1
|
Sun F, Li H, Sun D, Fu S, Gu L, Shao X, Wang Q, Dong X, Duan B, Xing F, Wu J, Xiao M, Zhao F, Han JDJ, Liu Q, Fan X, Li C, Wang C, Shi T. Single-cell omics: experimental workflow, data analyses and applications. SCIENCE CHINA. LIFE SCIENCES 2025; 68:5-102. [PMID: 39060615 DOI: 10.1007/s11427-023-2561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.
Collapse
Affiliation(s)
- Fengying Sun
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Haoyan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaliu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Lei Gu
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Qinqin Wang
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bin Duan
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Feiyang Xing
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Minmin Xiao
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Chen Li
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Tieliu Shi
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
2
|
Schumann Y, Gocke A, Neumann JE. Computational Methods for Data Integration and Imputation of Missing Values in Omics Datasets. Proteomics 2024:e202400100. [PMID: 39740174 DOI: 10.1002/pmic.202400100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 01/02/2025]
Abstract
Molecular profiling of different omic-modalities (e.g., DNA methylomics, transcriptomics, proteomics) in biological systems represents the basis for research and clinical decision-making. Measurement-specific biases, so-called batch effects, often hinder the integration of independently acquired datasets, and missing values further hamper the applicability of typical data processing algorithms. In addition to careful experimental design, well-defined standards in data acquisition and data exchange, the alleviation of these phenomena particularly requires a dedicated data integration and preprocessing pipeline. This review aims to give a comprehensive overview of computational methods for data integration and missing value imputation for omic data analyses. We provide formal definitions for missing value mechanisms and propose a novel statistical taxonomy for batch effects, especially in the presence of missing data. Based on an automated document search and systematic literature review, we describe 32 distinct data integration methods from five main methodological categories, as well as 37 algorithms for missing value imputation from five separate categories. Additionally, this review highlights multiple quantitative evaluation methods to aid researchers in selecting a suitable set of methods for their work. Finally, this work provides an integrated discussion of the relevance of batch effects and missing values in omics with corresponding method recommendations. We then propose a comprehensive three-step workflow from the study conception to final data analysis and deduce perspectives for future research. Eventually, we present a comprehensive flow chart as well as exemplary decision trees to aid practitioners in the selection of specific approaches for imputation and data integration in their studies.
Collapse
Affiliation(s)
- Yannis Schumann
- IT-Department, Deutsches Elektronen-Synchroton DESY, Hamburg, Germany
| | - Antonia Gocke
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Core Facility Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Julia E Neumann
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
4
|
姜 超, 胡 龙, 徐 春, 葛 芹, 赵 祥. [Imputation method for dropout in single-cell transcriptome data]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:778-783. [PMID: 37666769 PMCID: PMC10477391 DOI: 10.7507/1001-5515.202301009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/27/2023] [Indexed: 09/06/2023]
Abstract
Single-cell transcriptome sequencing (scRNA-seq) can resolve the expression characteristics of cells in tissues with single-cell precision, enabling researchers to quantify cellular heterogeneity within populations with higher resolution, revealing potentially heterogeneous cell populations and the dynamics of complex tissues. However, the presence of a large number of technical zeros in scRNA-seq data will have an impact on downstream analysis of cell clustering, differential genes, cell annotation, and pseudotime, hindering the discovery of meaningful biological signals. The main idea to solve this problem is to make use of the potential correlation between cells and genes, and to impute the technical zeros through the observed data. Based on this, this paper reviewed the basic methods of imputing technical zeros in the scRNA-seq data and discussed the advantages and disadvantages of the existing methods. Finally, recommendations and perspectives on the use and development of the method were provided.
Collapse
Affiliation(s)
- 超 姜
- 东南大学 生物科学与医学工程学院 生物电子学国家重点实验室(南京 210096)State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- 新格元生物科技有限公司(南京 210018)Singleron BiotechCo., Ltd, Nanjing 210018, P. R. China
| | - 龙飞 胡
- 东南大学 生物科学与医学工程学院 生物电子学国家重点实验室(南京 210096)State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - 春祥 徐
- 东南大学 生物科学与医学工程学院 生物电子学国家重点实验室(南京 210096)State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - 芹玉 葛
- 东南大学 生物科学与医学工程学院 生物电子学国家重点实验室(南京 210096)State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - 祥伟 赵
- 东南大学 生物科学与医学工程学院 生物电子学国家重点实验室(南京 210096)State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
6
|
Leote AC, Wu X, Beyer A. Regulatory network-based imputation of dropouts in single-cell RNA sequencing data. PLoS Comput Biol 2022; 18:e1009849. [PMID: 35176023 PMCID: PMC8890719 DOI: 10.1371/journal.pcbi.1009849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/02/2022] [Accepted: 01/18/2022] [Indexed: 01/07/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) methods are typically unable to quantify the expression levels of all genes in a cell, creating a need for the computational prediction of missing values (‘dropout imputation’). Most existing dropout imputation methods are limited in the sense that they exclusively use the scRNA-seq dataset at hand and do not exploit external gene-gene relationship information. Further, it is unknown if all genes equally benefit from imputation or which imputation method works best for a given gene. Here, we show that a transcriptional regulatory network learned from external, independent gene expression data improves dropout imputation. Using a variety of human scRNA-seq datasets we demonstrate that our network-based approach outperforms published state-of-the-art methods. The network-based approach performs particularly well for lowly expressed genes, including cell-type-specific transcriptional regulators. Further, the cell-to-cell variation of 11.3% to 48.8% of the genes could not be adequately imputed by any of the methods that we tested. In those cases gene expression levels were best predicted by the mean expression across all cells, i.e. assuming no measurable expression variation between cells. These findings suggest that different imputation methods are optimal for different genes. We thus implemented an R-package called ADImpute (available via Bioconductor https://bioconductor.org/packages/release/bioc/html/ADImpute.html) that automatically determines the best imputation method for each gene in a dataset. Our work represents a paradigm shift by demonstrating that there is no single best imputation method. Instead, we propose that imputation should maximally exploit external information and be adapted to gene-specific features, such as expression level and expression variation across cells.
Collapse
Affiliation(s)
- Ana Carolina Leote
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
- University of Cologne, Faculty of Medicine and Cologne University Hospital, Cologne, Germany
| | - Xiaohui Wu
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
- Department of Automation, Xiamen University, Xiamen, China
- Pasteurien College, Soochow University, Suzhou, China
| | - Andreas Beyer
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
- University of Cologne, Faculty of Medicine and Cologne University Hospital, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- Cologne School for Computational Biology & Center for Data Science and Simulation, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|