1
|
Rackova M, Mattera R, Svaton M, Fencl F, Kanderova V, Spicakova K, Park SY, Fabian O, Koblizek M, Fronkova E, Bonifacino JS, Skvarova Kramarzova K. Revising pathogenesis of AP1S1-related MEDNIK syndrome: a missense variant in the AP1S1 gene as a causal genetic lesion. J Mol Med (Berl) 2024; 102:1343-1353. [PMID: 39269494 PMCID: PMC11525306 DOI: 10.1007/s00109-024-02482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
MEDNIK syndrome is a rare autosomal recessive disease characterized by mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratoderma, and caused by variants in the adaptor-related protein complex 1 subunit sigma 1 (AP1S1) gene. This gene encodes the σ1A protein, which is a subunit of the adaptor protein complex 1 (AP-1), a key component of the intracellular protein trafficking machinery. Previous work identified three AP1S1 nonsense, frameshift and splice-site variants in MEDNIK patients predicted to encode truncated σ1A proteins, with consequent AP-1 dysfunction. However, two AP1S1 missense variants (c.269 T > C and c.346G > A) were recently reported in patients who presented with severe enteropathy but no additional symptoms of MEDNIK. This condition was described as a novel non-syndromic form of congenital diarrhea caused specifically by the AP1S1 missense variants. In this study, we report two patients with the same c.269 T > C variant, who, contrary to the previous cases, presented as complete MEDNIK syndrome. These data substantially revise the presentation of disorders associated with AP1S1 gene variants and indicate that all the identified pathogenic AP1S1 variants result in MEDNIK syndrome. We also provide a series of functional analyses that elucidate the impact of the c.269 T > C variant on σ1A function, contributing to a better understanding of the molecular pathogenesis of MEDNIK syndrome. KEY MESSAGES: A missense AP1S1 c.269 T > C (σ1A L90P) variant causes full MEDNIK syndrome. The σ1A L90P variant is largely unable to assemble into the AP-1 complex. The σ1A L90P variant fails to bind [DE]XXXL[LI] sorting motifs. The σ1A L90P variant results in loss-of-function of the protein.
Collapse
Affiliation(s)
- Marketa Rackova
- CLIP, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Rafael Mattera
- Section on Intracellular Protein Trafficking, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michael Svaton
- CLIP, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Filip Fencl
- Department of Pediatrics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Veronika Kanderova
- CLIP, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Karolina Spicakova
- Department of Pediatrics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Sang Yoon Park
- Section on Intracellular Protein Trafficking, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ondrej Fabian
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Miroslav Koblizek
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Eva Fronkova
- CLIP, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Juan S Bonifacino
- Section on Intracellular Protein Trafficking, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Karolina Skvarova Kramarzova
- CLIP, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
2
|
Fischer SN, Claussen ER, Kourtis S, Sdelci S, Orchard S, Hermjakob H, Kustatscher G, Drew K. hu.MAP3.0: Atlas of human protein complexes by integration of > 25,000 proteomic experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617930. [PMID: 39464102 PMCID: PMC11507723 DOI: 10.1101/2024.10.11.617930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Macromolecular protein complexes carry out most functions in the cell including essential functions required for cell survival. Unfortunately, we lack the subunit composition for all human protein complexes. To address this gap we integrated >25,000 mass spectrometry experiments using a machine learning approach to identify > 15,000 human protein complexes. We show our map of protein complexes is highly accurate and more comprehensive than previous maps, placing ~75% of human proteins into their physical contexts. We globally characterize our complexes using protein co-variation data (ProteomeHD.2) and identify co-varying complexes suggesting common functional associations. Our map also generates testable functional hypotheses for 472 uncharacterized proteins which we support using AlphaFold modeling. Additionally, we use AlphaFold modeling to identify 511 mutually exclusive protein pairs in hu.MAP3.0 complexes suggesting complexes serve different functional roles depending on their subunit composition. We identify expression as the primary way cells and organisms relieve the conflict of mutually exclusive subunits. Finally, we import our complexes to EMBL-EBI's Complex Portal (https://www.ebi.ac.uk/complexportal/home) as well as provide complexes through our hu.MAP3.0 web interface (https://humap3.proteincomplexes.org/). We expect our resource to be highly impactful to the broader research community.
Collapse
Affiliation(s)
- Samantha N. Fischer
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - Erin R. Claussen
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - Savvas Kourtis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Georg Kustatscher
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Kevin Drew
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
3
|
Hao D, Luo W, Yan Y, Zhou J. Focus on cuproptosis: Exploring new mechanisms and therapeutic application prospects of cuproptosis regulation. Biomed Pharmacother 2024; 178:117182. [PMID: 39053428 DOI: 10.1016/j.biopha.2024.117182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Cuproptosis is a novel form of regulated cell death, which plays an important role in the physiological and pathological processes of the human body. Despite the increasing research on cuproptosis-related genes (CRGs) and their correlation with diseases, the pathogenesis of cuproptosis-related diseases remains unclear. Furthermore, there is a lack of reviews on the emerging technologies for regulating cuproptosis in disease treatment. This study delves into the copper-induced cell death mechanism, distinguishing cuproptosis from mechanisms like oxidative stress, glutathione synthesis inhibition, and ubiquitin-proteasome system inhibition. Several long-standing mysteries of diseases such as Wilson's disease and Menkes disease may be attributed to the occurrence of cuproptosis. In addition, we also review the detection indicators related to cuproptosis, providing targets for the diagnosis of cuproptosis-related diseases, and summarize the application value of cuproptosis in tumor therapy to better elucidate the impact of copper in cell death and diseases, and thus to promote the application prospects and possible strategies of cuproptosis-related substances, such as copper ion chelators, copper ion carriers, and copper nanomaterials, in disease therapy.
Collapse
Affiliation(s)
- Donglin Hao
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Wei Luo
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China.
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China.
| |
Collapse
|
4
|
Wan C, Puscher H, Ouyang Y, Wu J, Tian Y, Li S, Yin Q, Shen J. An AAGAB-to-CCDC32 handover mechanism controls the assembly of the AP2 adaptor complex. Proc Natl Acad Sci U S A 2024; 121:e2409341121. [PMID: 39145939 PMCID: PMC11348294 DOI: 10.1073/pnas.2409341121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/13/2024] [Indexed: 08/16/2024] Open
Abstract
Vesicular transport relies on multimeric trafficking complexes to capture cargo and drive vesicle budding and fusion. Faithful assembly of the trafficking complexes is essential to their functions but remains largely unexplored. Assembly of AP2 adaptor, a heterotetrameric protein complex regulating clathrin-mediated endocytosis, is assisted by the chaperone AAGAB. Here, we found that AAGAB initiates AP2 assembly by stabilizing its α and σ2 subunits, but the AAGAB:α:σ2 complex cannot recruit additional AP2 subunits. We identified CCDC32 as another chaperone regulating AP2 assembly. CCDC32 recognizes the AAGAB:α:σ2 complex, and its binding leads to the formation of an α:σ2:CCDC32 ternary complex. The α:σ2:CCDC32 complex serves as a template that sequentially recruits the µ2 and β2 subunits of AP2 to complete AP2 assembly, accompanied by CCDC32 release. The AP2-regulating function of CCDC32 is disrupted by a disease-causing mutation. These findings demonstrate that AP2 is assembled by a handover mechanism switching from AAGAB-based initiation complexes to CCDC32-based template complexes. A similar mechanism may govern the assembly of other trafficking complexes exhibiting the same configuration as AP2.
Collapse
Affiliation(s)
- Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO80309
| | - Harrison Puscher
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO80309
| | - Yan Ouyang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO80309
| | - Jingyi Wu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO80309
| | - Yuan Tian
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
| | - Suzhao Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Qian Yin
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO80309
| |
Collapse
|
5
|
Szabó L, Pollio AR, Vogel GF. Intracellular Trafficking Defects in Congenital Intestinal and Hepatic Diseases. Traffic 2024; 25:e12954. [PMID: 39187475 DOI: 10.1111/tra.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Enterocytes and liver cells fulfill important metabolic and barrier functions and are responsible for crucial vectorial secretive and absorptive processes. To date, genetic diseases affecting metabolic enzymes or transmembrane transporters in the intestine and the liver are better comprehended than mutations affecting intracellular trafficking. In this review, we explore the emerging knowledge on intracellular trafficking defects and their clinical manifestations in both the intestine and the liver. We provide a detailed overview including more investigated diseases such as the canonical, variant and associated forms of microvillus inclusion disease, as well as recently described pathologies, highlighting the complexity and disease relevance of several trafficking pathways. We give examples of how intracellular trafficking hubs, such as the apical recycling endosome system, the trans-Golgi network, lysosomes, or the Golgi-to-endoplasmic reticulum transport are involved in the pathomechanism and lead to disease. Ultimately, understanding these processes could spark novel therapeutic approaches, which would greatly improve the quality of life of the affected patients.
Collapse
Affiliation(s)
- Luca Szabó
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Adam R Pollio
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Friedrich Vogel
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Lafhal K, Fdil N. Wilson Disease: Diagnostic Challenges and Differential Diagnoses. CLINICAL & TRANSLATIONAL METABOLISM 2024; 22:6. [DOI: 10.1007/s12018-024-09294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 01/05/2025]
|
7
|
Gnazzo M, Pascolini G, Parlapiano G, Petrizzelli F, Perrino D, Porco L, Bartuli A, Novelli A, Baban A. Usmani-Riazuddin syndrome can have a recognizable phenotype: Report of a novel AP1G1 variant. Clin Genet 2024; 106:109-113. [PMID: 38665048 DOI: 10.1111/cge.14531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 06/04/2024]
Abstract
Usmani-Riazuddin syndrome (USRISR, MIM# 619548; USRISD, MIM#619467) is a very rare genetic condition. recently associated with deleterious variants in AP1G1 (MIM* 603533). It is characterized by multisystemic involvement including intellectual disability, speech and developmental delay, behavioral anomalies, muscular tone disorders, seizures, limb defects, and unspecified facial gestalt. In this report, we describe this syndrome for the second time, in association to a novel AP1G1 variant identified in a toddler with multisystemic involvement including intellectual disability, speech and developmental delay, behavioral anomalies, arrhythmias, hearing loss, skin changes, and limb defects. Next generation sequencing (NGS) analysis through clinical exome disclosed AP1G1: c.1969C>G (p.Leu657Val), de novo, likely pathogenic variant, according to ACMG classification criteria. Proband's facial features resembled the spectrum of chromatinopathies. Clinical pictures were analyzed and a clinical overlap was supported by DeepGestalt analysis (www.face2gene.com). The system identified 6 chromatin disorders out of 30 possible diagnoses. The remaining 24 included 9 miscellaneous cryptic chromosomal abnormalities (excluded due to normal microarray study). To the best of our knowledge, this is the first description of likely distinctive facial features in a patient with Usmani-Riazuddin syndrome. Further multicentric analyses are needed for a better definition of this aspect.
