1
|
Chen Y, Beech P, Yin Z, Jia S, Zhang J, Yu Z, Liu JK. Decoding dynamic visual scenes across the brain hierarchy. PLoS Comput Biol 2024; 20:e1012297. [PMID: 39093861 PMCID: PMC11324145 DOI: 10.1371/journal.pcbi.1012297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/14/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Understanding the computational mechanisms that underlie the encoding and decoding of environmental stimuli is a crucial investigation in neuroscience. Central to this pursuit is the exploration of how the brain represents visual information across its hierarchical architecture. A prominent challenge resides in discerning the neural underpinnings of the processing of dynamic natural visual scenes. Although considerable research efforts have been made to characterize individual components of the visual pathway, a systematic understanding of the distinctive neural coding associated with visual stimuli, as they traverse this hierarchical landscape, remains elusive. In this study, we leverage the comprehensive Allen Visual Coding-Neuropixels dataset and utilize the capabilities of deep learning neural network models to study neural coding in response to dynamic natural visual scenes across an expansive array of brain regions. Our study reveals that our decoding model adeptly deciphers visual scenes from neural spiking patterns exhibited within each distinct brain area. A compelling observation arises from the comparative analysis of decoding performances, which manifests as a notable encoding proficiency within the visual cortex and subcortical nuclei, in contrast to a relatively reduced encoding activity within hippocampal neurons. Strikingly, our results unveil a robust correlation between our decoding metrics and well-established anatomical and functional hierarchy indexes. These findings corroborate existing knowledge in visual coding related to artificial visual stimuli and illuminate the functional role of these deeper brain regions using dynamic stimuli. Consequently, our results suggest a novel perspective on the utility of decoding neural network models as a metric for quantifying the encoding quality of dynamic natural visual scenes represented by neural responses, thereby advancing our comprehension of visual coding within the complex hierarchy of the brain.
Collapse
Affiliation(s)
- Ye Chen
- School of Computer Science, Peking University, Beijing, China
- Institute for Artificial Intelligence, Peking University, Beijing, China
| | - Peter Beech
- School of Computing, University of Leeds, Leeds, United Kingdom
| | - Ziwei Yin
- School of Computer Science, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Shanshan Jia
- School of Computer Science, Peking University, Beijing, China
- Institute for Artificial Intelligence, Peking University, Beijing, China
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Zhaofei Yu
- School of Computer Science, Peking University, Beijing, China
- Institute for Artificial Intelligence, Peking University, Beijing, China
| | - Jian K. Liu
- School of Computing, University of Leeds, Leeds, United Kingdom
- School of Computer Science, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Jia S, Liu JK, Yu Z. Protocol for dissecting cascade computational components in neural networks of a visual system. STAR Protoc 2023; 4:102722. [PMID: 37976152 PMCID: PMC10692719 DOI: 10.1016/j.xpro.2023.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/26/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Finding the complete functional circuits of neurons is a challenging problem in brain research. Here, we present a protocol, based on visual stimuli and spikes, for obtaining the complete circuit of recorded neurons using spike-triggered nonnegative matrix factorization. We describe steps for data preprocessing, inferring the spatial receptive field of the subunits, and analyzing the module matrix. This approach identifies computational components of the feedforward network of retinal ganglion cells and dissects the network structure based on natural image stimuli. For complete details on the use and execution of this protocol, please refer to Jia et al. (2021).1.
Collapse
Affiliation(s)
- Shanshan Jia
- School of Computer Science, Peking University, Beijing 100871, China; Institute for Artificial Intelligence, Peking University, Beijing 100871, China; Department of Computer Science and Technology, Peking University, Beijing 100871, China
| | - Jian K Liu
- School of Computing, University of Leeds, Leeds, UK
| | - Zhaofei Yu
- School of Computer Science, Peking University, Beijing 100871, China; Institute for Artificial Intelligence, Peking University, Beijing 100871, China; Department of Computer Science and Technology, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Dabaghian Y. Grid cells, border cells, and discrete complex analysis. Front Comput Neurosci 2023; 17:1242300. [PMID: 37881247 PMCID: PMC10595009 DOI: 10.3389/fncom.2023.1242300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023] Open
Abstract
We propose a mechanism enabling the appearance of border cells-neurons firing at the boundaries of the navigated enclosures. The approach is based on the recent discovery of discrete complex analysis on a triangular lattice, which allows constructing discrete epitomes of complex-analytic functions and making use of their inherent ability to attain maximal values at the boundaries of generic lattice domains. As it turns out, certain elements of the discrete-complex framework readily appear in the oscillatory models of grid cells. We demonstrate that these models can extend further, producing cells that increase their activity toward the frontiers of the navigated environments. We also construct a network model of neurons with border-bound firing that conforms with the oscillatory models.
