1
|
Xue Y, Payne SJ, Waters SL. Stokes flows in a two-dimensional bifurcation. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241392. [PMID: 39845711 PMCID: PMC11750375 DOI: 10.1098/rsos.241392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 01/24/2025]
Abstract
The flow network model is an established approach to approximate pressure-flow relationships in a bifurcating network, and has been widely used in many contexts. Existing models typically assume unidirectional flow and exploit Poiseuille's law, and thus neglect the impact of bifurcation geometry and finite-sized objects on the flow. We determine the impact of bifurcation geometry and objects by computing Stokes flows in a two-dimensional (2D) bifurcation using the Lightning-AAA Rational Stokes algorithm, a novel mesh-free algorithm for solving 2D Stokes flow problems utilizing an applied complex analysis approach based on rational approximation of the Goursat functions. We compute the flow conductances of bifurcations with different channel widths, bifurcation angles, curved boundary geometries and fixed circular objects. We quantify the difference between the computed conductances and their Poiseuille law approximations to demonstrate the importance of incorporating detailed bifurcation geometry into existing flow network models. We parametrize the flow conductances of 2D bifurcation as functions of the dimensionless parameters of bifurcation geometry and a fixed object using a machine learning approach, which is simple to use and provides more accurate approximations than Poiseuille's law. Finally, the details of the 2D Stokes flows in bifurcations are presented.
Collapse
Affiliation(s)
- Yidan Xue
- Mathematical Institute, University of Oxford, Oxford, UK
- School of Mathematics, Cardiff University, Cardiff, UK
- School of Health Sciences, The University of Manchester, Manchester, UK
| | - Stephen J. Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
2
|
Mouyal SJ, Granger B, Janot K, Ifergan H, Hoche C, Herbreteau D, Bibi RE, Boulouis G, Bala F, Donnard B, Barrot V, Giubbolini F, Bourcier R, Constant-Dit-Beaufils P, Alexandre PL, Eugène F, Alias Q, Boucherit J, Beaufreton E, Gauvrit JY, Ferré JC, Guillen M, Ronziere T, Lassalle MV, Malrain C, Tracol C, Vannier S, Shotar E, Premat K, Lenck S, Sourour NA, Alamowitch S, Rosso C, Clarençon F. Iatrogenic emboli during mechanical thrombectomy for acute ischemic stroke: comparison between stent retriever technique and contact aspiration-a retrospective case-control study. J Neurointerv Surg 2024:jnis-2024-022206. [PMID: 39488338 DOI: 10.1136/jnis-2024-022206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Mechanical thrombectomy (MT) is an effective treatment for acute ischemic stroke from large vessel occlusion (LVO). While embolization to a new territory (ENT) after MT is well-documented, data on embolization in the same distal territory (EDT) are limited. Achieving modified Treatment In Cerebral Infarction (mTICI) 3 reperfusion presents significant clinical benefits over mTICI 2b/2c, necessitating strategies to reduce both ENT and EDT. Previous studies suggest higher rates of EDTs with contact aspiration compared with stentrievers. However, comprehensive comparison studies in clinical practice are scarce. This study compares the rates of overall clot emboli (OCE) between these MT strategies. METHODS A retrospective, multicenter observational study was conducted at four university hospitals in France from January 2015 to November 2019. Adult patients (≥18 years) with acute ischemic stroke due to LVO, treated with either contact aspiration (ADAPT, A Direct Aspiration First Pass Technique) or stentrievers, specifically using the Embotrap device to maintain sample homogeneity, were included. Digital subtraction angiography was used for imaging, with two independent, blinded reviewers assessing OCE post-first MT pass. Propensity score full matching and independent sample testing were employed to evaluate OCE after the first MT pass. RESULTS A significant difference in OCE rates was observed between contact aspiration and stentriever techniques, with the stentriever technique resulting in fewer embolic events compared with ADAPT, based on a propensity score analysis that accounts for key confounding factors. CONCLUSION A statistically significant reduction in embolic events was observed with the stentriever technique compared with contact aspiration. These results suggest that the stentriever method may offer a safer profile in terms of embolic risk for LVO interventions, and should be considered over contact aspiration when embolic risk is a primary concern, while also considering individual patient factors.