Collapse
Affiliation(s)
- Maria Gnazzo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giulia Pascolini
- Cardiogenetic Center, Rare Diseases and Medical Genetics Units, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanni Parlapiano
- Cardiogenetic Center, Rare Diseases and Medical Genetics Units, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Petrizzelli
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo (FG), Italy
| | - Daniele Perrino
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luigina Porco
- Pediatric Cardiology and Arrhythmia/Syncope Complex Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Bartuli
- Cardiogenetic Center, Rare Diseases and Medical Genetics Units, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anwar Baban
- Cardiogenetic Center, Rare Diseases and Medical Genetics Units, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, The Netherlands
| |
Collapse
|
8
|
Quirion L, Robert A, Boulais J, Huang S, Bernal Astrain G, Strakhova R, Jo CH, Kherdjemil Y, Faubert D, Thibault MP, Kmita M, Baskin JM, Gingras AC, Smith MJ, Côté JF. Mapping the global interactome of the ARF family reveals spatial organization in cellular signaling pathways. J Cell Sci 2024; 137:jcs262140. [PMID: 38606629 PMCID: PMC11166204 DOI: 10.1242/jcs.262140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
The ADP-ribosylation factors (ARFs) and ARF-like (ARL) GTPases serve as essential molecular switches governing a wide array of cellular processes. In this study, we used proximity-dependent biotin identification (BioID) to comprehensively map the interactome of 28 out of 29 ARF and ARL proteins in two cellular models. Through this approach, we identified ∼3000 high-confidence proximal interactors, enabling us to assign subcellular localizations to the family members. Notably, we uncovered previously undefined localizations for ARL4D and ARL10. Clustering analyses further exposed the distinctiveness of the interactors identified with these two GTPases. We also reveal that the expression of the understudied member ARL14 is confined to the stomach and intestines. We identified phospholipase D1 (PLD1) and the ESCPE-1 complex, more precisely, SNX1, as proximity interactors. Functional assays demonstrated that ARL14 can activate PLD1 in cellulo and is involved in cargo trafficking via the ESCPE-1 complex. Overall, the BioID data generated in this study provide a valuable resource for dissecting the complexities of ARF and ARL spatial organization and signaling.
Collapse
Affiliation(s)
- Laura Quirion
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Amélie Robert
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Jonathan Boulais
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Shiying Huang
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Gabriela Bernal Astrain
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Regina Strakhova
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Chang Hwa Jo
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Yacine Kherdjemil
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Denis Faubert
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | | | - Marie Kmita
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC H3G 2M1, Canada
| | - Jeremy M. Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthew J. Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| |
Collapse
|
9
|
Quirion L, Robert A, Boulais J, Huang S, Bernal Astrain G, Strakhova R, Jo CH, Kherdjemil Y, Thibault MP, Faubert D, Kmita M, Baskin JM, Gingras AC, Smith MJ, Cote JF. Mapping the global interactome of the ARF family reveals spatial organization in cellular signaling pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.01.530598. [PMID: 36909472 PMCID: PMC10002736 DOI: 10.1101/2023.03.01.530598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The ADP-ribosylation factors (ARFs) and ARF-like (ARLs) GTPases serve as essential molecular switches governing a wide array of cellular processes. In this study, we utilized proximity-dependent biotin identification (BioID) to comprehensively map the interactome of 28 out of 29 ARF and ARL proteins in two cellular models. Through this approach, we identified ~3000 high-confidence proximal interactors, enabling us to assign subcellular localizations to the family members. Notably, we uncovered previously undefined localizations for ARL4D and ARL10. Clustering analyses further exposed the distinctiveness of the interactors identified with these two GTPases. We also reveal that the expression of the understudied member ARL14 is confined to the stomach and intestines. We identified phospholipase D1 (PLD1) and the ESCPE-1 complex, more precisely SNX1, as proximity interactors. Functional assays demonstrated that ARL14 can activate PLD1 in cellulo and is involved in cargo trafficking via the ESCPE-1 complex. Overall, the BioID data generated in this study provide a valuable resource for dissecting the complexities of ARF and ARL spatial organization and signaling.
Collapse
|
10
|
Santos LGC, Parreira VDSC, da Silva EMG, Santos MDM, Fernandes ADF, Neves-Ferreira AGDC, Carvalho PC, Freitas FCDP, Passetti F. SpliceProt 2.0: A Sequence Repository of Human, Mouse, and Rat Proteoforms. Int J Mol Sci 2024; 25:1183. [PMID: 38256255 PMCID: PMC10816255 DOI: 10.3390/ijms25021183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
SpliceProt 2.0 is a public proteogenomics database that aims to list the sequence of known proteins and potential new proteoforms in human, mouse, and rat proteomes. This updated repository provides an even broader range of computationally translated proteins and serves, for example, to aid with proteomic validation of splice variants absent from the reference UniProtKB/SwissProt database. We demonstrate the value of SpliceProt 2.0 to predict orthologous proteins between humans and murines based on transcript reconstruction, sequence annotation and detection at the transcriptome and proteome levels. In this release, the annotation data used in the reconstruction of transcripts based on the methodology of ternary matrices were acquired from new databases such as Ensembl, UniProt, and APPRIS. Another innovation implemented in the pipeline is the exclusion of transcripts predicted to be susceptible to degradation through the NMD pathway. Taken together, our repository and its applications represent a valuable resource for the proteogenomics community.
Collapse
Affiliation(s)
- Letícia Graziela Costa Santos
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Vinícius da Silva Coutinho Parreira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Esdras Matheus Gomes da Silva
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Av. Brazil 4036, Campus Maré, Rio de Janeiro 21040-361, RJ, Brazil
| | - Marlon Dias Mariano Santos
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Alexander da Franca Fernandes
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Ana Gisele da Costa Neves-Ferreira
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Av. Brazil 4036, Campus Maré, Rio de Janeiro 21040-361, RJ, Brazil
| | - Paulo Costa Carvalho
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Flávia Cristina de Paula Freitas
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos 13565-905, SP, Brazil
| | - Fabio Passetti
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| |
Collapse
|
11
|
Vasconcelos AP, Nogueira A, Matos P, Pinto J, Pinho MJ, Fernandes S, Dória S, Pinto Moura C. Severe KIDAR syndrome caused by deletion in the AP1B1 gene: Report of a teenage patient and systematic review of the literature. Eur J Med Genet 2023; 66:104827. [PMID: 37657632 DOI: 10.1016/j.ejmg.2023.104827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Autosomal recessive keratitis-ichthyosis-deafness syndrome (KIDAR MIM #242150) is a very rare disorder caused by pathogenic loss-of-function variants in the AP1B1 gene. So far, nine patients have been reported in the literature and more clinical descriptions are essential to further delineate the phenotype of KIDAR. Here we report a new patient with KIDAR and compare the clinical findings with those from the other published cases with molecular confirmation. We describe a 14-year-old male born to non-consanguineous parents with unremarkable family history. The patient had fetal ascites, neonatal pancreatic insufficiency with consequent failure to thrive, feeding difficulties, recurrent infections and sepsis. The skin examination was remarkable for an ichthyosis with conspicuous palmoplantar keratoderma, sparse and brittle hair with alopecia on the vertex and slight bilateral ectropion. He had short stature, thin build, frontal bossing, small teeth and prominent abdomen. Additional features were congenital profound bilateral sensorineural deafness, photosensitivity and photophobia. Mild global developmental delay was noted. Persistent mild anemia, neutropenia, thrombocytopenia, and low serum copper, ceruloplasmin and growth hormone were also present. Brain magnetic resonance imaging (MRI) showed cerebral atrophy and thin corpus callosum. Genetic testing revealed a homozygous deletion in the AP1B1 gene, possibly including the same exons as a previously reported deletion. Comparing the phenotypes of all reported individuals, they are highly concordant and major features are enteropathy with feeding difficulties, failure to thrive, ichthyosis, palmoplantar keratoderma, sensorineural deafness and sparse and brittle hair. Here we report other features present in more than one patient that could be part of the phenotypic spectrum and suggest copy number variation analysis to be performed alongside sequencing of the AP1B1 gene in case of suspicion.
