1
|
Cano-Fernández H, Tissot T, Brun-Usan M, Salazar-Ciudad I. A mathematical model of development shows that cell division, short-range signaling and self-activating gene networks increase developmental noise while long-range signaling and epithelial stiffness reduce it. Dev Biol 2024; 518:85-97. [PMID: 39622312 DOI: 10.1016/j.ydbio.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
The position of cells during development is constantly subject to noise, i.e. cell-level noise. We do not yet fully understand how cell-level noise coming from processes such as cell division or movement leads to morphological noise, i.e. morphological differences between genetically identical individuals developing in the same environment. To address this question we constructed a large ensemble of random genetic networks regulating cell behaviors (contraction, adhesion, etc.) and cell signaling. We simulated them with a general computational model of development, EmbryoMaker. We identified and studied the dynamics, under cell-level noise, of those networks that lead to the development of animal-like morphologies from simple blastula-like initial conditions. We found that growth by cell division is a major contributor to morphological noise. Self-activating gene network loops also amplified cell-level noise into morphological noise while long-range signaling and epithelial stiffness tended to reduce morphological noise.
Collapse
Affiliation(s)
- Hugo Cano-Fernández
- Genomics, Bioinformatics and Evolution Group, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, 08193, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Tazzio Tissot
- Electronics and Computer Science Department, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Miguel Brun-Usan
- Departamento de Biologia, Universidad Autónoma de Madrid, Darwin St., 2, Fuencarral-El Pardo, 28049, Madrid, Spain
| | - Isaac Salazar-Ciudad
- Genomics, Bioinformatics and Evolution Group, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, 08193, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain; Centre de Recerca Matemàtica (CRM), Edifici C, 08193, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
| |
Collapse
|
2
|
Cano-Fernández H, Tissot T, Brun-Usan M, Salazar-Ciudad I. On the origins of developmental robustness: modeling buffering mechanisms against cell-level noise. Development 2023; 150:dev201911. [PMID: 38032004 DOI: 10.1242/dev.201911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
During development, cells are subject to stochastic fluctuations in their positions (i.e. cell-level noise) that can potentially lead to morphological noise (i.e. stochastic differences between morphologies that are expected to be equal, e.g. the right and left sides of bilateral organisms). In this study, we explore new and existing hypotheses on buffering mechanisms against cell-level noise. Many of these hypotheses focus on how the boundaries between territories of gene expression remain regular and well defined, despite cell-level noise and division. We study these hypotheses and how irregular territory boundaries lead to morphological noise. To determine the consistency of the different hypotheses, we use a general computational model of development: EmbryoMaker. EmbryoMaker can implement arbitrary gene networks regulating basic cell behaviors (contraction, adhesion, etc.), signaling and tissue biomechanics. We found that buffering mechanisms based on the orientation of cell divisions cannot lead to regular boundaries but that other buffering mechanisms can (homotypic adhesion, planar contraction, non-dividing boundaries, constant signaling and majority rule hypotheses). We also explore the effects of the shape and size of the territories on morphological noise.
Collapse
Affiliation(s)
- Hugo Cano-Fernández
- Genomics, Bioinformatics and Evolution group, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Tazzio Tissot
- Electronics and Computer Science Department, University of Southampton, Southampton SO17 1BJ, UK
| | - Miguel Brun-Usan
- Departamento de Biologia, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Isaac Salazar-Ciudad
- Genomics, Bioinformatics and Evolution group, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centre de Recerca Matemàtica (CRM), Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
3
|
Chen K, Yu Y, Zhang Z, Hu B, Liu X, Tan A. The morphogen Hedgehog is essential for proper adult morphogenesis in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 153:103906. [PMID: 36587810 DOI: 10.1016/j.ibmb.2022.103906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The well-known morphogen Hedgehog (Hh) is indispensable for embryo patterning and organ development from invertebrates to vertebrates. The role of Hh signaling pathway has been extensively investigated in the model organism Drosophila melanogaster, whereas its biological functions are still poorly understood in non-drosophilid insects. In the current study, we describe comprehensive investigation of Hh biological roles in the model lepidopteran insect Bombyx mori by using both CRISPR/Cas9-mediated gene ablation and Gal4/UAS-mediated ectopic expression. Direct injection of Cas9 protein and Hh-specific sgRNAs into preblastoderm embryos induced complete lethality. In contrast, Hh mutants obtained by the binary transgenic CRISPR/Cas9 system showed no deleterious phenotypes during embryonic and larval stages. However, mutants showed abnormalities from the pupal stage and most of adult body appendages exhibited severe developmental defects. Molecular analysis focused on wing development reveal that Hh signaling, Imd signaling and Wnt signaling pathways were distorted in Hh mutant wings. Ectopic expression by using the binary Gal4/UAS system induce early larval lethality. On contrary, moderate overexpression of Hh by using a unitary transgenic system resulted in severe defects in adult leg and antenna development. Our data directly provide genetic evidence that Hh plays vital roles in imaginal discs development and proper adult morphogenesis in B. mori.
Collapse
Affiliation(s)
- Kai Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Ye Yu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Zhongjie Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Bo Hu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Xiaojing Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
4
|
Morphogen-directed cell fate boundaries: slow passage through bifurcation and the role of folded saddles. J Theor Biol 2022; 549:111220. [PMID: 35839857 DOI: 10.1016/j.jtbi.2022.111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022]
Abstract
One of the fundamental mechanisms in embryogenesis is the process by which cells differentiate and create tissues and structures important for functioning as a multicellular organism. Morphogenesis involves diffusive process of chemical signalling involving morphogens that pre-pattern the tissue. These morphogens influence cell fate through a highly nonlinear process of transcriptional signalling. In this paper, we consider this multiscale process in an idealised model for a growing domain. We focus on intracellular processes that lead to robust differentiation into two cell lineages through interaction of a single morphogen species with a cell fate variable that undergoes a bifurcation from monostability to bistability. In particular, we investigate conditions that result in successful and robust pattern formation into two well-separated domains, as well as conditions where this fails and produces a pinned boundary wave where only one part of the domain grows. We show that successful and unsuccessful patterning scenarios can be characterised in terms of presence or absence of a folded saddle singularity for a system with two slow variables and one fast variable; this models the interaction of slow morphogen diffusion, slow parameter drift through bifurcation and fast transcription dynamics. We illustrate how this approach can successfully model acquisition of three cell fates to produce three-domain "French flag" patterning, as well as for a more realistic model of the cell fate dynamics in terms of two mutually inhibiting transcription factors.
Collapse
|
5
|
Abstract
During early development, the hindbrain is sub-divided into rhombomeres that underlie the organisation of neurons and adjacent craniofacial tissues. A gene regulatory network of signals and transcription factors establish and pattern segments with a distinct anteroposterior identity. Initially, the borders of segmental gene expression are imprecise, but then become sharply defined, and specialised boundary cells form. In this Review, we summarise key aspects of the conserved regulatory cascade that underlies the formation of hindbrain segments. We describe how the pattern is sharpened and stabilised through the dynamic regulation of cell identity, acting in parallel with cell segregation. Finally, we discuss evidence that boundary cells have roles in local patterning, and act as a site of neurogenesis within the hindbrain.
Collapse
Affiliation(s)
- Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Dept of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, KS 66160, USA
| | | |
Collapse
|