1
|
Ognjanovski N, Kim DS, Charlett-Green E, Goldiez E, van Koppen S, Aton SJ, Watson BO. Daily rhythms drive dynamism in sleep, oscillations and interneuron firing, while excitatory firing remains stable across 24 h. Eur J Neurosci 2025; 61:e16619. [PMID: 39663213 DOI: 10.1111/ejn.16619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/25/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024]
Abstract
The adaptation to the daily 24-h light-dark cycle is ubiquitous across animal species and is crucial for maintaining fitness. This free-running cycle occurs innately within multiple bodily systems, such as endogenous circadian rhythms in clock-gene expression and synaptic plasticity. These phenomena are well studied; however, it is unknown if and how the 24-h clock affects electrophysiologic network function in vivo. The hippocampus is a region of interest for long timescale (>8 h) studies because it is critical for cognitive function and exhibits time-of-day effects in learning. We recorded single cell spiking activity and local field potentials (LFPs) in mouse hippocampus across the 24-h (12:12-h light/dark) cycle to quantify how electrophysiological network function is modulated across the 24-h day. We found that while inhibitory population firing rates and LFP oscillations exhibit modulation across the day, average excitatory population firing is static. This excitatory stability, despite inhibitory dynamism, may enable consistent around-the-clock function of neural circuits.
Collapse
Affiliation(s)
- Nicolette Ognjanovski
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - David S Kim
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Emma Charlett-Green
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Ethan Goldiez
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Sofie van Koppen
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Brendon O Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Raven F, Medina AV, Schmidt K, He A, Vankampen AA, Balendran V, Aton SJ. Brief sleep disruption alters synaptic structures among hippocampal and neocortical somatostatin-expressing interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604591. [PMID: 39211205 PMCID: PMC11360998 DOI: 10.1101/2024.07.22.604591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Study objectives Brief sleep loss alters cognition and synaptic structures of principal neurons in hippocampus and neocortex. However, while in vivo recording and bioinformatic data suggest that inhibitory interneurons are more strongly affected by sleep loss, it is unclear how sleep and sleep deprivation affect interneurons' synapses. Disruption of the SST+ interneuron population seems to be a critical early sign of neuropathology in Alzheimer's dementia, schizophrenia, and bipolar disorder - and the risk of developing all three is increased by habitual sleep loss. We aimed to test how the synaptic structures of SST+ interneurons in various brain regions are affected by brief sleep disruption. Methods We used Brainbow 3.0 to label SST+ interneurons in the dorsal hippocampus, prefrontal cortex, and visual cortex of male SST-CRE transgenic mice, then compared synaptic structures in labeled neurons after a 6-h period of ad lib sleep, or gentle handling sleep deprivation (SD) starting at lights on. Results Dendritic spine density among SST+ interneurons in both hippocampus and neocortex was altered in a subregion-specific manner, with increased overall and thin spine density in CA1, dramatic increases in spine volume and surface area in CA3, and small but significant decreases in spine size in CA1, PFC and V1. Conclusions Our suggest that the synaptic connectivity of SST+ interneurons is significantly altered in a brain region-specific manner by a few hours of sleep loss. This suggests a cell type-specific mechanism by which sleep loss disrupts cognition and alters excitatory-inhibitory balance in brain networks. Significance Statement Changes to the function of somatostatin-expressing (SST+) interneurons have been implicated in the etiology of psychiatric and neurological disorders in which both cognition and sleep behavior are affected. Here, we measure the effects of very brief experimental sleep deprivation on synaptic structures of SST+ interneurons in hippocampus and neocortex, in brain structures critical for sleep-dependent memory processing. We find that only six hours of sleep deprivation restructures SST+ interneurons' dendritic spines, causing widespread and subregion-specific changes to spine density and spine size. These changes have the potential to dramatically alter excitatory-inhibitory balance across these brain networks, leading to cognitive disruptions commonly associated with sleep loss.