Collapse
Affiliation(s)
- Alice P Vasconcelos
- Medical Genetics Service, Centro Hospitalar Universitário de São João (CHUSJ) EPE, Porto, Portugal.
| | - Ana Nogueira
- Department of Dermatology and Venereology, Centro Hospitalar Universitário de São João (CHUSJ) EPE, Porto, Portugal
| | - Pedro Matos
- Department of Dermatology and Venereology, Centro Hospitalar Universitário de São João (CHUSJ) EPE, Porto, Portugal
| | - Joel Pinto
- Genetics Service, Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal; i3S: Institute for Research and Innovation in Health, Porto, Portugal
| | - Maria João Pinho
- Genetics Service, Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal; i3S: Institute for Research and Innovation in Health, Porto, Portugal
| | - Susana Fernandes
- Genetics Service, Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal; i3S: Institute for Research and Innovation in Health, Porto, Portugal
| | - Sofia Dória
- Genetics Service, Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal; i3S: Institute for Research and Innovation in Health, Porto, Portugal
| | - Carla Pinto Moura
- Medical Genetics Service, Centro Hospitalar Universitário de São João (CHUSJ) EPE, Porto, Portugal; Department of Otorhinolaryngology, Centro Hospitalar Universitário de São João (CHUSJ) EPE, Porto, Portugal; Genetics Service, Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal; i3S: Institute for Research and Innovation in Health, Porto, Portugal
| |
Collapse
|
12
|
Jeong J, Hwang YE, Lee M, Keum S, Song S, Kim JW, Choi JH, Rhee S. Downregulation of AP1S1 causes the lysosomal degradation of EGFR in non-small cell lung cancer. J Cell Physiol 2023; 238:2335-2347. [PMID: 37659097 DOI: 10.1002/jcp.31112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 09/04/2023]
Abstract
Matrix stiffness has been shown to play a critical role in cancer progression by influencing various cellular processes, including epidermal growth factor (EGF) signaling. However, the underlying molecular mechanisms are not fully understood. Here, we investigated the role of adaptor-related protein complex 1 subunit sigma 1 (AP1S1), a component of adaptor protein complex-1, in the regulation of EGF receptor (EGFR) intracellular trafficking during cancer cell progression. We found that AP1S1 expression was upregulated under stiff matrix conditions, resulting in the regulation of EGFR trafficking in non-small cell lung adenocarcinoma cells. Knockout of AP1S1 caused the lysosomal degradation of EGFR, leading to suppressed EGF-induced anaplastic lymphoma receptor tyrosine kinase phosphorylation. In addition, the downregulation of AP1S1 increased the sensitivity of H1975 cancer cells, which are resistant to tyrosine kinase inhibitors, to erlotinib. Collectively, our results suggest that AP1S1 could regulate EGFR recycling under stiff matrix conditions, and AP1S1 inhibition could be a novel strategy for treating cancer cells resistant to EGFR-targeted anticancer drugs.
Collapse
Affiliation(s)
- Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ye Eun Hwang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Minwoo Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seula Keum
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seongeun Song
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jee-Hye Choi
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Obata Y, Kurokawa K, Tojima T, Natsume M, Shiina I, Takahashi T, Abe R, Nakano A, Nishida T. Golgi retention and oncogenic KIT signaling via PLCγ2-PKD2-PI4KIIIβ activation in gastrointestinal stromal tumor cells. Cell Rep 2023; 42:113035. [PMID: 37616163 DOI: 10.1016/j.celrep.2023.113035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
Most gastrointestinal stromal tumors (GISTs) develop due to gain-of-function mutations in the tyrosine kinase gene, KIT. We recently showed that mutant KIT mislocalizes to the Golgi area and initiates uncontrolled signaling. However, the molecular mechanisms underlying its Golgi retention remain unknown. Here, we show that protein kinase D2 (PKD2) is activated by the mutant, which causes Golgi retention of KIT. In PKD2-inhibited cells, KIT migrates from the Golgi region to lysosomes and subsequently undergoes degradation. Importantly, delocalized KIT cannot trigger downstream activation. In the Golgi/trans-Golgi network (TGN), KIT activates the PKD2-phosphatidylinositol 4-kinase IIIβ (PKD2-PI4KIIIβ) pathway through phospholipase Cγ2 (PLCγ2) to generate a PI4P-rich membrane domain, where the AP1-GGA1 complex is aberrantly recruited. Disruption of any factors in this cascade results in the release of KIT from the Golgi/TGN. Our findings show the molecular mechanisms underlying KIT mislocalization and provide evidence for a strategy for inhibition of oncogenic signaling.
Collapse
Affiliation(s)
- Yuuki Obata
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Takuro Tojima
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Miyuki Natsume
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryo Abe
- Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Toshirou Nishida
- National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
14
|
Lu JG, Namjoshi SS, Niehaus AD, Tahata S, Lee CU, Wang L, McDonnell E, Seely M, Martin MG, Hazard FK. Clinicopathologic Features of IDEDNIK (MEDNIK) Syndrome in a Term Infant: Histopathologic Features of the Gastrointestinal Tract and Report of a Novel AP1S1 Variant. Pediatr Dev Pathol 2023; 26:406-410. [PMID: 37278357 DOI: 10.1177/10935266231177402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inherited syndromes of congenital enteropathy are rare, with many genetic causes described. Mutations of the AP1S1 gene results in the syndrome of intellectual disability, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratoderma (IDEDNIK, formerly in the medical literature as MEDNIK). The clinicopathologic features of the enteropathy in IDEDNIK syndrome have not been fully explored. We describe a female infant who presented with metabolic acidosis, lethargy, and 14 watery stools per day. In the intensive care unit she required parenteral nutrition. She was found to have a novel homozygous pathogenic variant in the AP1S1 gene c.186T>G (p.Y62*). Esophagogastroduodenoscopy and colonoscopy at 6 months of age were grossly normal. However, histologic sections of the duodenum showed mild villous blunting and enterocytes with cytoplasmic vacuoles. CD10 immunostaining highlighted the disrupted brush border. MOC31 immunostaining was wild-type with a membranous pattern of expression. Electron microscopy of the duodenum showed scattered enterocytes cells with shortened and disrupted apical microvilli. Although there is a mixed gap diarrhea and disrupted brush border, there are no significant inclusions typical of microvillus inclusion disease, nor tufted enterocytes typical of tufting enteropathy, making the clinical and histopathologic features for this syndrome unique.
Collapse
Affiliation(s)
- Jiajie G Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shweta S Namjoshi
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology & Nutrition, Stanford University School of Medicine, Stanford, CA, USA
| | - Annie D Niehaus
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Shawn Tahata
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Chung Un Lee
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lin Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erin McDonnell
- Department of Clinical Nutrition, Lucile Packard Children's Hospital Stanford, Stanford, CA, USA
| | - Melissa Seely
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology & Nutrition, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin G Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Florette K Hazard
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
15
|
Babcock SJ, Flores-Marin D, Thiagarajah JR. The genetics of monogenic intestinal epithelial disorders. Hum Genet 2023; 142:613-654. [PMID: 36422736 PMCID: PMC10182130 DOI: 10.1007/s00439-022-02501-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/23/2022] [Indexed: 11/27/2022]
Abstract
Monogenic intestinal epithelial disorders, also known as congenital diarrheas and enteropathies (CoDEs), are a group of rare diseases that result from mutations in genes that primarily affect intestinal epithelial cell function. Patients with CoDE disorders generally present with infantile-onset diarrhea and poor growth, and often require intensive fluid and nutritional management. CoDE disorders can be classified into several categories that relate to broad areas of epithelial function, structure, and development. The advent of accessible and low-cost genetic sequencing has accelerated discovery in the field with over 45 different genes now associated with CoDE disorders. Despite this increasing knowledge in the causal genetics of disease, the underlying cellular pathophysiology remains incompletely understood for many disorders. Consequently, clinical management options for CoDE disorders are currently limited and there is an urgent need for new and disorder-specific therapies. In this review, we provide a general overview of CoDE disorders, including a historical perspective of the field and relationship to other monogenic disorders of the intestine. We describe the genetics, clinical presentation, and known pathophysiology for specific disorders. Lastly, we describe the major challenges relating to CoDE disorders, briefly outline key areas that need further study, and provide a perspective on the future genetic and therapeutic landscape.
Collapse
Affiliation(s)
- Stephen J Babcock
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Enders Rm 605, 300 Longwood Ave, Boston, MA, 02115, USA
| | - David Flores-Marin
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Enders Rm 605, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Enders Rm 605, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Mignani L, Facchinello N, Varinelli M, Massardi E, Tiso N, Ravelli C, Mitola S, Schu P, Monti E, Finazzi D, Borsani G, Zizioli D. Deficiency of AP1 Complex Ap1g1 in Zebrafish Model Led to Perturbation of Neurodevelopment, Female and Male Fertility; New Insight to Understand Adaptinopathies. Int J Mol Sci 2023; 24:ijms24087108. [PMID: 37108275 PMCID: PMC10138411 DOI: 10.3390/ijms24087108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
In vertebrates, two homologous heterotetrameric AP1 complexes regulate the intracellular protein sorting via vesicles. AP-1 complexes are ubiquitously expressed and are composed of four different subunits: γ, β1, μ1 and σ1. Two different complexes are present in eukaryotic cells, AP1G1 (contains γ1 subunit) and AP1G2 (contains γ2 subunit); both are indispensable for development. One additional tissue-specific isoform exists for μ1A, the polarized epithelial cells specific to μ1B; two additional tissue-specific isoforms exist for σ1A: σ1B and σ1C. Both AP1 complexes fulfil specific functions at the trans-Golgi network and endosomes. The use of different animal models demonstrated their crucial role in the development of multicellular organisms and the specification of neuronal and epithelial cells. Ap1g1 (γ1) knockout mice cease development at the blastocyst stage, while Ap1m1 (μ1A) knockouts cease during mid-organogenesis. A growing number of human diseases have been associated with mutations in genes encoding for the subunits of adaptor protein complexes. Recently, a new class of neurocutaneous and neurometabolic disorders affecting intracellular vesicular traffic have been referred to as adaptinopathies. To better understand the functional role of AP1G1 in adaptinopathies, we generated a zebrafish ap1g1 knockout using CRISPR/Cas9 genome editing. Zebrafish ap1g1 knockout embryos cease their development at the blastula stage. Interestingly, heterozygous females and males have reduced fertility and showed morphological alterations in the brain, gonads and intestinal epithelium. An analysis of mRNA profiles of different marker proteins and altered tissue morphologies revealed dysregulated cadherin-mediated cell adhesion. These data demonstrate that the zebrafish model organism enables us to study the molecular details of adaptinopathies and thus also develop treatment strategies.