Collapse
Affiliation(s)
- Yuri Dabaghian
- Department of Neurology, The University of Texas, McGovern Medical Center at Houston, Houston, TX, United States
| |
Collapse
|
4
|
Dabaghian Y. Grid Cells, Border Cells and Discrete Complex Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539720. [PMID: 37214803 PMCID: PMC10197584 DOI: 10.1101/2023.05.06.539720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We propose a mechanism enabling the appearance of border cells-neurons firing at the boundaries of the navigated enclosures. The approach is based on the recent discovery of discrete complex analysis on a triangular lattice, which allows constructing discrete epitomes of complex-analytic functions and making use of their inherent ability to attain maximal values at the boundaries of generic lattice domains. As it turns out, certain elements of the discrete-complex framework readily appear in the oscillatory models of grid cells. We demonstrate that these models can extend further, producing cells that increase their activity towards the frontiers of the navigated environments. We also construct a network model of neurons with border-bound firing that conforms with the oscillatory models.
Collapse
Affiliation(s)
- Yuri Dabaghian
- Department of Neurology, The University of Texas McGovern Medical School, 6431 Fannin St, Houston, TX 77030
| |
Collapse
|
5
|
Zhang YJ, Yu ZF, Liu JK, Huang TJ. Neural Decoding of Visual Information Across Different Neural Recording Modalities and Approaches. MACHINE INTELLIGENCE RESEARCH 2022. [PMCID: PMC9283560 DOI: 10.1007/s11633-022-1335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vision plays a peculiar role in intelligence. Visual information, forming a large part of the sensory information, is fed into the human brain to formulate various types of cognition and behaviours that make humans become intelligent agents. Recent advances have led to the development of brain-inspired algorithms and models for machine vision. One of the key components of these methods is the utilization of the computational principles underlying biological neurons. Additionally, advanced experimental neuroscience techniques have generated different types of neural signals that carry essential visual information. Thus, there is a high demand for mapping out functional models for reading out visual information from neural signals. Here, we briefly review recent progress on this issue with a focus on how machine learning techniques can help in the development of models for contending various types of neural signals, from fine-scale neural spikes and single-cell calcium imaging to coarse-scale electroencephalography (EEG) and functional magnetic resonance imaging recordings of brain signals.
Collapse
|
6
|
Goldin MA, Lefebvre B, Virgili S, Pham Van Cang MK, Ecker A, Mora T, Ferrari U, Marre O. Context-dependent selectivity to natural images in the retina. Nat Commun 2022; 13:5556. [PMID: 36138007 PMCID: PMC9499945 DOI: 10.1038/s41467-022-33242-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Retina ganglion cells extract specific features from natural scenes and send this information to the brain. In particular, they respond to local light increase (ON responses), and/or decrease (OFF). However, it is unclear if this ON-OFF selectivity, characterized with synthetic stimuli, is maintained under natural scene stimulation. Here we recorded ganglion cell responses to natural images slightly perturbed by random noise patterns to determine their selectivity during natural stimulation. The ON-OFF selectivity strongly depended on the specific image. A single ganglion cell can signal luminance increase for one image, and luminance decrease for another. Modeling and experiments showed that this resulted from the non-linear combination of different retinal pathways. Despite the versatility of the ON-OFF selectivity, a systematic analysis demonstrated that contrast was reliably encoded in these responses. Our perturbative approach uncovered the selectivity of retinal ganglion cells to more complex features than initially thought. Ganglion cells classically respond to either light increase (ON) or decrease (OFF). Here, the authors show that during natural scene stimulation, a single ganglion cell can switch between ON and OFF depending on the visual context.
