1
|
Dickinson RB, Abolghasemzade S, Lele TP. Rethinking nuclear shaping: insights from the nuclear drop model. SOFT MATTER 2024; 20:7558-7565. [PMID: 39105242 PMCID: PMC11446230 DOI: 10.1039/d4sm00683f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Changes in the nuclear shape caused by cellular shape changes are generally assumed to reflect an elastic deformation from a spherical nuclear shape. Recent evidence, however, suggests that the nuclear lamina, which forms the outer nuclear surface together with the nuclear envelope, possesses more area than that of a sphere of the same volume. This excess area manifests as folds/wrinkles in the nuclear surface in rounded cells and allows facile nuclear flattening during cell spreading without any changes in nuclear volume or surface area. When the lamina becomes smooth and taut, it is inextensible, and supports a surface tension. At this point, it is possible to mathematically calculate the limiting nuclear shape purely based on geometric considerations. In this paper, we provide a commentary on the "nuclear drop model" which seeks to integrate the above features. We outline its testable physical properties and explore its biological implications.
Collapse
Affiliation(s)
- Richard B Dickinson
- Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL, 32611, USA.
| | - Samere Abolghasemzade
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX, 77843, USA.
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX, 77843, USA.
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX, 77843, USA
- Department of Translational Medical Sciences, Texas A&M University, 2121 W Holcombe St., Houston, TX, 77030, USA
| |
Collapse
|
2
|
Zou J, Peng B, Fan N, Liu Y. Simulation and experimental study on the influence of lamina on nanoneedle penetration into the cell nucleus. Biomech Model Mechanobiol 2024; 23:1241-1262. [PMID: 38526703 DOI: 10.1007/s10237-024-01836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024]
Abstract
We have developed a finite element model to simulate the penetration of nanoneedles into the cellular nucleus. It is found that the nuclear lamina, the primary supporting structure of the nuclear membrane, plays a crucial role in maintaining the integrity of the nuclear envelope and enhancing stress concentration in the nuclear membrane. Notably, nuclear lamina A exhibits a more pronounced effect compared to nuclear lamina B. Subsequently, we further conducted experiments by controlling the time of osteopontin (OPN) treatment to modify the nuclear lamina density, and the results showed that an increase in nuclear lamina density enhances the probability of nanoneedle penetration into the nuclear membrane. Through employing both simulation and experimental techniques, we have gathered compelling evidence indicating that an augmented density of nuclear lamina A can enhance the penetration of nanoneedles into the nuclear membrane.
Collapse
Affiliation(s)
- Jie Zou
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bei Peng
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Na Fan
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
3
|
Piplani N, Roy T, Saxena N, Sen S. Bulky glycocalyx shields cancer cells from invasion-associated stresses. Transl Oncol 2024; 39:101822. [PMID: 37931370 PMCID: PMC10654248 DOI: 10.1016/j.tranon.2023.101822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
The glycocalyx-that forms a protective barrier around cells-has been implicated in cancer cell proliferation, survival, and metastasis. However, its role in maintaining the integrity of DNA/nucleus during migration through dense matrices remains unexplored. In this study, we address this question by first documenting heterogeneity in glycocalyx expression in highly invasive MDA-MB-231 breast cancer cells, and establishing a negative correlation between cell size and glycocalyx levels. Next, we set-up transwell migration through 3 µm pores, to isolate two distinct sub-populations and to show that the early migrating cell sub-population possesses a bulkier glycocalyx and undergoes less DNA damage and nuclear rupture, assessed using γH2AX foci formation and nuclear/cytoplasmic distribution of Ku70/80. Interestingly, enzymatic removal of glycocalyx led to disintegration of the nuclear membrane indicated by increased cytoplasmic localisation of Ku70/80, increased nuclear blebbing and reduction in nuclear area. Together, these results illustrate an inverse association between bulkiness of the glycocalyx and nuclear stresses, and highlights the mechanical role of the glycocalyx in shielding migration associated stresses.
Collapse
Affiliation(s)
- Niyati Piplani
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Tanusri Roy
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Neha Saxena
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Shamik Sen
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India.