Collapse
|
3
|
Wang L, Park L, Wu W, King D, Vega-Medina A, Raven F, Martinez J, Ensing A, McDonald K, Yang Z, Jiang S, Aton SJ. Sleep-dependent engram reactivation during hippocampal memory consolidation associated with subregion-specific biosynthetic changes. iScience 2024; 27:109408. [PMID: 38523798 PMCID: PMC10957462 DOI: 10.1016/j.isci.2024.109408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/14/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Post-learning sleep is essential for hippocampal memory processing, including contextual fear memory consolidation. We labeled context-encoding engram neurons in the hippocampal dentate gyrus (DG) and assessed reactivation of these neurons after fear learning. Post-learning sleep deprivation (SD) selectively disrupted reactivation of inferior blade DG engram neurons, linked to SD-induced suppression of neuronal activity in the inferior, but not superior DG blade. Subregion-specific spatial profiling of transcripts revealed that transcriptomic responses to SD differed greatly between hippocampal CA1, CA3, and DG inferior blade, superior blade, and hilus. Activity-driven transcripts, and those associated with cytoskeletal remodeling, were selectively suppressed in the inferior blade. Critically, learning-driven transcriptomic changes differed dramatically between the DG blades and were absent from all other regions. Together, these data suggest that the DG is critical for sleep-dependent memory consolidation, and that the effects of sleep loss on the hippocampus are highly subregion-specific.
Collapse
Affiliation(s)
- Lijing Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lauren Park
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weisheng Wu
- Bioinformatics Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana King
- Bioinformatics Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexis Vega-Medina
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frank Raven
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jessy Martinez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy Ensing
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine McDonald
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhongying Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sha Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara J. Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Martinez JD, Brancaleone WP, Peterson KG, Wilson LG, Aton SJ. Atypical hypnotic compound ML297 restores sleep architecture immediately following emotionally valenced learning, to promote memory consolidation and hippocampal network activation during recall. Sleep 2023; 46:zsac301. [PMID: 36510822 PMCID: PMC9995787 DOI: 10.1093/sleep/zsac301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
Sleep plays a critical role in consolidating many forms of hippocampus-dependent memory. While various classes of hypnotic drugs have been developed in recent years, it remains unknown whether, or how, some of them affect sleep-dependent memory consolidation mechanisms. We find that ML297, a recently developed candidate hypnotic agent targeting a new mechanism (activating GIRK1/2-subunit containing G-protein coupled inwardly rectifying potassium [GIRK] channels), alters sleep architecture in mice over the first 6 hr following a single-trial learning event. Following contextual fear conditioning (CFC), ML297 reversed post-CFC reductions in NREM sleep spindle power and REM sleep amounts and architecture, renormalizing sleep features to what was observed at baseline, prior to CFC. Renormalization of post-CFC REM sleep latency, REM sleep amounts, and NREM spindle power were all associated with improved contextual fear memory (CFM) consolidation. We find that improvements in CFM consolidation due to ML297 are sleep-dependent, and are associated with increased numbers of highly activated dentate gyrus (DG), CA1, and CA3 neurons during CFM recall. Together our findings suggest that GIRK1/2 channel activation restores normal sleep architecture- including REM sleep, which is normally suppressed following CFC-and increases the number of hippocampal neurons incorporated into the CFM engram during memory consolidation.
Collapse
Affiliation(s)
- Jessy D Martinez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William P Brancaleone
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathryn G Peterson
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lydia G Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Li XW, Ren Y, Shi DQ, Qi L, Xu F, Xiao Y, Lau PM, Bi GQ. Biphasic Cholinergic Modulation of Reverberatory Activity in Neuronal Networks. Neurosci Bull 2023; 39:731-744. [PMID: 36670292 PMCID: PMC10170002 DOI: 10.1007/s12264-022-01012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/04/2022] [Indexed: 01/22/2023] Open
Abstract
Acetylcholine (ACh) is an important neuromodulator in various cognitive functions. However, it is unclear how ACh influences neural circuit dynamics by altering cellular properties. Here, we investigated how ACh influences reverberatory activity in cultured neuronal networks. We found that ACh suppressed the occurrence of evoked reverberation at low to moderate doses, but to a much lesser extent at high doses. Moreover, high doses of ACh caused a longer duration of evoked reverberation, and a higher occurrence of spontaneous activity. With whole-cell recording from single neurons, we found that ACh inhibited excitatory postsynaptic currents (EPSCs) while elevating neuronal firing in a dose-dependent manner. Furthermore, all ACh-induced cellular and network changes were blocked by muscarinic, but not nicotinic receptor antagonists. With computational modeling, we found that simulated changes in EPSCs and the excitability of single cells mimicking the effects of ACh indeed modulated the evoked network reverberation similar to experimental observations. Thus, ACh modulates network dynamics in a biphasic fashion, probably by inhibiting excitatory synaptic transmission and facilitating neuronal excitability through muscarinic signaling pathways.
Collapse
Affiliation(s)
- Xiao-Wei Li
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yi Ren
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Dong-Qing Shi
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Lei Qi
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Fang Xu
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Yanyang Xiao
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Pak-Ming Lau
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China. .,CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Guo-Qiang Bi
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.,CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| |
Collapse
|