1
|
Donaire A, Padilla N, Escrichs A, Khawja M, Setoain X, Rumia J, Roldan P, Bargallo N, Boget T, Pintor L, Centeno M, Conde E, Vernet O, Buendía J, Manzanares I, Ådén U, Carreño M, Kringelbach M, Deco G. Subject-based assessment of large-scale integration dynamics in epileptic brain networks: insights from the intrinsic ignition framework. Cereb Cortex 2024; 34:bhae419. [PMID: 39441026 DOI: 10.1093/cercor/bhae419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
This study examined the dynamic properties of brain regions involved in the genesis and spread of seizures in 10 individuals diagnosed with pharmacoresistant focal epilepsy. The patients and 30 healthy controls underwent resting-state functional magnetic resonance imaging scans and the brain's functional network dynamics were analyzed using the intrinsic ignition framework. Comparative statistical analyses examined the differences in the integration and metastability measures in both groups in the whole brain and specific local brain regions. Invasive electroencephalography evaluations validated the findings of significant global and regional changes in the patient's brain network dynamics. There was a marked increase in global integration and metastability across the brain, reflecting substantial alterations in the overall connectivity and flexibility of the functional networks. Specific brain regions exhibited paradoxical dynamics within the seizure onset zone, with decreased intrinsic ignition and increased metastability. Increased intrinsic ignition was observed in remote brain regions, suggesting a reorganization of the brain network hubs and potential pathways for seizure propagation. Using the intrinsic ignition framework provided insights into dynamic alterations in the brain networks of patients with epilepsy. These have increased our understanding of the mechanisms underlying epileptic seizures and may guide the development of diagnostic biomarkers and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Antonio Donaire
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, Barcelona, Catalonia, CP 08036, Spain
- Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Barcelona, Carrer de Casanova, 143, Barcelona, Catalonia, CP 08036, Spain
| | - Nelly Padilla
- Department of Women's and Children's Health, Karolinska Institutet, Tomtebodavägen 18b, Stockholm, SE-171 77, Stockholm County, Sweden
| | - Anira Escrichs
- Computational Neuroscience Group Center for Brain and Cognition, Universitat Pompeu Fabra, C/ de Ramon Trias Fargas, 25, Barcelona, Catalonia, CP 08018, Spain
| | - Mariam Khawja
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Xavier Setoain
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
- Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Barcelona, Carrer de Casanova, 143, Barcelona, Catalonia, CP 08036, Spain
| | - Jordi Rumia
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Pedro Roldan
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Nuria Bargallo
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Teresa Boget
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Luis Pintor
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - María Centeno
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Estefanía Conde
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Oriol Vernet
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Javier Buendía
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Isabel Manzanares
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Ulrika Ådén
- Department of Women's and Children's Health, Karolinska Institutet, Tomtebodavägen 18b, Stockholm, SE-171 77, Stockholm County, Sweden
- Department of Neonatology, Karolinska University Hospital, Norrbacka, S3:03 Karolinska vägen 8, 171 76 Stockholm, Stockholm County, Sweden
| | - Mar Carreño
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, Carrer de Villarroel, 170, Barcelona, Catalonia, CP 08036, Spain
| | - Morten Kringelbach
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Ln, Oxford, Oxfordshire, OX3 7JX, United Kingdom
- Center for Music in the Brain, Aarhus University Hospital, Nørrebrogade 44, Building 10G, 4th and 5th floor, Aarhus C, Central Denmark Region, 8000, Denmark
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, C/ de Ramon Trias Fargas, 25, Barcelona, CP 08018, Spain
- School of Psychological Sciences, Monash University, Melbourne, Clayton, Victoria (VIC) 3800, Australia
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, Barcelona, Catalonia, CP 08010, Spain
- Department of Neuropsychology, Max Planck Institute for human Cognitive and Brain Sciences, Leipzig, Saxony, 04103, Germany
| |
Collapse
|
3
|
Venkadesh S, Shaikh A, Shakeri H, Barreto E, Van Horn JD. Biophysical modulation and robustness of itinerant complexity in neuronal networks. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1302499. [PMID: 38516614 PMCID: PMC10954887 DOI: 10.3389/fnetp.2024.1302499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Transient synchronization of bursting activity in neuronal networks, which occurs in patterns of metastable itinerant phase relationships between neurons, is a notable feature of network dynamics observed in vivo. However, the mechanisms that contribute to this dynamical complexity in neuronal circuits are not well understood. Local circuits in cortical regions consist of populations of neurons with diverse intrinsic oscillatory features. In this study, we numerically show that the phenomenon of transient synchronization, also referred to as metastability, can emerge in an inhibitory neuronal population when the neurons' intrinsic fast-spiking dynamics are appropriately modulated by slower inputs from an excitatory neuronal population. Using a compact model of a mesoscopic-scale network consisting of excitatory pyramidal and inhibitory fast-spiking neurons, our work demonstrates a relationship between the frequency of pyramidal population oscillations and the features of emergent metastability in the inhibitory population. In addition, we introduce a method to characterize collective transitions in metastable networks. Finally, we discuss potential applications of this study in mechanistically understanding cortical network dynamics.
Collapse
Affiliation(s)
- Siva Venkadesh
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Asmir Shaikh
- Department of Computer Science, University of Virginia, Charlottesville, VA, United States
| | - Heman Shakeri
- School of Data Science, University of Virginia, Charlottesville, VA, United States
- Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Ernest Barreto
- Department of Physics and Astronomy and the Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, United States
| | - John Darrell Van Horn
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
- School of Data Science, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|