Collapse
Affiliation(s)
- Samuel J Mouyal
- Interventional Neuroradiology Department, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne University, Paris, France
| | - Benjamin Granger
- Sorbonne University, Paris, France
- Department of Public Health, APHP, Paris, France
| | - Kevin Janot
- Diagnostic and Interventional Neuroradiology, CHU Tours, Tours, Centre, France
| | - Héloïse Ifergan
- Diagnostic and Interventional Neuroradiology, CHU Tours, Tours, Centre, France
| | | | - Denis Herbreteau
- Diagnostic and Interventional Neuroradiology, CHU Tours, Tours, Centre, France
| | - Richard Edwige Bibi
- Diagnostic and Interventional Neuroradiology, CHU Tours, Tours, Centre, France
| | - Grégoire Boulouis
- Diagnostic and Interventional Neuroradiology, CHU Tours, Tours, Centre, France
| | - Fouzi Bala
- Diagnostic and Interventional Neuroradiology, CHU Tours, Tours, Centre, France
| | - Baptiste Donnard
- Diagnostic and Interventional Neuroradiology, CHU Tours, Tours, Centre, France
| | - Valère Barrot
- Diagnostic and Interventional Neuroradiology, CHU Tours, Tours, Centre, France
| | | | | | | | | | - Francois Eugène
- Neuroradiology, University Hospital of Rennes, Rennes, France
| | - Quentin Alias
- Neuroradiology, University Hospital of Rennes, Rennes, France
| | | | | | | | | | - Maud Guillen
- Neurology Department and Stroke Center, University Hospital Centre Rennes, Rennes, Bretagne, France
| | - Thomas Ronziere
- Neurology Department and Stroke Center, University Hospital Centre Rennes, Rennes, Bretagne, France
| | | | - Cécile Malrain
- Neurology Department and Stroke Center, University Hospital Centre Rennes, Rennes, Bretagne, France
| | - Clément Tracol
- Neurology Department and Stroke Center, University Hospital Centre Rennes, Rennes, Bretagne, France
| | - Stéphane Vannier
- Neurology Department and Stroke Center, University Hospital Centre Rennes, Rennes, Bretagne, France
| | - Eimad Shotar
- Interventional Neuroradiology Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Kévin Premat
- Interventional Neuroradiology Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Stéphanie Lenck
- Interventional Neuroradiology Department, Pitié-Salpêtrière Hospital, Paris, France
| | | | - Sonia Alamowitch
- Sorbonne University, Paris, France
- Department of Neurology, CHU Pitié-Salpétrière, Paris, France
| | - Charlotte Rosso
- Sorbonne University, Paris, France
- Department of Neurology, CHU Pitié-Salpétrière, Paris, France
| | - Frédéric Clarençon
- Interventional Neuroradiology Department, Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne University, Paris, France
| |
Collapse
|
3
|
Chen X, Józsa TI, Cardim D, Robba C, Czosnyka M, Payne SJ. Modelling midline shift and ventricle collapse in cerebral oedema following acute ischaemic stroke. PLoS Comput Biol 2024; 20:e1012145. [PMID: 38805558 PMCID: PMC11161059 DOI: 10.1371/journal.pcbi.1012145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/07/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
In ischaemic stroke, a large reduction in blood supply can lead to the breakdown of the blood-brain barrier and to cerebral oedema after reperfusion therapy. The resulting fluid accumulation in the brain may contribute to a significant rise in intracranial pressure (ICP) and tissue deformation. Changes in the level of ICP are essential for clinical decision-making and therapeutic strategies. However, the measurement of ICP is constrained by clinical techniques and obtaining the exact values of the ICP has proven challenging. In this study, we propose the first computational model for the simulation of cerebral oedema following acute ischaemic stroke for the investigation of ICP and midline shift (MLS) relationship. The model consists of three components for the simulation of healthy blood flow, occluded blood flow and oedema, respectively. The healthy and occluded blood flow components are utilized to obtain oedema core geometry and then imported into the oedema model for the simulation of oedema growth. The simulation results of the model are compared with clinical data from 97 traumatic brain injury patients for the validation of major model parameters. Midline shift has been widely used for the diagnosis, clinical decision-making, and prognosis of oedema patients. Therefore, we focus on quantifying the relationship between ICP and midline shift (MLS) and identify the factors that can affect the ICP-MLS relationship. Three major factors are investigated, including the brain geometry, blood-brain barrier damage severity and the types of oedema (including rare types of oedema). Meanwhile, the two major types (stress and tension/compression) of mechanical brain damage are also presented and the differences in the stress, tension, and compression between the intraparenchymal and periventricular regions are discussed. This work helps to predict ICP precisely and therefore provides improved clinical guidance for the treatment of brain oedema.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Tamás I. Józsa