Collapse
Affiliation(s)
- Luca Mignani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy
| | - Nicola Facchinello
- Neuroscience Institute, Italian Research Council (CNR), 35131 Padova, Italy
| | - Marco Varinelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Elena Massardi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy
- CN3 "Sviluppo di Terapia Genica e Farmaci con Tecnologia ad RNA", 25123 Brescia, Italy
| | - Peter Schu
- Department of Cellular Biochemistry, University Medical Center, Georg-August University, Humboldtallee 23, 37073 Gottingen, Germany
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy
| | - Dario Finazzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy
- Clinical Chemistry Laboratory, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Giuseppe Borsani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy
| |
Collapse
|
17
|
Fischer J, Hotz A, Komlosi K. Syndromic ichthyoses. MED GENET-BERLIN 2023; 35:23-32. [PMID: 38835422 PMCID: PMC10842576 DOI: 10.1515/medgen-2023-2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Inherited ichthyoses are classified as Mendelian disorders of cornification (MEDOC), which are further defined on the basis of clinical and genetic features and can be divided into non-syndromic and syndromic forms. To date, mutations in more than 30 genes are known to result in various types of syndromic ichthyoses, which, in addition to mostly generalised scaling and hyperkeratosis of the skin, also show additional organ involvement. The syndromic ichthyoses are generally very rare and are classified based on the mode of inheritance, and can be further subdivided according to the predominant symptoms. In our review we provide a concise overview of the most prevalent syndromic forms of ichthyosis within each subgroup. We emphasize the importance of the clinical assessment of complex syndromes even in the era of genetic testing as a first-tier diagnostic and specifically the need to actively assess potential organ involvement in patients with ichthyosis, thereby enabling efficient diagnostic and therapeutic approaches and timely access to specialized centers for rare disorders of cornifications. As part of the Freiburg Center for Rare Diseases a Center for Cornification Disorders was recently established with collaboration of the Institute of Human Genetics and the Department of Dermatology. An early diagnosis of syndromes will be of direct benefit to the patient regarding interventional and therapeutic measures e. g. in syndromes with cardiac or metabolic involvement and allows informed reproductive options and access to prenatal and preimplantation genetic diagnosis in the family.
Collapse
Affiliation(s)
- Judith Fischer
- University of FreiburgFaculty of MedicineFreiburgDeutschland
| | - Alrun Hotz
- University of FreiburgFaculty of MedicineFreiburgDeutschland
| | - Katalin Komlosi
- University of FreiburgFaculty of MedicineFreiburgDeutschland
| |
Collapse
|
18
|
Ishida M, Otero MG, Freeman C, Sánchez-Lara PA, Guardia CM, Pierson TM, Bonifacino JS. A neurodevelopmental disorder associated with an activating de novo missense variant in ARF1. Hum Mol Genet 2023; 32:1162-1174. [PMID: 36345169 PMCID: PMC10026249 DOI: 10.1093/hmg/ddac279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
ADP-ribosylation factor 1 (ARF1) is a small GTPase that regulates membrane traffic at the Golgi apparatus and endosomes through recruitment of several coat proteins and lipid-modifying enzymes. Here, we report a pediatric patient with an ARF1-related disorder because of a monoallelic de novo missense variant (c.296 G > A; p.R99H) in the ARF1 gene, associated with developmental delay, hypotonia, intellectual disability and motor stereotypies. Neuroimaging revealed a hypoplastic corpus callosum and subcortical white matter abnormalities. Notably, this patient did not exhibit periventricular heterotopias previously observed in other patients with ARF1 variants (including p.R99H). Functional analysis of the R99H-ARF1 variant protein revealed that it was expressed at normal levels and properly localized to the Golgi apparatus; however, the expression of this variant caused swelling of the Golgi apparatus, increased the recruitment of coat proteins such as coat protein complex I, adaptor protein complex 1 and GGA3 and altered the morphology of recycling endosomes. In addition, we observed that the expression of R99H-ARF1 prevented dispersal of the Golgi apparatus by the ARF1-inhibitor brefeldin A. Finally, protein interaction analyses showed that R99H-ARF1 bound more tightly to the ARF1-effector GGA3 relative to wild-type ARF1. These properties were similar to those of the well-characterized constitutively active Q71L-ARF1 mutant, indicating that the pathogenetic mechanism of the R99H-ARF1 variant involves constitutive activation with resultant Golgi and endosomal alterations. The absence of periventricular nodular heterotopias in this R99H-ARF1 subject also indicates that this finding may not be a consistent phenotypic expression of all ARF1-related disorders.
Collapse
Affiliation(s)
- Morié Ishida
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - María G Otero
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christina Freeman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Pedro A Sánchez-Lara
- Division of Medical Genetics, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Carlos M Guardia
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27703, USA
| | - Tyler Mark Pierson
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Pediatric Neurology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center for the Undiagnosed Patient, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Xu R, Jin Y, Tang S, Wang W, Sun YE, Liu Y, Zhang W, Hou B, Huang Y, Ma Z. Association between single nucleotide variants and severe chronic pain in older adult patients after lower extremity arthroplasty. J Orthop Surg Res 2023; 18:184. [PMID: 36895017 PMCID: PMC9999576 DOI: 10.1186/s13018-023-03683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Hip or knee osteoarthritis (OA) is one of the main causes of disability worldwide and occurs mostly in the older adults. Total hip or knee arthroplasty is the most effective method to treat OA. However, severe postsurgical pain leading to a poor prognosis. So, investigating the population genetics and genes related to severe chronic pain in older adult patients after lower extremity arthroplasty is helpful to improve the quality of treatment. METHODS We collected blood samples from elderly patients who underwent lower extremity arthroplasty from September 2020 to February 2021 at the Drum Tower Hospital Affiliated to Nanjing University Medical School. The enrolled patients provided measures of pain intensity using the numerical rating scale on the 90th day after surgery. Patients were divided into the case group (Group A) and the control group (Group B) including 10 patients respectively by the numerical rating scale. DNA was isolated from the blood samples of the two groups for whole-exome sequencing. RESULTS In total, 661 variants were identified in the 507 gene regions that were significantly different between both groups (P < 0.05), including CASP5, RASGEF1A, CYP4B1, etc. These genes are mainly involved in biological processes, including cell-cell adhesion, ECM-receptor interaction, metabolism, secretion of bioactive substances, ion binding and transport, regulation of DNA methylation, and chromatin assembly. CONCLUSIONS The current study shows some variants within genes are significantly associated with severe postsurgical chronic pain in older adult patients after lower extremity arthroplasty, indicating a genetic predisposition for chronic postsurgical pain. The study was registered according to ICMJE guidelines. The trial registration number is ChiCTR2000031655 and registration date is April 6th, 2020.
Collapse
Affiliation(s)
- Rui Xu
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Yinan Jin
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Suhong Tang
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Wenwen Wang
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Yu-E Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Wei Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Bailing Hou
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Yulin Huang
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China.
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
20
|
Wu C, Chen H, Yuan M, Zhang M, Abubakar YS, Chen X, Zhong H, Zheng W, Zheng H, Zhou J. FgAP1 σ Is Critical for Vegetative Growth, Conidiation, Virulence, and DON Biosynthesis in Fusarium graminearum. J Fungi (Basel) 2023; 9:jof9020145. [PMID: 36836259 PMCID: PMC9962196 DOI: 10.3390/jof9020145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The AP1 complex is a highly conserved clathrin adaptor that plays important roles in regulating cargo protein sorting and intracellular vesicle trafficking in eukaryotes. However, the functions of the AP1 complex in the plant pathogenic fungi including the devastating wheat pathogen Fusarium graminearum are still unclear. In this study, we investigated the biological functions of FgAP1σ, a subunit of the AP1 complex in F. graminearum. Disruption of FgAP1σ causes seriously impaired fungal vegetative growth, conidiogenesis, sexual development, pathogenesis, and deoxynivalenol (DON) production. The ΔFgap1σ mutants were found to be less sensitive to KCl- and sorbitol-induced osmotic stresses but more sensitive to SDS-induced stress than the wild-type PH-1. Although the growth inhibition rate of the ΔFgap1σ mutants was not significantly changed under calcofluor white (CFW) and Congo red (CR) stresses, the protoplasts released from ΔFgap1σ hyphae were decreased compared with the wild-type PH-1, suggesting that FgAP1σ is necessary for cell wall integrity and osmotic stresses in F. graminearum. Subcellular localization assays showed that FgAP1σ was predominantly localized to endosomes and the Golgi apparatus. In addition, FgAP1β-GFP, FgAP1γ-GFP, and FgAP1μ-GFP also localize to the Golgi apparatus. FgAP1β interacts with FgAP1σ, FgAP1γ, and FgAP1μ, while FgAP1σ regulates the expression of FgAP1β, FgAP1γ, and FgAP1μ in F. graminearum. Furthermore, the loss of FgAP1σ blocks the transportation of the v-SNARE protein FgSnc1 from the Golgi to the plasma membrane and delays the internalization of FM4-64 dye into the vacuole. Taken together, our results demonstrate that FgAP1σ plays vital roles in vegetative growth, conidiogenesis, sexual reproduction, DON production, pathogenicity, cell wall integrity, osmotic stress, exocytosis, and endocytosis in F. graminearum. These findings unveil the functions of the AP1 complex in filamentous fungi, most notably in F. graminearum, and lay solid foundations for effective prevention and control of Fusarium head blight (FHB).
