1
|
Halder R, Chu ZT, Ti R, Zhu L, Warshel A. On the Control of Directionality of Myosin. J Am Chem Soc 2024. [PMID: 39367841 DOI: 10.1021/jacs.4c09528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The origin of the unique directionality of myosin has been a problem of fundamental and practical importance. This work establishes in a conclusive way that the directionality is controlled by tuning the barrier for the rate-determining step, namely, the ADP release step. This conclusion is based on exploring the molecular origin behind the reverse directionality of myosins V and VI and the determination of the origin of the change in the barriers of the ADP release for the forward and backward motions. Our investigation is performed by combining different simulation methods such as steer molecular dynamics (SMD), umbrella sampling, renormalization method, and automated path searching method. It is found that in the case of myosin V, the ADP release from the postrigor (trailing head) state overcomes a lower barrier than the prepowerstroke (leading head) state, which is also evident from experimental observation. In the case of myosin VI, we noticed a different trend when compared to myosin V. Since the directionality of myosins V and VI follows a reverse trend, we conclude that such differences in the directionality are controlled by the free energy barrier for the ADP release. Overall, the proof that the directionality of myosin is determined by the activation barrier of the rate-determining step in the cycle, rather than by some unspecified dynamical effects, has general importance.
Collapse
Affiliation(s)
- Ritaban Halder
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Zhen Tao Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Rujuan Ti
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| |
Collapse
|
2
|
Cocola C, Abeni E, Martino V, Piscitelli E, Morara S, Pelucchi P, Mosca E, Chiodi A, Mohamed T, Palizban M, De Petro G, Porta G, Greve B, Noghero A, Magnaghi V, Bellipanni G, Kehler J, Götte M, Bussolino F, Milanesi L, Zucchi I, Reinbold R. Transmembrane protein TMEM230, regulator of metalloproteins and motor proteins in gliomas and gliosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:255-297. [PMID: 38960477 DOI: 10.1016/bs.apcsb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Glial cells provide physical and chemical support and protection for neurons and for the extracellular compartments of neural tissue through secretion of soluble factors, insoluble scaffolds, and vesicles. Additionally, glial cells have regenerative capacity by remodeling their physical microenvironment and changing physiological properties of diverse cell types in their proximity. Various types of aberrant glial and macrophage cells are associated with human diseases, disorders, and malignancy. We previously demonstrated that transmembrane protein, TMEM230 has tissue revascularization and regenerating capacity by its ability to secrete pro-angiogenic factors and metalloproteinases, inducing endothelial cell sprouting and channel formation. In healthy normal neural tissue, TMEM230 is predominantly expressed in glial and marcophate cells, suggesting a prominent role in neural tissue homeostasis. TMEM230 regulation of the endomembrane system was supported by co-expression with RNASET2 (lysosome, mitochondria, and vesicles) and STEAP family members (Golgi complex). Intracellular trafficking and extracellular secretion of glial cellular components are associated with endocytosis, exocytosis and phagocytosis mediated by motor proteins. Trafficked components include metalloproteins, metalloproteinases, glycans, and glycoconjugate processing and digesting enzymes that function in phagosomes and vesicles to regulate normal neural tissue microenvironment, homeostasis, stress response, and repair following neural tissue injury or degeneration. Aberrantly high sustained levels TMEM230 promotes metalloprotein expression, trafficking and secretion which contribute to tumor associated infiltration and hypervascularization of high tumor grade gliomas. Following injury of the central nervous or peripheral systems, transcient regulated upregulation of TMEM230 promotes tissue wound healing, remodeling and revascularization by activating glial and macrophage generated microchannels/microtubules (referred to as vascular mimicry) and blood vessel sprouting and branching. Our results support that TMEM230 may act as a master regulator of motor protein mediated trafficking and compartmentalization of a large class of metalloproteins in gliomas and gliosis.
Collapse
Affiliation(s)
- Cinzia Cocola
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Edoardo Abeni
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Valentina Martino
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Eleonora Piscitelli
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Stefano Morara
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Monza Brianza, Italy
| | - Paride Pelucchi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Ettore Mosca
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Alice Chiodi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Tasnim Mohamed
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Mira Palizban
- Department of Gynecology, and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giovanni Porta
- Centro di Medicina Genomica, Department of Medicine and Surgery University of Insubria, Varese, Italy
| | - Burkhard Greve
- Department of Radiation Therapy and Radiation Oncology, University Hospital of Münster, Münster, Germany
| | - Alessio Noghero
- Laboratory of Vascular Oncology Candiolo Cancer Institute, IRCCS, Candiolo, Italy; Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Gianfranco Bellipanni
- Department of Biology, Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States; Center for Biotechnology, Sbarro Institute for Research and Molecular Medicine and Department of Biology, Temple University, Philadelphia, PA, United State
| | - James Kehler
- National Institutes of Health, NIDDK, Laboratory of Cell and Molecular Biology, Bethesda, MD, United States
| | - Martin Götte
- Department of Gynecology, and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Federico Bussolino
- Lovelace Biomedical Research Institute, Albuquerque, NM, United States; Department of Oncology, University of Turin, Orbassano, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Ileana Zucchi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy; Associazione Fondazione Renato Dulbecco, Milano, Italy.
| | - Rolland Reinbold
- Institute of Biomedical Technologies, National Research Council, Milan, Italy; Associazione Fondazione Renato Dulbecco, Milano, Italy.