- School of Aerospace, Transport and Manufacturing Cranfield University, Cranfield, United Kingdom
| | - Danilo Cardim
- Department of Neurology, University of Texas Southwestern Medical Centre, Dallas, Texas, United States of America
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas, United States of America
| | - Chiara Robba
- Department of Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Stephen J. Payne
- Institute of Applied Mechanics, National Taiwan University, Taiwan
| |
Collapse
|
4
|
Hernandez RJ, Madhusudhan S, Zheng Y, El-Bouri WK. Linking Vascular Structure and Function: Image-Based Virtual Populations of the Retina. Invest Ophthalmol Vis Sci 2024; 65:40. [PMID: 38683566 PMCID: PMC11059806 DOI: 10.1167/iovs.65.4.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose This study explored the relationship among microvascular parameters as delineated by optical coherence tomography angiography (OCTA) and retinal perfusion. Here, we introduce a versatile framework to examine the interplay between the retinal vascular structure and function by generating virtual vasculatures from central retinal vessels to macular capillaries. Also, we have developed a hemodynamics model that evaluates the associations between vascular morphology and retinal perfusion. Methods The generation of the vasculature is based on the distribution of four clinical parameters pertaining to the dimension and blood pressure of the central retinal vessels, constructive constrained optimization, and Voronoi diagrams. Arterial and venous trees are generated in the temporal retina and connected through three layers of capillaries at different depths in the macula. The correlations between total retinal blood flow and macular flow fraction and vascular morphology are derived as Spearman rank coefficients, and uncertainty from input parameters is quantified. Results A virtual cohort of 200 healthy vasculatures was generated. Means and standard deviations for retinal blood flow and macular flow fraction were 20.80 ± 7.86 µL/min and 15.04% ± 5.42%, respectively. Retinal blood flow was correlated with vessel area density, vessel diameter index, fractal dimension, and vessel caliber index. The macular flow fraction was not correlated with any morphological metrics. Conclusions The proposed framework is able to reproduce vascular networks in the macula that are morphologically and functionally similar to real vasculature. The framework provides quantitative insights into how macular perfusion can be affected by changes in vascular morphology delineated on OCTA.
Collapse
Affiliation(s)
- Rémi J. Hernandez
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Savita Madhusudhan
- St Paul's Eye Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Yalin Zheng
- St Paul's Eye Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Wahbi K. El-Bouri
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Deng G, Chu YH, Xiao J, Shang K, Zhou LQ, Qin C, Tian DS. Risk Factors, Pathophysiologic Mechanisms, and Potential Treatment Strategies of Futile Recanalization after Endovascular Therapy in Acute Ischemic Stroke. Aging Dis 2023; 14:2096-2112. [PMID: 37199580 PMCID: PMC10676786 DOI: 10.14336/ad.2023.0321-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/22/2023] [Indexed: 05/19/2023] Open
Abstract
Endovascular therapy is the first-line treatment for acute ischemic stroke. However, studies have shown that, even with the timely opening of occluded blood vessels, nearly half of all patients treated with endovascular therapy for acute ischemic stroke still have poor functional recovery, a phenomenon called "futile recanalization.". The pathophysiology of futile recanalization is complex and may include tissue no-reflow (microcirculation reperfusion failure despite recanalization of the occluded large artery), early arterial reocclusion (reocclusion of the recanalized artery 24-48 hours post endovascular therapy), poor collateral circulation, hemorrhagic transformation (cerebral bleeding following primary ischemic stroke), impaired cerebrovascular autoregulation, and large hypoperfusion volume. Therapeutic strategies targeting these mechanisms have been attempted in preclinical research; however, translation to the bedside remains to be explored. This review summarizes the risk factors, pathophysiological mechanisms, and targeted therapy strategies of futile recanalization, focusing on the mechanisms and targeted therapy strategies of no-reflow to deepen the understanding of this phenomenon and provide new translational research ideas and potential intervention targets for improving the efficacy of endovascular therapy for acute ischemic stroke.