Collapse
Affiliation(s)
- Matías A Goldin
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.
| | - Baptiste Lefebvre
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.,Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne University, and University of Paris, Paris, France
| | - Samuele Virgili
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Mathieu Kim Pham Van Cang
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.,Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Alexander Ecker
- Institute of Computer Science and Campus Institute Data Science, University of Göttingen, Göttingen, Germany
| | - Thierry Mora
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne University, and University of Paris, Paris, France
| | - Ulisse Ferrari
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Olivier Marre
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.
| |
Collapse
|
7
|
Abstract
An ultimate goal in retina science is to understand how the neural circuit of the retina processes natural visual scenes. Yet most studies in laboratories have long been performed with simple, artificial visual stimuli such as full-field illumination, spots of light, or gratings. The underlying assumption is that the features of the retina thus identified carry over to the more complex scenario of natural scenes. As the application of corresponding natural settings is becoming more commonplace in experimental investigations, this assumption is being put to the test and opportunities arise to discover processing features that are triggered by specific aspects of natural scenes. Here, we review how natural stimuli have been used to probe, refine, and complement knowledge accumulated under simplified stimuli, and we discuss challenges and opportunities along the way toward a comprehensive understanding of the encoding of natural scenes. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Dimokratis Karamanlis
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany.,Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.,International Max Planck Research School for Neurosciences, Göttingen, Germany
| | - Helene Marianne Schreyer
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany.,Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany.,Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Zhang Y, Bu T, Zhang J, Tang S, Yu Z, Liu JK, Huang T. Decoding Pixel-Level Image Features from Two-Photon Calcium Signals of Macaque Visual Cortex. Neural Comput 2022; 34:1369-1397. [PMID: 35534008 DOI: 10.1162/neco_a_01498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/20/2021] [Indexed: 11/04/2022]
Abstract
Images of visual scenes comprise essential features important for visual cognition of the brain. The complexity of visual features lies at different levels, from simple artificial patterns to natural images with different scenes. It has been a focus of using stimulus images to predict neural responses. However, it remains unclear how to extract features from neuronal responses. Here we address this question by leveraging two-photon calcium neural data recorded from the visual cortex of awake macaque monkeys. With stimuli including various categories of artificial patterns and diverse scenes of natural images, we employed a deep neural network decoder inspired by image segmentation technique. Consistent with the notation of sparse coding for natural images, a few neurons with stronger responses dominated the decoding performance, whereas decoding of ar tificial patterns needs a large number of neurons. When natural images using the model pretrained on artificial patterns are decoded, salient features of natural scenes can be extracted, as well as the conventional category information. Altogether, our results give a new perspective on studying neural encoding principles using reverse-engineering decoding strategies.
Collapse
Affiliation(s)
- Yijun Zhang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240.,Department of Computer Science and Technology, Peking University, Peking 100871, P.R.C.
| | - Tong Bu
- Department of Computer Science and Technology, Peking University, Beijing 100871, P.R.C.
| | - Jiyuan Zhang
- Department of Computer Science and Technology, Peking University, Beijing 100871, P.R.C.
| | - Shiming Tang
- School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, P.R.C.
| | - Zhaofei Yu
- Department of Computer Science and Technology and In stitute for Artificial Intelligence, Peking University, Beijing 100871, P.R.C.
| | - Jian K Liu
- School of Computing, University of Leeds, Leeds LS2 9JT, U.K.
| | - Tiejun Huang
- Department of Computer Science and Technology and Institute for Artificial Intelligence, Peking University, Beijing 100871, P.R.C.,Beijing Academy of Artificial Intelligence, Beijing 100190, P.R.C.
| |
Collapse
|
9
|
Zapp SJ, Nitsche S, Gollisch T. Retinal receptive-field substructure: scaffolding for coding and computation. Trends Neurosci 2022; 45:430-445. [DOI: 10.1016/j.tins.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
|