Collapse
Affiliation(s)
- Congxian Wu
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Public Technology Service Center, Fujian Medical University, Fuzhou 350122, China
| | - Huilin Chen
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingyue Yuan
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meiru Zhang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yakubu Saddeeq Abubakar
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Xin Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haoming Zhong
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huawei Zheng
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
- Correspondence: (H.Z.); (J.Z.)
| | - Jie Zhou
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (H.Z.); (J.Z.)
| |
Collapse
|
21
|
Gutiérrez-Cerrajero C, Sprecher E, Paller AS, Akiyama M, Mazereeuw-Hautier J, Hernández-Martín A, González-Sarmiento R. Ichthyosis. Nat Rev Dis Primers 2023; 9:2. [PMID: 36658199 DOI: 10.1038/s41572-022-00412-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 01/20/2023]
Abstract
The ichthyoses are a large, heterogeneous group of skin cornification disorders. They can be inherited or acquired, and result in defective keratinocyte differentiation and abnormal epidermal barrier formation. The resultant skin barrier dysfunction leads to increased transepidermal water loss and inflammation. Disordered cornification is clinically characterized by skin scaling with various degrees of thickening, desquamation (peeling) and erythema (redness). Regardless of the type of ichthyosis, many patients suffer from itching, recurrent infections, sweating impairment (hypohidrosis) with heat intolerance, and diverse ocular, hearing and nutritional complications that should be monitored periodically. The characteristic clinical features are considered to be a homeostatic attempt to repair the skin barrier, but heterogeneous clinical presentation and imperfect phenotype-genotype correlation hinder diagnosis. An accurate molecular diagnosis is, however, crucial for predicting prognosis and providing appropriate genetic counselling. Most ichthyoses severely affect patient quality of life and, in severe forms, may cause considerable disability and even death. So far, treatment provides only symptomatic relief. It is lifelong, expensive, time-consuming, and often provides disappointing results. A better understanding of the molecular mechanisms that underlie these conditions is essential for designing pathogenesis-driven and patient-tailored innovative therapeutic solutions.
Collapse
Affiliation(s)
- Carlos Gutiérrez-Cerrajero
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amy S Paller
- Departments of Dermatology and Paediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | - Rogelio González-Sarmiento
- Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
22
|
Smeele PH, Vaccari T. Snapshots from within the cell: Novel trafficking and non trafficking functions of Snap29 during tissue morphogenesis. Semin Cell Dev Biol 2023; 133:42-52. [PMID: 35256275 DOI: 10.1016/j.semcdb.2022.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023]
Abstract
Membrane trafficking is a core cellular process that supports diversification of cell shapes and behaviors relevant to morphogenesis during development and in adult organisms. However, how precisely trafficking components regulate specific differentiation programs is incompletely understood. Snap29 is a multifaceted Soluble N-ethylmaleimide-sensitive factor Attachment protein Receptor, involved in a wide range of trafficking and non-trafficking processes in most cells. A body of knowledge, accrued over more than two decades since its discovery, reveals that Snap29 is essential for establishing and maintaining the operation of a number of cellular events that support cell polarity and signaling. In this review, we first summarize established functions of Snap29 and then we focus on novel ones in the context of autophagy, Golgi trafficking and vesicle fusion at the plasma membrane, as well as on non-trafficking activities of Snap29. We further describe emerging evidence regarding the compartmentalisation and regulation of Snap29. Finally, we explore how the loss of distinct functions of human Snap29 may lead to the clinical manifestations of congenital disorders such as CEDNIK syndrome and how altered SNAP29 activity may contribute to the pathogenesis of cancer, viral infection and neurodegenerative diseases.
Collapse
Affiliation(s)
- Paulien H Smeele
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy
| | - Thomas Vaccari
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
23
|
Oligomer-to-monomer transition underlies the chaperone function of AAGAB in AP1/AP2 assembly. Proc Natl Acad Sci U S A 2023; 120:e2205199120. [PMID: 36598941 PMCID: PMC9926252 DOI: 10.1073/pnas.2205199120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Assembly of protein complexes is facilitated by assembly chaperones. Alpha and gamma adaptin-binding protein (AAGAB) is a chaperone governing the assembly of the heterotetrameric adaptor complexes 1 and 2 (AP1 and AP2) involved in clathrin-mediated membrane trafficking. Here, we found that before AP1/2 binding, AAGAB exists as a homodimer. AAGAB dimerization is mediated by its C-terminal domain (CTD), which is critical for AAGAB stability and is missing in mutant proteins found in patients with the skin disease punctate palmoplantar keratoderma type 1 (PPKP1). We solved the crystal structure of the dimerization-mediating CTD, revealing an antiparallel dimer of bent helices. Interestingly, AAGAB uses the same CTD to recognize and stabilize the γ subunit in the AP1 complex and the α subunit in the AP2 complex, forming binary complexes containing only one copy of AAGAB. These findings demonstrate a dual role of CTD in stabilizing resting AAGAB and binding to substrates, providing a molecular explanation for disease-causing AAGAB mutations. The oligomerization state transition mechanism may also underlie the functions of other assembly chaperones.
Collapse
|
24
|
Abstract
The epidermis is a stratified squamous epithelium that forms the outermost layer of the skin. Its primary function is to act as a barrier, keeping pathogens and toxins out and moisture in. This physiological role has necessitated major differences in the organization and polarity of the tissue as compared to simple epithelia. We discuss four aspects of polarity in the epidermis - the distinctive polarities of basal progenitor cells as well as differentiated granular cells, the polarity of adhesions and the cytoskeleton across the tissue as keratinocytes differentiate, and the planar cell polarity of the tissue. These distinctive polarities are essential for the morphogenesis and the function of the epidermis and have also been implicated in regulating tumor formation.
Collapse
|
25
|
Golgipathies reveal the critical role of the sorting machinery in brain and skeletal development. Nat Commun 2022; 13:7397. [PMID: 36456556 PMCID: PMC9715697 DOI: 10.1038/s41467-022-35101-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
|
26
|
Kha QH, Tran TO, Nguyen TTD, Nguyen VN, Than K, Le NQK. An interpretable deep learning model for classifying adaptor protein complexes from sequence information. Methods 2022; 207:90-96. [PMID: 36174933 DOI: 10.1016/j.ymeth.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/19/2022] [Accepted: 09/22/2022] [Indexed: 11/15/2022] Open
Abstract
Adaptor proteins (APs) are a family of proteins that aids in intracellular membrane trafficking, and their impairments or defects are closely related to various disorders. Traditional methods to identify and classify APs require time and complex techniques, which were then advanced by machine learning and computational approaches to facilitate the APs recognition task. However, most studies focused on recognizing separate ones in the APs family or the APs in general with non-APs, lacking one comprehensive strategy to distinguish the complexes of AP subtypes. Herein, we proposed a novel method to implement one novel task as discriminating the AP complexes in the APs family, utilizing an interpretable deep neural network architecture on sequence-based encoding features. This work also introduced a benchmark data set of AP complexes originating from the UniProt and GeneOntology databases. To assess the robustness of our proposed method, we compared our performance to various machine learning algorithms and feature extraction strategies. Furthermore, the interpretation of the model's prediction performance was implemented using t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection (UMAP), and SHapley Additive exPlanations (SHAP) analysis to show the distribution of AP complexes on optimal features. The promising performance of our architecture can assist scientists not only in AP complexes distinction but also in general protein sequences. Moreover, we have also made our work publicly on GitHub https://github.com/khanhlee/adaptor-dnn.
Collapse
Affiliation(s)
- Quang-Hien Kha
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thi-Oanh Tran
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Trinh-Trung-Duong Nguyen
- Personalised Medicine Cluster, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Van-Nui Nguyen
- University of Information and Communication Technology, Thai Nguyen University, Thai Nguyen, Viet Nam
| | - Khoat Than
- School of Information and Communication Technology, Hanoi University of Science and Technology, Viet Nam
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan; Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
27
|
Mattera R, De Pace R, Bonifacino JS. The adaptor protein chaperone AAGAB stabilizes AP-4 complex subunits. Mol Biol Cell 2022; 33:ar109. [PMID: 35976721 DOI: 10.1091/mbc.e22-05-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Adaptor protein 4 (AP-4) is a heterotetrameric complex composed of ε, β4, μ4 and σ4 subunits that mediates export of a subset of transmembrane cargos, including autophagy protein 9A (ATG9A), from the trans-Golgi network (TGN). AP-4 has received particular attention in recent years because mutations in any of its subunits cause a complicated form of hereditary spastic paraplegia (HSP or SPG) referred to as "AP-4-deficiency syndrome." The identification of proteins that interact with AP-4 has shed light on the mechanisms of AP-4-dependent cargo sorting and distribution within the cell. However, the mechanisms by which the AP-4 complex itself is assembled have remained unknown. Herein, we report that the alpha- and gamma-adaptin-binding protein (AAGAB, also known as p34) binds to and stabilizes the AP-4 ε-and σ4 subunits, thus promoting complex assembly. The importance of this binding is underscored by the observation that AAGAB-knockout cells exhibit reduced levels of AP-4 subunits and accumulation of ATG9A at the TGN like those in cells, mice, or patients with mutations in AP-4-subunit genes. These findings demonstrate that AP-4 assembly is not spontaneous but AAGAB-assisted, thus contributing to the understanding of an adaptor protein complex that is critically involved in development of the central nervous system.
Collapse
Affiliation(s)
- Rafael Mattera
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
28
|
Duncan MC. New directions for the clathrin adaptor AP-1 in cell biology and human disease. Curr Opin Cell Biol 2022; 76:102079. [DOI: 10.1016/j.ceb.2022.102079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/03/2022]
|
29
|
Wang G, Zhang C, Kambara H, Dambrot C, Xie X, Zhao L, Xu R, Oneglia A, Liu F, Luo HR. Identification of the Transgene Integration Site and Host Genome Changes in MRP8-Cre/ires-EGFP Transgenic Mice by Targeted Locus Amplification. Front Immunol 2022; 13:875991. [PMID: 35464448 PMCID: PMC9020256 DOI: 10.3389/fimmu.2022.875991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 01/01/2023] Open
Abstract
The MRP8-Cre-ires/EGFP transgenic mouse (Mrp8creTg, on C57BL/6J genetic background) is popular in immunological and hematological research for specifically expressing Cre recombinase and an EGFP reporter in neutrophils. It is often crossed with other transgenic lines carrying loxP-flanked genes to achieve restricted gene knockout in neutrophils. However, due to the way in which the line was created, basic knowledge about the MRP8-Cre-ires/EGFP transgene in the host genome, such as its integration site(s) and flanking sequences, remains largely unknown, hampering robust experimental design and data interpretation. Here we used a recently developed technique, targeted locus amplification (TLA) sequencing, to fill these knowledge gaps. We found that the MRP8-Cre-ires/EGFP transgene was integrated into chromosome 5 (5qG2) of the host mouse genome. This integration led to a 44 kb deletion of the host genomic sequence, resulting in complete deletion of Serpine1 and partial deletion of Ap1s1. Having determined the flanking sequences of the transgene, we designed a new genotyping protocol that can distinguish homozygous, heterozygous, and wildtype Mrp8creTg mice. To our surprise, crossing heterozygous mice produced no homozygous Mrp8creTg mice, most likely due to prenatal lethality resulting from disrupted Ap1s1 gene expression.