Collapse
Affiliation(s)
- Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun-hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Józsa TI, Petr J, Payne SJ, Mutsaerts HJMM. MRI-based parameter inference for cerebral perfusion modelling in health and ischaemic stroke. Comput Biol Med 2023; 166:107543. [PMID: 37837725 DOI: 10.1016/j.compbiomed.2023.107543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023]
Abstract
Cerebral perfusion modelling is a promising tool to predict the impact of acute ischaemic stroke treatments on the spatial distribution of cerebral blood flow (CBF) in the human brain. To estimate treatment efficacy based on CBF, perfusion simulations need to become suitable for group-level investigations and thus account for physiological variability between individuals. However, computational perfusion modelling to date has been restricted to a few patient-specific cases. This study set out to establish automated parameter inference for perfusion modelling based on neuroimaging data and thus enable CBF simulations of groups. Magnetic resonance imaging (MRI) data from 75 healthy senior adults were utilised. Brain geometries were computed from healthy reference subjects' T1-weighted MRI. Haemodynamic model parameters were determined from spatial CBF maps measured by arterial spin labelling (ASL) perfusion MRI. Thereafter, perfusion simulations were conducted in 75 healthy cases followed by 150 acute ischaemic stroke cases representing an occlusion and CBF cessation in the left and right middle cerebral arteries. The anatomical fitness of the brain geometries was evaluated by comparing the simulated grey (GM) and white matter (WM) volumes to measurements in healthy reference subjects. Strong positive correlations were found in both tissue types (GM: Pearson's r 0.74, P<0.001; WM: Pearson's r 0.84, P<0.001). Haemodynamic parameter tuning was verified by comparing the total volumetric blood flow rate to the brain in healthy reference subjects and simulations (Pearson's r 0.89, P<0.001). In acute ischaemic stroke cases, the simulated infarct volume using a perfusion-based estimate was 197±25 ml. Computational predictions were in agreement with anatomical and haemodynamic values from the literature concerning T1-weighted, T2-weighted, and phase-contrast MRI measurements in healthy scenarios and acute ischaemic stroke cases. The acute stroke simulations did not capture small infarcts (left tail of the distribution), which could be explained by neglected compensatory mechanisms, e.g. collaterals. The proposed parameter inference method provides a foundation for group-level CBF simulations and for in silico clinical stroke trials which could assist in medical device and drug development.
Collapse
Affiliation(s)
- T I Józsa
- Centre for Computational Engineering Sciences, School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, UK.
| | - J Petr
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany; Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - S J Payne
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK; Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - H J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Lorentzen RJ, Nævdal G, Sævareid O, Hodneland E, Hanson EA, Munthe-Kaas A. Perfusion estimation using synthetic MRI-based measurements and a porous media flow model. PLoS Comput Biol 2023; 19:e1011127. [PMID: 37782658 PMCID: PMC10569616 DOI: 10.1371/journal.pcbi.1011127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/12/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023] Open
Abstract
The measurement of perfusion and filtration of blood in biological tissue give rise to important clinical parameters used in diagnosis, follow-up, and therapy. In this paper, we address techniques for perfusion analysis using processed contrast agent concentration data from dynamic MRI acquisitions. A new methodology for analysis is evaluated and verified using synthetic data generated on a tissue geometry.
Collapse
Affiliation(s)
| | - Geir Nævdal
- NORCE Norwegian Research Centre AS, Bergen, Norway
| | - Ove Sævareid
- NORCE Norwegian Research Centre AS, Bergen, Norway
| | - Erlend Hodneland
- NORCE Norwegian Research Centre AS, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland Universitetssykehus, Bergen, Norway
- Department of Mathematics, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
8
|
Xue Y, Georgakopoulou T, van der Wijk AE, Józsa TI, van Bavel E, Payne SJ. Quantification of hypoxic regions distant from occlusions in cerebral penetrating arteriole trees. PLoS Comput Biol 2022; 18:e1010166. [PMID: 35930591 PMCID: PMC9385041 DOI: 10.1371/journal.pcbi.1010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/17/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
The microvasculature plays a key role in oxygen transport in the mammalian brain. Despite the close coupling between cerebral vascular geometry and local oxygen demand, recent experiments have reported that microvascular occlusions can lead to unexpected distant tissue hypoxia and infarction. To better understand the spatial correlation between the hypoxic regions and the occlusion sites, we used both in vivo experiments and in silico simulations to investigate the effects of occlusions in cerebral penetrating arteriole trees on tissue hypoxia. In a rat model of microembolisation, 25 μm microspheres were injected through the carotid artery to occlude penetrating arterioles. In representative models of human cortical columns, the penetrating arterioles were occluded by simulating the transport of microspheres of the same size and the oxygen transport was simulated using a Green’s function method. The