| |
Collapse
|
3
|
Lv C, Huang Y, Yan R, Gao Y. Vascular endothelial growth factor induces the migration of human airway smooth muscle cells by activating the RhoA/ROCK pathway. BMC Pulm Med 2023; 23:505. [PMID: 38093231 PMCID: PMC10720058 DOI: 10.1186/s12890-023-02803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Airway remodeling due to increased airway smooth muscle cell (ASMC) mass, likely due to enhanced proliferation, hypertrophy, and migration, has been proven to be highly correlated with decreased lung function in asthma patients. Vascular endothelial growth factor (VEGF) mediates vascular and extravascular remodeling and inflammation and has been proven to be involved in the progression of asthma. Previous studies have focused on the effects of VEGF on ASMC proliferation, but few researchers have focused on the effects of VEGF on human ASMC migration. The purpose of this study was to explore the effect of VEGF on the migration of ASMCs and its related signaling pathway mechanism to provide evidence for the treatment of airway remodeling. METHODS We examined the effects of VEGF induction on ASMC migration and explored the mechanisms involved in ASMC migration. RESULTS We found by wound healing and Transwell assays that VEGF promoted ASMC migration. Through the Cell Counting Kit-8 (CCK-8) experiment, we found that VEGF had no significant effect on the proliferation of ASMCs, which excluded the involvement of cell proliferation in the process of wound healing. Moreover, a cellular immunofluorescence assay showed that VEGF promoted F-actin reorganization, and Western blotting showed that VEGF improved RhoA activation and myosin phosphatase targeting subunit-1 (MYPT1) and myosin light chain (MLC) phosphorylation in ASMCs. Treatment with the ROCK inhibitor Y27632 significantly attenuated the effects of VEGF on MYPT1/MLC activation and cell migration. CONCLUSION In conclusion, the results suggest that the promigratory function of VEGF activates the RhoA/ROCK pathway, induces F-actin reorganization, improves the migration of ASMCs, and provides a better rationale for targeting the RhoA/ROCK pathway for therapeutic approaches in airway remodeling.
Collapse
Affiliation(s)
- Chengtian Lv
- Department of Pulmonary and Critical Care Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwen Huang
- Department of Pulmonary and Critical Care Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruirong Yan
- Department of Pulmonary and Critical Care Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanmei Gao
- Department of Pulmonary and Critical Care Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Asante-Asamani E, Dalton M, Brazill D, Strychalski W. Modeling the dynamics of actin and myosin during bleb stabilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564082. [PMID: 37961169 PMCID: PMC10634845 DOI: 10.1101/2023.10.26.564082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The actin cortex is very dynamic during migration of eukaryotes. In cells that use blebs as leading-edge protrusions, the cortex reforms beneath the cell membrane (bleb cortex) and completely disassembles at the site of bleb initiation. Remnants of the actin cortex at the site of bleb nucleation are referred to as the actin scar. We refer to the combined process of cortex reformation along with the degradation of the actin scar during bleb-based cell migration as bleb stabilization. The molecular factors that regulate the dynamic reorganization of the cortex are not fully understood. Myosin motor protein activity has been shown to be necessary for blebbing, with its major role associated with pressure generation to drive bleb expansion. Here, we examine the role of myosin in regulating cortex dynamics during bleb stabilization. Analysis of microscopy data from protein localization experiments in Dictyostelium discoideum cells reveals a rapid formation of the bleb's cortex with a delay in myosin accumulation. In the degrading actin scar, myosin is observed to accumulate before active degradation of the cortex begins. Through a combination of mathematical modeling and data fitting, we identify that myosin helps regulate the equilibrium concentration of actin in the bleb cortex during its reformation by increasing its dissasembly rate. Our modeling and analysis also suggests that cortex degradation is driven primarily by an exponential decrease in actin assembly rate rather than increased myosin activity. We attribute the decrease in actin assembly to the separation of the cell membrane from the cortex after bleb nucleation.
Collapse
Affiliation(s)
| | - Mackenzie Dalton
- Department of Mathematics, Clarkson University, Clarkson, Potsdam, NY 13699
| | | | - Wanda Strychalski
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
5
|
Dawson M, Dudley C, Omoma S, Tung HR, Ciocanel MV. Characterizing emerging features in cell dynamics using topological data analysis methods. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:3023-3046. [PMID: 36899570 DOI: 10.3934/mbe.2023143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Filament-motor interactions inside cells play essential roles in many developmental as well as other biological processes. For instance, actin-myosin interactions drive the emergence or closure of ring channel structures during wound healing or dorsal closure. These dynamic protein interactions and the resulting protein organization lead to rich time-series data generated by using fluorescence imaging experiments or by simulating realistic stochastic models. We propose methods based on topological data analysis to track topological features through time in cell biology data consisting of point clouds or binary images. The framework proposed here is based on computing the persistent homology of the data at each time point and on connecting topological features through time using established distance metrics between topological summaries. The methods retain aspects of monomer identity when analyzing significant features in filamentous structure data, and capture the overall closure dynamics when assessing the organization of multiple ring structures through time. Using applications of these techniques to experimental data, we show that the proposed methods can describe features of the emergent dynamics and quantitatively distinguish between control and perturbation experiments.
Collapse
Affiliation(s)
- Madeleine Dawson
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Carson Dudley
- Department of Mathematics, Duke University, Durham, NC 27708, USA
| | - Sasamon Omoma
- Department of Mathematics, Duke University, Durham, NC 27708, USA
| | - Hwai-Ray Tung
- Department of Mathematics, Duke University, Durham, NC 27708, USA
| | - Maria-Veronica Ciocanel
- Department of Mathematics, Duke University, Durham, NC 27708, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|