1
|
Cromer J, Melton LF, Caughman KM, Nag A. Characterization of nsp1 Binding to the Viral RNA Leader Sequence of Severe Acute Respiratory Syndrome Coronavirus. Biochemistry 2024; 63:1235-1240. [PMID: 38718213 PMCID: PMC11112752 DOI: 10.1021/acs.biochem.4c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Nonstructural protein 1 (nsp1) of the severe acute respiratory syndrome coronavirus (SCOV1 and SCOV2) acts as a host shutoff protein by blocking the translation of host mRNAs and triggering their decay. Surprisingly, viral RNA, which resembles host mRNAs containing a 5'-cap and a 3'-poly(A) tail, escapes significant translation inhibition and RNA decay, aiding viral propagation. Current literature proposes that, in SCOV2, nsp1 binds the viral RNA leader sequence, and the interaction may serve to distinguish viral RNA from host mRNA. However, a direct binding between SCOV1 nsp1 and the corresponding RNA leader sequence has not been established yet. Here, we show that SCOV1 nsp1 binds to the SCOV1 RNA leader sequence but forms multiple complexes at a high concentration of nsp1. These complexes are marginally different from complexes formed with SCOV2 nsp1. Finally, mutations of the RNA stem-loop did not completely abolish RNA binding by nsp1, suggesting that an RNA secondary structure is more important for binding than the sequence itself. Understanding the nature of binding of nsp1 to viral RNA will allow us to understand how this viral protein selectively suppresses host gene expression.
Collapse
Affiliation(s)
- Jonathan
L. Cromer
- Natural
Sciences and Engineering, USC Upstate, Spartanburg, South Carolina 29303, United States
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Laurie F. Melton
- Natural
Sciences and Engineering, USC Upstate, Spartanburg, South Carolina 29303, United States
| | - Kaitlin M. Caughman
- Natural
Sciences and Engineering, USC Upstate, Spartanburg, South Carolina 29303, United States
- Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Anita Nag
- Natural
Sciences and Engineering, USC Upstate, Spartanburg, South Carolina 29303, United States
| |
Collapse
|
2
|
Gori Savellini G, Anichini G, Manetti F, Trivisani CI, Cusi MG. Deletion of 82-85 N-Terminal Residues in SARS-CoV-2 Nsp1 Restricts Virus Replication. Viruses 2024; 16:689. [PMID: 38793572 PMCID: PMC11125901 DOI: 10.3390/v16050689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Non-structural protein 1 (Nsp1) represents one of the most crucial SARS-CoV-2 virulence factors by inhibiting the translation of host mRNAs and promoting their degradation. We selected naturally occurring virus lineages with specific Nsp1 deletions located at both the N- and C-terminus of the protein. Our data provide new insights into how Nsp1 coordinates these functions on host and viral mRNA recognition. Residues 82-85 in the N-terminal part of Nsp1 likely play a role in docking the 40S mRNA entry channel, preserving the inhibition of host gene expression without affecting cellular mRNA decay. Furthermore, this domain prevents viral mRNAs containing the 5'-leader sequence to escape translational repression. These findings support the presence of distinct domains within the Nsp1 protein that differentially modulate mRNA recognition, translation and turnover. These insights have implications for the development of drugs targeting viral proteins and provides new evidences of how specific mutations in SARS-CoV-2 Nsp1 could attenuate the virus.
Collapse
Affiliation(s)
| | - Gabriele Anichini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy (C.I.T.)
| | | | - Maria Grazia Cusi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
3
|
Portilla-Martínez A, Ortiz-Flores M, Hidalgo I, Gonzalez-Ruiz C, Meaney E, Ceballos G, Nájera N. In silico evaluation of flavonoids as potential inhibitors of SARS-CoV-2 main nonstructural proteins (Nsps)—amentoflavone as a multitarget candidate. J Mol Model 2022; 28:404. [PMCID: PMC9707096 DOI: 10.1007/s00894-022-05391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Andrés Portilla-Martínez
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| | - Miguel Ortiz-Flores
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| | - Isabel Hidalgo
- Laboratorio de Investigación en Inmunología Y Salud Pública, Facultad de Estudios Superiores Cuautitlán, Unidad de Investigación Multidisciplinaria Universidad Nacional Autónoma de México, Estado de México, Mexico City, Mexico
| | - Cristian Gonzalez-Ruiz
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eduardo Meaney
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| | - Guillermo Ceballos
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| | - Nayelli Nájera
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| |
Collapse
|
4
|
Gumna J, Antczak M, Adamiak RW, Bujnicki JM, Chen SJ, Ding F, Ghosh P, Li J, Mukherjee S, Nithin C, Pachulska-Wieczorek K, Ponce-Salvatierra A, Popenda M, Sarzynska J, Wirecki T, Zhang D, Zhang S, Zok T, Westhof E, Miao Z, Szachniuk M, Rybarczyk A. Computational Pipeline for Reference-Free Comparative Analysis of RNA 3D Structures Applied to SARS-CoV-2 UTR Models. Int J Mol Sci 2022; 23:ijms23179630. [PMID: 36077037 PMCID: PMC9455975 DOI: 10.3390/ijms23179630] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 01/19/2023] Open
Abstract
RNA is a unique biomolecule that is involved in a variety of fundamental biological functions, all of which depend solely on its structure and dynamics. Since the experimental determination of crystal RNA structures is laborious, computational 3D structure prediction methods are experiencing an ongoing and thriving development. Such methods can lead to many models; thus, it is necessary to build comparisons and extract common structural motifs for further medical or biological studies. Here, we introduce a computational pipeline dedicated to reference-free high-throughput comparative analysis of 3D RNA structures. We show its application in the RNA-Puzzles challenge, in which five participating groups attempted to predict the three-dimensional structures of 5'- and 3'-untranslated regions (UTRs) of the SARS-CoV-2 genome. We report the results of this puzzle and discuss the structural motifs obtained from the analysis. All simulated models and tools incorporated into the pipeline are open to scientific and academic use.
Collapse
Affiliation(s)
- Julita Gumna
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Maciej Antczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Ryszard W. Adamiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Pritha Ghosh
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Jun Li
- Department of Physics, Department of Biochemistry, Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Chandran Nithin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
- Laboratory of Computational Biology, Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland
| | | | - Almudena Ponce-Salvatierra
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Tomasz Wirecki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Dong Zhang
- Department of Physics, Department of Biochemistry, Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Sicheng Zhang
- Department of Physics, Department of Biochemistry, Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Eric Westhof
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg, France
| | - Zhichao Miao
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China
- Correspondence: (Z.M.); (A.R.)
| | - Marta Szachniuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Agnieszka Rybarczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
- Correspondence: (Z.M.); (A.R.)
| |
Collapse
|
5
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|