locations of microspheres and hypoxic regions were segmented, and two novel distance analyses were implemented to study their spatial correlation. The distant hypoxic regions were found to be present in both experiments and simulations, and mainly due to the hypoperfusion in the region downstream of the occlusion site. Furthermore, a reasonable agreement for the spatial correlation between hypoxic regions and occlusion sites is shown between experiments and simulations, which indicates the good applicability of in silico models in understanding the response of cerebral blood flow and oxygen transport to microemboli. The brain function depends on the continuous oxygen supply through the bloodstream inside the microvasculature. Occlusions in the microvascular network will disturb the oxygen delivery in the brain and result in hypoxic tissues that can lead to infarction and cognitive dysfunction. To aid in understanding the formation of hypoxic tissues caused by micro-occlusions in the penetrating arteriole trees, we use rodent experiments and simulations of human vascular networks to study the spatial correlations between the hypoxic regions and the occlusion locations. Our results suggest that hypoxic regions can form distally from the occlusion site, which agrees with the previous observations in the rat brain. These distant hypoxic regions are primarily due to the lack of blood flow in the brain tissues downstream of the occlusion. Moreover, a reasonable agreement of the spatial relationship is found between the experiments and the simulations, which indicates the applicability of in silico models to study the effects of microemboli on the brain tissue.
Collapse
Affiliation(s)
- Yidan Xue
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Theodosia Georgakopoulou
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Eva van der Wijk
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Tamás I. Józsa
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Ed van Bavel
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephen J. Payne
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
9
|
Networks behind the morphology and structural design of living systems. Phys Life Rev 2022; 41:1-21. [DOI: 10.1016/j.plrev.2022.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/04/2022] [Indexed: 01/06/2023]
|
10
|
Predeina AL, Prilepskii AY, de Zea Bermudez V, Vinogradov VV. Bioinspired In Vitro Brain Vasculature Model for Nanomedicine Testing Based on Decellularized Spinach Leaves. NANO LETTERS 2021; 21:9853-9861. [PMID: 34807626 DOI: 10.1021/acs.nanolett.1c01920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Animal testing is often criticized due to ethical issues and complicated translation of the results obtained to the clinical stage of drug development. Existing alternative models for nanopharmaceutical testing still have many limitations and do not significantly decrease the number of animals used. We propose a simple, bioinspired in vitro model for nanopharmaceutical drug testing based on the decellularized spinach leaf's vasculature. This system is similar to human arterioles and capillaries in terms of diameter (300-10 μm) and branching. The model has proven its suitability to access the maneuverability of magnetic nanoparticles, particularly those composed of Fe3O4. Moreover, the thrombosis has been recreated in the model's vasculature. We have tested and compared the effects of both a single-chain urokinase plasminogen activator (scuPA) and a magnetically controlled nanocomposite prepared by heparin-mediated cross-linking of scuPA with Fe3O4 nanoparticles. Compositions were tested both in static and flow conditions.
Collapse
Affiliation(s)
| | - Artur Y Prilepskii
- SCAMT Institute, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Verónica de Zea Bermudez
- Chemistry Department and CQ-VR, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | | |
Collapse
|
11
|
Xue Y, El-Bouri WK, Józsa TI, Payne SJ. Modelling the effects of cerebral microthrombi on tissue oxygenation and cell death. J Biomech 2021; 127:110705. [PMID: 34464872 DOI: 10.1016/j.jbiomech.2021.110705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/19/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
Thrombectomy, the mechanical removal of a clot, is the most common way to treat ischaemic stroke with large vessel occlusions. However, perfusion cannot always be restored after such an intervention. It has been hypothesised that the absence of reperfusion is at least partially due to the clot fragments that block the downstream vessels. In this paper, we present a new way of quantifying the effects of cerebral microthrombi on oxygen transport to tissue in terms of hypoxia and ischaemia. The oxygen transport was simulated with the Green's function method on physiologically representative microvascular cubes, which was found independent of both microvascular geometry and length scale. The microthrombi occlusions were then simulated in the microvasculature, which were extravasated over time with a new thrombus extravasation model. The tissue hypoxic fraction was fitted as a sigmoidal function of vessel blockage fraction, which was then taken to be a function of time after the formation of microthrombi occlusions. A novel hypoxia-based 3-state cell death model was finally proposed to simulate the hypoxic tissue damage over time. Using the cell death model, the impact of a certain degree of microthrombi occlusions on tissue viability and microinfarct volume can be predicted over time. Quantifying the impact of microthrombi on oxygen transport and tissue death will play an important role in full brain models of ischaemic stroke and thrombectomy.