| |
Collapse
|
4
|
Zhu Q, Tree DR. Simulations of morphology control of self‐assembled amphiphilic surfactants. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Qinyu Zhu
- Department of Chemical Engineering Brigham Young University Provo Utah USA
| | - Douglas R. Tree
- Department of Chemical Engineering Brigham Young University Provo Utah USA
| |
Collapse
|
5
|
Merino-Casallo F, Gomez-Benito MJ, Hervas-Raluy S, Garcia-Aznar JM. Unravelling cell migration: defining movement from the cell surface. Cell Adh Migr 2022; 16:25-64. [PMID: 35499121 PMCID: PMC9067518 DOI: 10.1080/19336918.2022.2055520] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Cell motility is essential for life and development. Unfortunately, cell migration is also linked to several pathological processes, such as cancer metastasis. Cells' ability to migrate relies on many actors. Cells change their migratory strategy based on their phenotype and the properties of the surrounding microenvironment. Cell migration is, therefore, an extremely complex phenomenon. Researchers have investigated cell motility for more than a century. Recent discoveries have uncovered some of the mysteries associated with the mechanisms involved in cell migration, such as intracellular signaling and cell mechanics. These findings involve different players, including transmembrane receptors, adhesive complexes, cytoskeletal components , the nucleus, and the extracellular matrix. This review aims to give a global overview of our current understanding of cell migration.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
6
|
Bell ES, Shah P, Zuela-Sopilniak N, Kim D, Varlet AA, Morival JL, McGregor AL, Isermann P, Davidson PM, Elacqua JJ, Lakins JN, Vahdat L, Weaver VM, Smolka MB, Span PN, Lammerding J. Low lamin A levels enhance confined cell migration and metastatic capacity in breast cancer. Oncogene 2022; 41:4211-4230. [PMID: 35896617 PMCID: PMC9925375 DOI: 10.1038/s41388-022-02420-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Aberrations in nuclear size and shape are commonly used to identify cancerous tissue. However, it remains unclear whether the disturbed nuclear structure directly contributes to the cancer pathology or is merely a consequence of other events occurring during tumorigenesis. Here, we show that highly invasive and proliferative breast cancer cells frequently exhibit Akt-driven lower expression of the nuclear envelope proteins lamin A/C, leading to increased nuclear deformability that permits enhanced cell migration through confined environments that mimic interstitial spaces encountered during metastasis. Importantly, increasing lamin A/C expression in highly invasive breast cancer cells reflected gene expression changes characteristic of human breast tumors with higher LMNA expression, and specifically affected pathways related to cell-ECM interactions, cell metabolism, and PI3K/Akt signaling. Further supporting an important role of lamins in breast cancer metastasis, analysis of lamin levels in human breast tumors revealed a significant association between lower lamin A levels, Akt signaling, and decreased disease-free survival. These findings suggest that downregulation of lamin A/C in breast cancer cells may influence both cellular physical properties and biochemical signaling to promote metastatic progression.
Collapse
Affiliation(s)
- Emily S. Bell
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY,Current address: Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA
| | - Pragya Shah
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | | | - Dongsung Kim
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Alice-Anais Varlet
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Julien L.P. Morival
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Alexandra L. McGregor
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Philipp Isermann
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | | | - Joshua J. Elacqua
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Jonathan N. Lakins
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Linda Vahdat
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA,Helen Diller Cancer Center, Department of Bioengineering and Therapeutic Sciences, and Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Marcus B. Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Paul N. Span
- Department of Radiation Oncology, Radiotherapy & OncoImmunology laboratory, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA. .,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
7
|
Merino-Casallo F, Gomez-Benito MJ, Martinez-Cantin R, Garcia-Aznar JM. A mechanistic protrusive-based model for 3D cell migration. Eur J Cell Biol 2022; 101:151255. [PMID: 35843121 DOI: 10.1016/j.ejcb.2022.151255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Cell migration is essential for a variety of biological processes, such as embryogenesis, wound healing, and the immune response. After more than a century of research-mainly on flat surfaces-, there are still many unknowns about cell motility. In particular, regarding how cells migrate within 3D matrices, which more accurately replicate in vivo conditions. We present a novel in silico model of 3D mesenchymal cell migration regulated by the chemical and mechanical profile of the surrounding environment. This in silico model considers cell's adhesive and nuclear phenotypes, the effects of the steric hindrance of the matrix, and cells ability to degradate the ECM. These factors are crucial when investigating the increasing difficulty that migrating cells find to squeeze their nuclei through dense matrices, which may act as physical barriers. Our results agree with previous in vitro observations where fibroblasts cultured in collagen-based hydrogels did not durotax toward regions with higher collagen concentrations. Instead, they exhibited an adurotactic behavior, following a more random trajectory. Overall, cell's migratory response in 3D domains depends on its phenotype, and the properties of the surrounding environment, that is, 3D cell motion is strongly dependent on the context.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Ruben Martinez-Cantin
- Robotics, Perception and Real Time Group (RoPeRT), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Computer Science and System Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain.
| |
Collapse
|
8
|
Hobson CM, Falvo MR, Superfine R. A survey of physical methods for studying nuclear mechanics and mechanobiology. APL Bioeng 2021; 5:041508. [PMID: 34849443 PMCID: PMC8604565 DOI: 10.1063/5.0068126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
It is increasingly appreciated that the cell nucleus is not only a home for DNA but also a complex material that resists physical deformations and dynamically responds to external mechanical cues. The molecules that confer mechanical properties to nuclei certainly contribute to laminopathies and possibly contribute to cellular mechanotransduction and physical processes in cancer such as metastasis. Studying nuclear mechanics and the downstream biochemical consequences or their modulation requires a suite of complex assays for applying, measuring, and visualizing mechanical forces across diverse length, time, and force scales. Here, we review the current methods in nuclear mechanics and mechanobiology, placing specific emphasis on each of their unique advantages and limitations. Furthermore, we explore important considerations in selecting a new methodology as are demonstrated by recent examples from the literature. We conclude by providing an outlook on the development of new methods and the judicious use of the current techniques for continued exploration into the role of nuclear mechanobiology.