Collapse
Affiliation(s)
- Guan Wang
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA, United States.,Department of Laboratory Medicine, Enders Research Building, Boston Children's Hospital, Boston, MA, United States
| | - Cunling Zhang
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hiroto Kambara
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA, United States.,Department of Laboratory Medicine, Enders Research Building, Boston Children's Hospital, Boston, MA, United States
| | | | - Xuemei Xie
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA, United States.,Department of Laboratory Medicine, Enders Research Building, Boston Children's Hospital, Boston, MA, United States
| | - Li Zhao
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA, United States.,Department of Laboratory Medicine, Enders Research Building, Boston Children's Hospital, Boston, MA, United States
| | - Rong Xu
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA, United States.,Department of Laboratory Medicine, Enders Research Building, Boston Children's Hospital, Boston, MA, United States
| | | | - Fei Liu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongbo R Luo
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA, United States.,Department of Laboratory Medicine, Enders Research Building, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
30
|
Mechanisms regulating the sorting of soluble lysosomal proteins. Biosci Rep 2022; 42:231123. [PMID: 35394021 PMCID: PMC9109462 DOI: 10.1042/bsr20211856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Lysosomes are key regulators of many fundamental cellular processes such as metabolism, autophagy, immune response, cell signalling and plasma membrane repair. These highly dynamic organelles are composed of various membrane and soluble proteins, which are essential for their proper functioning. The soluble proteins include numerous proteases, glycosidases and other hydrolases, along with activators, required for catabolism. The correct sorting of soluble lysosomal proteins is crucial to ensure the proper functioning of lysosomes and is achieved through the coordinated effort of many sorting receptors, resident ER and Golgi proteins, and several cytosolic components. Mutations in a number of proteins involved in sorting soluble proteins to lysosomes result in human disease. These can range from rare diseases such as lysosome storage disorders, to more prevalent ones, such as Alzheimer’s disease, Parkinson’s disease and others, including rare neurodegenerative diseases that affect children. In this review, we discuss the mechanisms that regulate the sorting of soluble proteins to lysosomes and highlight the effects of mutations in this pathway that cause human disease. More precisely, we will review the route taken by soluble lysosomal proteins from their translation into the ER, their maturation along the Golgi apparatus, and sorting at the trans-Golgi network. We will also highlight the effects of mutations in this pathway that cause human disease.
Collapse
|
31
|
Zheng D, Fu W, Jin L, Jiang X, Jiang W, Guan Y, Hao R. The Overexpression and Clinical Significance of AP1S1 in Breast Cancer. Cancer Manag Res 2022; 14:1475-1492. [PMID: 35463798 PMCID: PMC9021008 DOI: 10.2147/cmar.s346519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose To explore the mechanism of AP1S1 in breast cancer. Methods and Results In different datasets, we found that AP1S1 is more highly expressed in breast tumors, which was furthermore verified in our local cohort.Immune infiltration analysis showed that AP1S1 was related to a variety of immune cells. The higher AP1S1 expression was negatively correlated with a variety of immune infiltrating cells, suggesting that AP1S1 may affect cellular immunity.Clinical analysis showed that patients with higher AP1S1 expression had higher estrogen receptor gene expression and were more prone to distant metastasis and lymph node metastasis.The overall survival rate, disease-specific survival rate, and progression-free interval time were worse in the group with higher AP1S1 expression. AP1S1 may be a potential oncogene of breast cancer, and overexpression is related to the poor prognosis of breast cancer.Therefore, a nomogram was constructed, along with correlated gene analysis and functional analysis to further explore the carcinogenic mechanism, practical clinical issues, and value of AP1S1. Conclusion AP1S1 is a potential oncogene of breast cancer.
Collapse
Affiliation(s)
- Danni Zheng
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Weida Fu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Lingli Jin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Xiaofang Jiang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Wenjie Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yaoyao Guan
- Department of Plastic Surgery, Sir Run-Run Hospital Affiliated to Zhejiang University, Hangzhou, People’s Republic of China
- Correspondence: Yaoyao Guan, 3 Qingchun East Road, Jianggan District, Hangzhou, Zhejiang, People’s Republic of China, Tel +86 571-86006618, Fax +86 571-86044817, Email
| | - Rutian Hao
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Rutian Hao, South White Elephant Warm hospital first New Area, Ouhai District, Wenzhou, Zhejiang, People’s Republic of China, Tel +86 577 5557, Fax +86 577-55578033, Email
| |
Collapse
|
32
|
Su F, Fang Y, Yu J, Jiang T, Lin S, Zhang S, Lv L, Long T, Pan H, Qi J, Zhou Q, Tang W, Ding G, Wang L, Tan L, Yin J. The Single Nucleotide Polymorphisms of AP1S1 are Associated with Risk of Esophageal Squamous Cell Carcinoma in Chinese Population. Pharmgenomics Pers Med 2022; 15:235-247. [PMID: 35321090 PMCID: PMC8938157 DOI: 10.2147/pgpm.s342743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background The σ1A subunit of the adaptor protein 1 (AP1S1) participates in various intracellular transport pathways, especially the maintenance of copper homeostasis, which is pivotal in carcinogenesis. It is therefore rational to presume that AP1S1 might also be involved in carcinogenesis. In this hospital-based case-control study, we investigated the genetic susceptibility to ESCC in relation to SNPs of AP1S1 among Chinese population. Methods A database containing a total of 1303 controls and 1043 ESCC patients were retrospectively studied. The AP1S1 SNPs were analyzed based on ligation detection reaction (LDR) method. Then, the relationship between ESCC and SNPs of AP1S1 was determined with a significant crude P<0.05. Then the logistic regression analysis was used for the calculation for adjusted P in the demographic stratification comparison if a significant difference was observed in the previous step. Results AP1S1 rs77387752 C>T genotype TT was an independent risk factor for ESCC, while rs4729666 C>T genotype TC and rs35208462 C>T genotype TC were associated with a lower risk for ESCC, especially in co-dominant model and allelic test for younger, male subjects who are not alcohol-drinkers nor cigarette smokers. Conclusion AP1S1 rs77387752, rs4729666 and rs35208462 polymorphisms are associated with susceptibility to ESCC in Chinese individuals. AP1S1 SNPs may exert an important role in esophageal carcinogenesis and could serve as potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Feng Su
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Yong Fang
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Jinjie Yu
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Tian Jiang
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Siyun Lin
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Shaoyuan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Lu Lv
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Tao Long
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Huiwen Pan
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Junqing Qi
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Qiang Zhou
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan, People’s Republic of China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Jiangsu, People’s Republic of China
| | - Guowen Ding
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Liming Wang
- Department of Respiratory, Shanghai Xuhui Central Hospital, Shanghai, People’s Republic of China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Jun Yin
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
- Correspondence: Jun Yin; Lijie Tan, Zhongshan Hospital of Fudan University, 180 Fenglin road, Xuhui District, Shanghai, 200032, People’s Republic of China, Email ;
| |
Collapse
|
33
|
Wan C, Crisman L, Wang B, Tian Y, Wang S, Yang R, Datta I, Nomura T, Li S, Yu H, Yin Q, Shen J. AAGAB is an assembly chaperone regulating AP1 and AP2 clathrin adaptors. J Cell Sci 2021; 134:272394. [PMID: 34494650 DOI: 10.1242/jcs.258587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022] Open
Abstract
Multimeric cargo adaptors such as AP2 play central roles in intracellular membrane trafficking. We recently discovered that the assembly of the AP2 adaptor complex, a key player in clathrin-mediated endocytosis, is a highly organized process controlled by alpha- and gamma-adaptin-binding protein (AAGAB, also known as p34). In this study, we demonstrate that besides AP2, AAGAB also regulates the assembly of AP1, a cargo adaptor involved in clathrin-mediated transport between the trans-Golgi network and the endosome. However, AAGAB is not involved in the formation of other adaptor complexes, including AP3. AAGAB promotes AP1 assembly by binding and stabilizing the γ and σ subunits of AP1, and its mutation abolishes AP1 assembly and disrupts AP1-mediated cargo trafficking. Comparative proteomic analyses indicate that AAGAB mutation massively alters surface protein homeostasis, and its loss-of-function phenotypes reflect the synergistic effects of AP1 and AP2 deficiency. Taken together, these findings establish AAGAB as an assembly chaperone for both AP1 and AP2 adaptors and pave the way for understanding the pathogenesis of AAGAB-linked diseases.
Collapse
Affiliation(s)
- Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Lauren Crisman
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Bing Wang
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Yuan Tian
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Shifeng Wang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Rui Yang
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Ishara Datta
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Toshifumi Nomura
- Department of Dermatology, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Suzhao Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Haijia Yu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Qian Yin
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
34
|
A patient with mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis, keratodermia syndrome caused by AP1B1 gene variant. Clin Dysmorphol 2021; 30:54-57. [PMID: 32969855 DOI: 10.1097/mcd.0000000000000350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Mahanty S, Setty SRG. Epidermal Lamellar Body Biogenesis: Insight Into the Roles of Golgi and Lysosomes. Front Cell Dev Biol 2021; 9:701950. [PMID: 34458262 PMCID: PMC8387949 DOI: 10.3389/fcell.2021.701950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Epidermal lamellar bodies (eLBs) are secretory organelles that carry a wide variety of secretory cargo required for skin homeostasis. eLBs belong to the class of lysosome-related organelles (LROs), which are cell-type-specific organelles that perform diverse functions. The formation of eLBs is thought to be related to that of other LROs, which are formed either through the gradual maturation of Golgi/endosomal precursors or by the conversion of conventional lysosomes. Current evidence suggests that eLB biogenesis presumably initiate from trans-Golgi network and receive cargo from endosomes, and also acquire lysosome characteristics during maturation. These multistep biogenesis processes are frequently disrupted in human skin disorders. However, many gaps remain in our understanding of eLB biogenesis and their relationship to skin diseases. Here, we describe our current understanding on eLB biogenesis with a focus on cargo transport to this LRO and highlight key areas where future research is needed.