Collapse
Affiliation(s)
- Yidan Xue
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| | - Wahbi K El-Bouri
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK; Liverpool Centre for Cardiovascular Science, Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK
| | - Tamás I Józsa
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Stephen J Payne
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
In silico trials for treatment of acute ischemic stroke: Design and implementation. Comput Biol Med 2021; 137:104802. [PMID: 34520989 DOI: 10.1016/j.compbiomed.2021.104802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023]
Abstract
An in silico trial simulates a disease and its corresponding therapies on a cohort of virtual patients to support the development and evaluation of medical devices, drugs, and treatment. In silico trials have the potential to refine, reduce cost, and partially replace current in vivo studies, namely clinical trials and animal testing. We present the design and implementation of an in silico trial for treatment of acute ischemic stroke. We propose an event-based modelling approach for the simulation of a disease and injury, where changes to the state of the system (the events) are assumed to be instantaneous. Using this approach we are able to combine a diverse set of models, spanning multiple time scales, to model acute ischemic stroke, treatment, and resulting brain tissue injury. The in silico trial is designed to be modular to aid development and reproducibility. It provides a comprehensive framework for application to any potential in silico trial. A statistical population model is used to generate cohorts of virtual patients. Patient functional outcomes are also predicted with a statistical model, using treatment and injury results and the patient's clinical parameters. We demonstrate the functionality of the event-based modelling approach and trial framework by running proof of concept in silico trials. The proof of concept trials simulate the same cohort of patients twice: once with successful treatment (successful recanalisation) and once with unsuccessful treatment (unsuccessful treatment). Ways to overcome some of the challenges and difficulties in setting up such an in silico trial are discussed, such as validation and computational limitations.
Collapse
|
13
|
Józsa TI, Padmos RM, El-Bouri WK, Hoekstra AG, Payne SJ. On the Sensitivity Analysis of Porous Finite Element Models for Cerebral Perfusion Estimation. Ann Biomed Eng 2021; 49:3647-3665. [PMID: 34155569 PMCID: PMC8671295 DOI: 10.1007/s10439-021-02808-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/01/2021] [Indexed: 11/08/2022]
Abstract
Computational physiological models are promising tools to enhance the design of clinical trials and to assist in decision making. Organ-scale haemodynamic models are gaining popularity to evaluate perfusion in a virtual environment both in healthy and diseased patients. Recently, the principles of verification, validation, and uncertainty quantification of such physiological models have been laid down to ensure safe applications of engineering software in the medical device industry. The present study sets out to establish guidelines for the usage of a three-dimensional steady state porous cerebral perfusion model of the human brain following principles detailed in the verification and validation (V&V 40) standard of the American Society of Mechanical Engineers. The model relies on the finite element method and has been developed specifically to estimate how brain perfusion is altered in ischaemic stroke patients before, during, and after treatments. Simulations are compared with exact analytical solutions and a thorough sensitivity analysis is presented covering every numerical and physiological model parameter. The results suggest that such porous models can approximate blood pressure and perfusion distributions reliably even on a coarse grid with first order elements. On the other hand, higher order elements are essential to mitigate errors in volumetric blood flow rate estimation through cortical surface regions. Matching the volumetric flow rate corresponding to major cerebral arteries is identified as a validation milestone. It is found that inlet velocity boundary conditions are hard to obtain and that constant pressure inlet boundary conditions are feasible alternatives. A one-dimensional model is presented which can serve as a computationally inexpensive replacement of the three-dimensional brain model to ease parameter optimisation, sensitivity analyses and uncertainty quantification. The findings of the present study can be generalised to organ-scale porous perfusion models. The results increase the applicability of computational tools regarding treatment development for stroke and other cerebrovascular conditions.
Collapse
Affiliation(s)
- T I Józsa
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| | - R M Padmos
- Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - W K El-Bouri
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.,Liverpool Centre for Cardiovascular Science, Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Thomas Drive, Liverpool, L14 3PE, UK
| | - A G Hoekstra
- Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - S J Payne
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|