2
|
Scott WT, Benito-Vaquerizo S, Zimmermann J, Bajić D, Heinken A, Suarez-Diez M, Schaap PJ. A structured evaluation of genome-scale constraint-based modeling tools for microbial consortia. PLoS Comput Biol 2023; 19:e1011363. [PMID: 37578975 PMCID: PMC10449394 DOI: 10.1371/journal.pcbi.1011363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/24/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
Harnessing the power of microbial consortia is integral to a diverse range of sectors, from healthcare to biotechnology to environmental remediation. To fully realize this potential, it is critical to understand the mechanisms behind the interactions that structure microbial consortia and determine their functions. Constraint-based reconstruction and analysis (COBRA) approaches, employing genome-scale metabolic models (GEMs), have emerged as the state-of-the-art tool to simulate the behavior of microbial communities from their constituent genomes. In the last decade, many tools have been developed that use COBRA approaches to simulate multi-species consortia, under either steady-state, dynamic, or spatiotemporally varying scenarios. Yet, these tools have not been systematically evaluated regarding their software quality, most suitable application, and predictive power. Hence, it is uncertain which tools users should apply to their system and what are the most urgent directions that developers should take in the future to improve existing capacities. This study conducted a systematic evaluation of COBRA-based tools for microbial communities using datasets from two-member communities as test cases. First, we performed a qualitative assessment in which we evaluated 24 published tools based on a list of FAIR (Findability, Accessibility, Interoperability, and Reusability) features essential for software quality. Next, we quantitatively tested the predictions in a subset of 14 of these tools against experimental data from three different case studies: a) syngas fermentation by C. autoethanogenum and C. kluyveri for the static tools, b) glucose/xylose fermentation with engineered E. coli and S. cerevisiae for the dynamic tools, and c) a Petri dish of E. coli and S. enterica for tools incorporating spatiotemporal variation. Our results show varying performance levels of the best qualitatively assessed tools when examining the different categories of tools. The differences in the mathematical formulation of the approaches and their relation to the results were also discussed. Ultimately, we provide recommendations for refining future GEM microbial modeling tools.
Collapse
Affiliation(s)
- William T. Scott
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen, the Netherlands
| | - Sara Benito-Vaquerizo
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Johannes Zimmermann
- Christian-Albrechts-University Kiel, Institute of Experimental Medicine, Research Group Medical Systems Biology, Kiel, Germany
| | - Djordje Bajić
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Almut Heinken
- Inserm U1256 Laboratoire nGERE, Université de Lorraine, Nancy, France
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- UNLOCK, Wageningen University & Research and Delft University of Technology, Wageningen, the Netherlands
| |
Collapse
|
3
|
de Crécy-lagard V, Amorin de Hegedus R, Arighi C, Babor J, Bateman A, Blaby I, Blaby-Haas C, Bridge AJ, Burley SK, Cleveland S, Colwell LJ, Conesa A, Dallago C, Danchin A, de Waard A, Deutschbauer A, Dias R, Ding Y, Fang G, Friedberg I, Gerlt J, Goldford J, Gorelik M, Gyori BM, Henry C, Hutinet G, Jaroch M, Karp PD, Kondratova L, Lu Z, Marchler-Bauer A, Martin MJ, McWhite C, Moghe GD, Monaghan P, Morgat A, Mungall CJ, Natale DA, Nelson WC, O’Donoghue S, Orengo C, O’Toole KH, Radivojac P, Reed C, Roberts RJ, Rodionov D, Rodionova IA, Rudolf JD, Saleh L, Sheynkman G, Thibaud-Nissen F, Thomas PD, Uetz P, Vallenet D, Carter EW, Weigele PR, Wood V, Wood-Charlson EM, Xu J. A roadmap for the functional annotation of protein families: a community perspective. Database (Oxford) 2022; 2022:baac062. [PMID: 35961013 PMCID: PMC9374478 DOI: 10.1093/database/baac062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 12/23/2022]
Abstract
Over the last 25 years, biology has entered the genomic era and is becoming a science of 'big data'. Most interpretations of genomic analyses rely on accurate functional annotations of the proteins encoded by more than 500 000 genomes sequenced to date. By different estimates, only half the predicted sequenced proteins carry an accurate functional annotation, and this percentage varies drastically between different organismal lineages. Such a large gap in knowledge hampers all aspects of biological enterprise and, thereby, is standing in the way of genomic biology reaching its full potential. A brainstorming meeting to address this issue funded by the National Science Foundation was held during 3-4 February 2022. Bringing together data scientists, biocurators, computational biologists and experimentalists within the same venue allowed for a comprehensive assessment of the current state of functional annotations of protein families. Further, major issues that were obstructing the field were identified and discussed, which ultimately allowed for the proposal of solutions on how to move forward.
Collapse
Affiliation(s)
- Valérie de Crécy-lagard
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | - Cecilia Arighi
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19713, USA
| | - Jill Babor
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Ian Blaby
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Crysten Blaby-Haas
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Alan J Bridge
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva 4 CH-1211, Switzerland
| | - Stephen K Burley
- RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Stacey Cleveland
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Lucy J Colwell
- Departmenf of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Ana Conesa
- Spanish National Research Council, Institute for Integrative Systems Biology, Paterna, Valencia 46980, Spain
| | - Christian Dallago
- TUM (Technical University of Munich) Department of Informatics, Bioinformatics & Computational Biology, i12, Boltzmannstr. 3, Garching/Munich 85748, Germany
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, SAR Hong Kong 999077, China
| | - Anita de Waard
- Research Collaboration Unit, Elsevier, Jericho, VT 05465, USA
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Raquel Dias
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, USA
| | - Gang Fang
- NYU-Shanghai, Shanghai 200120, China
| | - Iddo Friedberg
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - John Gerlt
- Institute for Genomic Biology and Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joshua Goldford
- Physics of Living Systems, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark Gorelik
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Benjamin M Gyori
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Geoffrey Hutinet
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Marshall Jaroch
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Peter D Karp
- Bioinformatics Research Group, SRI International, Menlo Park, CA 94025, USA
| | | | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20817, USA
| | - Aron Marchler-Bauer
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20817, USA
| | - Maria-Jesus Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Claire McWhite
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Paul Monaghan
- Department of Agricultural Education and Communication, University of Florida, Gainesville, FL 32611, USA
| | - Anne Morgat
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva 4 CH-1211, Switzerland
| | - Christopher J Mungall
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Darren A Natale
- Georgetown University Medical Center, Washington, DC 20007, USA
| | - William C Nelson
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, WA 99354, USA
| | - Seán O’Donoghue
- School of Biotechnology and Biomolecular Sciences, University of NSW, Sydney, NSW 2052, Australia
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | | | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA
| | - Colbie Reed
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | - Dmitri Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Irina A Rodionova
- Department of Bioengineering, Division of Engineering, University of California at San Diego, La Jolla, CA 92093-0412, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Lana Saleh
- New England Biolabs, Ipswich, MA 01938, USA
| | - Gloria Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Francoise Thibaud-Nissen
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20817, USA
| | - Paul D Thomas
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Peter Uetz
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Évry, Université Paris-Saclay, CNRS, Evry 91057, France
| | - Erica Watson Carter
- Department of Plant Pathology, University of Florida Citrus Research and Education Center, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA
| | | | - Valerie Wood
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Elisha M Wood-Charlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jin Xu
- Department of Plant Pathology, University of Florida Citrus Research and Education Center, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA
| |
Collapse
|