in de novo generation of designable backbone structures, optimization of sequences, design scoring functions, and the design of the function. The advances not only highlight design goals reachable now but also point to the challenges and opportunities for the future of the field.
Collapse
Affiliation(s)
- Xingjie Pan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA; UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, California, USA.
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA; UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|