Collapse
Affiliation(s)
| | - Michael R. Falvo
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard Superfine
- Department of Applied Physical Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
9
|
Barai A, Mukherjee A, Das A, Saxena N, Sen S. α-actinin-4 drives invasiveness by regulating myosin IIB expression and myosin IIA localization. J Cell Sci 2021; 134:272699. [PMID: 34730180 DOI: 10.1242/jcs.258581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which the mechanoresponsive actin crosslinking protein α-actinin-4 (ACTN4) regulates cell motility and invasiveness remains incompletely understood. Here we show that in addition to regulating protrusion dynamics and focal adhesion formation, ACTN4 transcriptionally regulates expression of non-muscle myosin IIB (NMM IIB), which is essential for mediating nuclear translocation during 3D invasion. We further show that an indirect association between ACTN4 and NMM IIA mediated by a functional F-actin cytoskeleton is essential for retention of NMM IIA at the cell periphery and modulation of focal adhesion dynamics. A protrusion-dependent model of confined migration recapitulating experimental observations predicts a dependence of protrusion forces on the degree of confinement and on the ratio of nucleus to matrix stiffness. Together, our results suggest that ACTN4 is a master regulator of cancer invasion that regulates invasiveness by controlling NMM IIB expression and NMM IIA localization.
Collapse
Affiliation(s)
- Amlan Barai
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Abhishek Mukherjee
- IITB-Monash Research Academy, Mumbai, India.,Dept. of Mechanical Engineering, IIT Bombay, Mumbai, India
| | - Alakesh Das
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India.,Dept. of Biological Regulation, Weizmann Institute of Science, Israel
| | - Neha Saxena
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Shamik Sen
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| |
Collapse
|
10
|
Asadullah, Kumar S, Saxena N, Sarkar M, Barai A, Sen S. Combined heterogeneity in cell size and deformability promotes cancer invasiveness. J Cell Sci 2021; 134:jcs.250225. [PMID: 33602741 DOI: 10.1242/jcs.250225] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/29/2021] [Indexed: 01/27/2023] Open
Abstract
Phenotypic heterogeneity is increasingly acknowledged to confer several advantages to cancer progression and drug resistance. Here, we probe the collective importance of heterogeneity in cell size and deformability in breast cancer invasion. A computational model of invasion of a heterogeneous cell aggregate predicts that combined heterogeneity in cell size and deformability enhances invasiveness of the whole population, with maximum invasiveness at intermediate cell-cell adhesion. We then show that small cells of varying deformability, a subpopulation predicted to be enriched at the invasive front, exhibit considerable overlap with the biophysical properties of cancer stem cells (CSCs). In MDA-MB-231 cells, these include CD44 hi CD24- mesenchymal CSCs, which are small and soft, and CD44 hi CD24+ hybrid CSCs, which exhibit a wide range of size and deformability. We validate our predictions by tracking the pattern of cell invasion from spheroids implanted in three-dimensional collagen gels, wherein we show temporal enrichment of CD44 hi cells at the invasive front. Collectively, our results illustrate the advantages imparted by biophysical heterogeneity in enhancing cancer invasiveness.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Asadullah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sandeep Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Neha Saxena
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Madhurima Sarkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Amlan Barai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shamik Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
11
|
Barai A, Das A, Sen S. Measuring microenvironment-tuned nuclear stiffness of cancer cells with atomic force microscopy. STAR Protoc 2021; 2:100296. [PMID: 33532741 PMCID: PMC7829340 DOI: 10.1016/j.xpro.2021.100296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Quantification of nuclear stiffness is challenging for cells encapsulated within a 3D extracellular matrix (ECM). Here, we describe an experimental setup for measuring microenvironment-dependent tuning of nuclear stiffness using an atomic force microscope (AFM). In our setup, ECM-coated polyacrylamide hydrogels mimic the stiffness of the microenvironment, enabling the measurement of nuclear stiffness using an AFM probe in live cancer cells. For complete details on the use and execution of this protocol, please refer to Das et al. (2019) (https://doi.org/10.1016/j.matbio.2019.01.001).
Collapse
Affiliation(s)
- Amlan Barai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Alakesh Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shamik Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|