Collapse
Affiliation(s)
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
36
|
Usmani MA, Ahmed ZM, Magini P, Pienkowski VM, Rasmussen KJ, Hernan R, Rasheed F, Hussain M, Shahzad M, Lanpher BC, Niu Z, Lim FY, Pippucci T, Ploski R, Kraus V, Matuszewska K, Palombo F, Kianmahd J, Martinez-Agosto JA, Lee H, Colao E, Motazacker MM, Brigatti KW, Puffenberger EG, Riazuddin SA, Gonzaga-Jauregui C, Chung WK, Wagner M, Schultz MJ, Seri M, Kievit AJ, Perrotti N, Klein Wassink-Ruiter J, van Bokhoven H, Riazuddin S, Riazuddin S, Riazuddin S. De novo and bi-allelic variants in AP1G1 cause neurodevelopmental disorder with developmental delay, intellectual disability, and epilepsy. Am J Hum Genet 2021; 108:1330-1341. [PMID: 34102099 DOI: 10.1016/j.ajhg.2021.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
Adaptor protein (AP) complexes mediate selective intracellular vesicular trafficking and polarized localization of somatodendritic proteins in neurons. Disease-causing alleles of various subunits of AP complexes have been implicated in several heritable human disorders, including intellectual disabilities (IDs). Here, we report two bi-allelic (c.737C>A [p.Pro246His] and c.1105A>G [p.Met369Val]) and eight de novo heterozygous variants (c.44G>A [p.Arg15Gln], c.103C>T [p.Arg35Trp], c.104G>A [p.Arg35Gln], c.229delC [p.Gln77Lys∗11], c.399_400del [p.Glu133Aspfs∗37], c.747G>T [p.Gln249His], c.928-2A>C [p.?], and c.2459C>G [p.Pro820Arg]) in AP1G1, encoding gamma-1 subunit of adaptor-related protein complex 1 (AP1γ1), associated with a neurodevelopmental disorder (NDD) characterized by mild to severe ID, epilepsy, and developmental delay in eleven families from different ethnicities. The AP1γ1-mediated adaptor complex is essential for the formation of clathrin-coated intracellular vesicles. In silico analysis and 3D protein modeling simulation predicted alteration of AP1γ1 protein folding for missense variants, which was consistent with the observed altered AP1γ1 levels in heterologous cells. Functional studies of the recessively inherited missense variants revealed no apparent impact on the interaction of AP1γ1 with other subunits of the AP-1 complex but rather showed to affect the endosome recycling pathway. Knocking out ap1g1 in zebrafish leads to severe morphological defect and lethality, which was significantly rescued by injection of wild-type AP1G1 mRNA and not by transcripts encoding the missense variants. Furthermore, microinjection of mRNAs with de novo missense variants in wild-type zebrafish resulted in severe developmental abnormalities and increased lethality. We conclude that de novo and bi-allelic variants in AP1G1 are associated with neurodevelopmental disorder in diverse populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Saima Riazuddin
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Department of Molecular Biology and Biochemistry, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
37
|
Ito Y, Takeichi T, Igari S, Mori T, Ono A, Suyama K, Takeuchi S, Muro Y, Ogi T, Hosoya M, Yamamoto T, Akiyama M. MEDNIK-like syndrome due to compound heterozygous mutations in AP1B1. J Eur Acad Dermatol Venereol 2020; 35:e345-e347. [PMID: 33349978 DOI: 10.1111/jdv.17098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Y Ito
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - T Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - S Igari
- Department of Dermatology, Fukushima Medical University, Fukushima, Japan
| | - T Mori
- Department of Dermatology, Fukushima Medical University, Fukushima, Japan
| | - A Ono
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - K Suyama
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - S Takeuchi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Y Muro
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - T Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - M Hosoya
- Department of Pediatrics, Fukushima Medical University, Fukushima, Japan
| | - T Yamamoto
- Department of Dermatology, Fukushima Medical University, Fukushima, Japan
| | - M Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
38
|
Espinós C, Ferenci P. Are the new genetic tools for diagnosis of Wilson disease helpful in clinical practice? JHEP Rep 2020; 2:100114. [PMID: 32613181 PMCID: PMC7322184 DOI: 10.1016/j.jhepr.2020.100114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
The diagnosis of Wilson disease is not always easy. For many patients, a combination of tests reflecting disturbed copper metabolism may be needed. Testing for ATP7B variants has become part of the routine diagnostic approach. The methods of genetic testing include analysis of the 21 coding exons and intronic flanking sequences, in which exons with recurrent variants would be prioritised depending on the mutation frequency in the local population. If sequencing the entire ATP7B gene cannot identify 2 variants and the suspicion for Wilson disease is high, after reviewing the clinical data, WES (whole-exome sequencing) or WGS (whole-genome sequencing) could be applied. A workflow based on the type and number of ATP7B variants responsible for Wilson disease is proposed. Genetic testing is indicated for confirmation of diagnosis, family screening, and screening of newborns and infants and in unclear cases suspected of suffering from Wilson disease. However, genetic testing is not a routine screening test for Wilson disease. If no additional variants can be identified, it can be assumed that other hereditary disorders may mimic Wilson disease (congenital disorders of glycosylation, MEDNIK syndrome, idiopathic or primary copper toxicoses).
Collapse
Affiliation(s)
- Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, Valencia, Spain
- Department of Genetics, Universitat de València, Valencia, Spain
| | - Peter Ferenci
- Department of Internal Medicine 3, Gastroenterology and Hepatology, Medical University of Vienna, Austria
| |
Collapse
|
39
|
Yarwood R, Hellicar J, Woodman PG, Lowe M. Membrane trafficking in health and disease. Dis Model Mech 2020; 13:13/4/dmm043448. [PMID: 32433026 PMCID: PMC7197876 DOI: 10.1242/dmm.043448] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Membrane trafficking pathways are essential for the viability and growth of cells, and play a major role in the interaction of cells with their environment. In this At a Glance article and accompanying poster, we outline the major cellular trafficking pathways and discuss how defects in the function of the molecular machinery that mediates this transport lead to various diseases in humans. We also briefly discuss possible therapeutic approaches that may be used in the future treatment of trafficking-based disorders. Summary: This At a Glance article and poster summarise the major intracellular membrane trafficking pathways and associated molecular machineries, and describe how defects in these give rise to disease in humans.
Collapse
Affiliation(s)
- Rebecca Yarwood
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - John Hellicar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Philip G Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
40
|
AP1S1 missense mutations cause a congenital enteropathy via an epithelial barrier defect. Hum Genet 2020; 139:1247-1259. [PMID: 32306098 PMCID: PMC7497319 DOI: 10.1007/s00439-020-02168-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
Abstract
Congenital diarrheal disorders (CDD) comprise > 50 monogenic entities featuring chronic diarrhea of early-onset, including defects in nutrient and electrolyte absorption, enterocyte polarization, enteroendocrine cell differentiation, and epithelial integrity. Diarrhea is also a predominant symptom in many immunodeficiencies, congenital disorders of glycosylation, and in some defects of the vesicular sorting and transporting machinery. We set out to identify the etiology of an intractable diarrhea in 2 consanguineous families by whole-exome sequencing, and identified two novel AP1S1 mutations, c.269T>C (p.Leu90Pro) and c.346G>A (p.Glu116Lys). AP1S1 encodes the small subunit of the adaptor protein 1 complex (AP-1), which plays roles in clathrin coat-assembly and trafficking between trans-Golgi network, endosomes and the plasma membrane. An AP1S1 knock-out (KO) of a CaCo2 intestinal cell line was generated to characterize intestinal AP1S1 deficiency as well as identified mutations by stable expression in KO background. Morphology and prototype transporter protein distribution were comparable between parental and KO cells. We observed altered localization of tight-junction proteins ZO-1 and claudin 3, decreased transepithelial electrical resistance and an increased dextran permeability of the CaCo2-AP1S1-KO monolayer. In addition, lumen formation in 3D cultures of these cells was abnormal. Re-expression of wild-type AP1S1 in CaCo2-AP1S1-KO cells reverted these abnormalities, while expression of AP1S1 containing either missense mutation did not. Our data indicate that loss of AP1S1 function causes an intestinal epithelial barrier defect, and that AP1S1 mutations can cause a non-syndromic form of congenital diarrhea, whereas 2 reported truncating AP1S1 mutations caused MEDNIK syndrome, characterized by mental retardation, enteropathy, deafness, neuropathy, ichthyosis, and keratodermia.
Collapse
|
41
|
Alsaif HS, Al-Owain M, Barrios-Llerena ME, Gosadi G, Binamer Y, Devadason D, Ravenscroft J, Suri M, Alkuraya FS. Homozygous Loss-of-Function Mutations in AP1B1, Encoding Beta-1 Subunit of Adaptor-Related Protein Complex 1, Cause MEDNIK-like Syndrome. Am J Hum Genet 2019; 105:1016-1022. [PMID: 31630791 DOI: 10.1016/j.ajhg.2019.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 09/17/2019] [Indexed: 01/16/2023] Open
Abstract
MEDNIK syndrome (mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratoderma) is an autosomal-recessive disorder caused by bi-allelic mutations in AP1S1, encoding the small σ subunit of the AP-1 complex. Central to the pathogenesis of MEDNIK syndrome is abnormal AP-1-mediated trafficking of copper transporters; this abnormal trafficking results in a hybrid phenotype combining the copper-deficiency-related characteristics of Menkes disease and the copper-toxicity-related characteristics of Wilson disease. We describe three individuals from two unrelated families in whom a MEDNIK-like phenotype segregates with two homozygous null variants in AP1B1, encoding the large β subunit of the AP-1 complex. Similar to individuals with MEDNIK syndrome, the affected individuals we report display abnormal copper metabolism, evidenced by low plasma copper and ceruloplasmin, but lack evidence of copper toxicity in the liver. Functional characterization of fibroblasts derived from affected individuals closely resembles the abnormal ATP7A trafficking described in MEDNIK syndrome both at baseline and in response to copper treatment. Taken together, our results expand the list of inborn errors of copper metabolism.
Collapse
Affiliation(s)
- Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mohammad Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Martin E Barrios-Llerena
- Proteomics and Mass Spectrometry, Bioscience Core Labs, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Ghada Gosadi
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Yousef Binamer
- Department of Dermatology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - David Devadason
- Department of Paediatric Gastroenterology, Nottingham Children's Hospital, Nottingham University Hospitals, Queen's Medical Centre, Nottingham NG72UH, United Kingdom
| | - Jane Ravenscroft
- Department of Paediatric Dermatology, Nottingham Children's Hospital, Nottingham University Hospitals, Queen's Medical Centre, Nottingham NG72UH, United Kingdom
| | - Mohnish Suri
- Clinical Genetics Service, Nottingham University Hospitals, City Hospital Campus, Nottingham NG51PB, United Kingdom.
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.
| |
Collapse
|
42
|
Recessive Mutations in AP1B1 Cause Ichthyosis, Deafness, and Photophobia. Am J Hum Genet 2019; 105:1023-1029. [PMID: 31630788 DOI: 10.1016/j.ajhg.2019.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
We describe unrelated individuals with ichthyosis, failure to thrive, thrombocytopenia, photophobia, and progressive hearing loss. Each have bi-allelic mutations in AP1B1, the gene encoding the β subunit of heterotetrameric adaptor protein 1 (AP-1) complexes, which mediate endomembrane polarization, sorting, and transport. In affected keratinocytes the AP-1 β subunit is lost, and the γ subunit is greatly reduced, demonstrating destabilization of the AP-1 complex. Affected cells and tissue contain an abundance of abnormal vesicles and show hyperproliferation, abnormal epidermal differentiation, and derangement of intercellular junction proteins. Transduction of affected cells with wild-type AP1B1 rescues the vesicular phenotype, conclusively establishing that loss of AP1B1 function causes this disorder.
Collapse
|
43
|
Sanger A, Hirst J, Davies AK, Robinson MS. Adaptor protein complexes and disease at a glance. J Cell Sci 2019; 132:132/20/jcs222992. [PMID: 31636158 DOI: 10.1242/jcs.222992] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Adaptor protein (AP) complexes are heterotetramers that select cargo for inclusion into transport vesicles. Five AP complexes (AP-1 to AP-5) have been described, each with a distinct localisation and function. Furthermore, patients with a range of disorders, particularly involving the nervous system, have now been identified with mutations in each of the AP complexes. In many cases this has been correlated with aberrantly localised membrane proteins. In this Cell Science at a Glance article and the accompanying poster, we summarize what is known about the five AP complexes and discuss how this helps to explain the clinical features of the different genetic disorders.
Collapse
Affiliation(s)
- Anneri Sanger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Alexandra K Davies
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
44
|
Abstract
Protein coats are supramolecular complexes that assemble on the cytosolic face of membranes to promote cargo sorting and transport carrier formation in the endomembrane system of eukaryotic cells. Several types of protein coats have been described, including COPI, COPII, AP-1, AP-2, AP-3, AP-4, AP-5, and retromer, which operate at different stages of the endomembrane system. Defects in these coats impair specific transport pathways, compromising the function and viability of the cells. In humans, mutations in subunits of these coats cause various congenital diseases that are collectively referred to as coatopathies. In this article, we review the fundamental properties of protein coats and the diseases that result from mutation of their constituent subunits.
Collapse
Affiliation(s)
- Esteban C Dell'Angelica
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
45
|
Overeem AW, Klappe K, Parisi S, Klöters-Planchy P, Mataković L, du Teil Espina M, Drouin CA, Weiss KH, van IJzendoorn SCD. Pluripotent stem cell-derived bile canaliculi-forming hepatocytes to study genetic liver diseases involving hepatocyte polarity. J Hepatol 2019; 71:344-356. [PMID: 30965071 DOI: 10.1016/j.jhep.2019.03.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/15/2019] [Accepted: 03/31/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Hepatocyte polarity is essential for the development of bile canaliculi and for safely transporting bile and waste products from the liver. Functional studies of autologous mutated proteins in the context of the polarized hepatocyte have been challenging because of the lack of appropriate cell models. The aims of this study were to obtain a patient-specific hepatocyte model that recapitulated hepatocyte polarity and to employ this model to study endogenous mutant proteins in liver diseases that involve hepatocyte polarity. METHODS Urine cell-derived pluripotent stem cells, taken from a patient with a homozygous mutation in ATP7B and a patient with a heterozygous mutation, were differentiated towards hepatocyte-like cells (hiHeps). HiHeps were also derived from a patient with MEDNIK syndrome. RESULTS Polarized hiHeps that formed in vivo-like bile canaliculi could be generated from embryonic and patient urine cell-derived pluripotent stem cells. HiHeps recapitulated polarized protein trafficking processes, exemplified by the Cu2+-induced redistribution of the copper transporter protein ATP7B to the bile canalicular domain. We demonstrated that, in contrast to the current dogma, the most frequent yet enigmatic Wilson disease-causing ATP7B-H1069Q mutation per se did not preclude trafficking of ATP7B to the trans-Golgi Network. Instead, it prevented its Cu2+-induced polarized redistribution to the bile canalicular domain, which could not be reversed by pharmacological folding chaperones. Finally, we demonstrate that hiHeps from a patient with MEDNIK syndrome, suffering from liver copper overload of unclear etiology, showed no defect in the Cu2+-induced redistribution of ATP7B to the bile canaliculi. CONCLUSIONS Functional cell polarity can be achieved in patient pluripotent stem cell-derived hiHeps, enabling, for the first time, the study of the endogenous mutant proteins, patient-specific pathogenesis and drug responses for diseases where hepatocyte polarity is a key factor. LAY SUMMARY This study demonstrates that cells that are isolated from urine can be reprogrammed in a dish towards hepatocytes that display architectural characteristics similar to those seen in the intact liver. The application of this methodology to cells from patients diagnosed with inherited copper metabolism-related liver diseases (that is, Wilson disease and MEDNIK syndrome) revealed unexpected and novel insights into patient mutation-specific disease mechanisms and drug responses.
Collapse
Affiliation(s)
- Arend W Overeem
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Karin Klappe
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Lavinija Mataković
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marines du Teil Espina
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christian A Drouin
- Service de Dermatologie, Centre Hospitalier du Grand Portage, Rivière du Loup, Québec, Canada
| | - Karl Heinz Weiss
- University Hospital Heidelberg, Internal Medicine IV, Heidelberg, Germany
| | - Sven C D van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
46
|
Puchkova LV, Broggini M, Polishchuk EV, Ilyechova EY, Polishchuk RS. Silver Ions as a Tool for Understanding Different Aspects of Copper Metabolism. Nutrients 2019; 11:E1364. [PMID: 31213024 PMCID: PMC6627586 DOI: 10.3390/nu11061364] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
In humans, copper is an important micronutrient because it is a cofactor of ubiquitous and brain-specific cuproenzymes, as well as a secondary messenger. Failure of the mechanisms supporting copper balance leads to the development of neurodegenerative, oncological, and other severe disorders, whose treatment requires a detailed understanding of copper metabolism. In the body, bioavailable copper exists in two stable oxidation states, Cu(I) and Cu(II), both of which are highly toxic. The toxicity of copper ions is usually overcome by coordinating them with a wide range of ligands. These include the active cuproenzyme centers, copper-binding protein motifs to ensure the safe delivery of copper to its physiological location, and participants in the Cu(I) ↔ Cu(II) redox cycle, in which cellular copper is stored. The use of modern experimental approaches has allowed the overall picture of copper turnover in the cells and the organism to be clarified. However, many aspects of this process remain poorly understood. Some of them can be found out using abiogenic silver ions (Ag(I)), which are isoelectronic to Cu(I). This review covers the physicochemical principles of the ability of Ag(I) to substitute for copper ions in transport proteins and cuproenzyme active sites, the effectiveness of using Ag(I) to study copper routes in the cells and the body, and the limitations associated with Ag(I) remaining stable in only one oxidation state. The use of Ag(I) to restrict copper transport to tumors and the consequences of large-scale use of silver nanoparticles for human health are also discussed.
Collapse
Affiliation(s)
- Ludmila V Puchkova
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Department of Molecular Genetics, Research Institute of Experimental Medicine, Acad. Pavlov str., 12, St.-Petersburg 197376, Russia.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya str., 29, St.-Petersburg 195251, Russia.
| | - Massimo Broggini
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Laboratory of molecular pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via La Masa, 19, Milan 20156, Italy.
| | - Elena V Polishchuk
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (NA) 80078, Italy.
| | - Ekaterina Y Ilyechova
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (NA) 80078, Italy.
| |
Collapse
|
47
|
Cargo Sorting at the trans-Golgi Network for Shunting into Specific Transport Routes: Role of Arf Small G Proteins and Adaptor Complexes. Cells 2019; 8:cells8060531. [PMID: 31163688 PMCID: PMC6627992 DOI: 10.3390/cells8060531] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/27/2023] Open
Abstract
The trans-Golgi network (TGN) is responsible for selectively recruiting newly synthesized cargo into transport carriers for delivery to their appropriate destination. In addition, the TGN is responsible for receiving and recycling cargo from endosomes. The membrane organization of the TGN facilitates the sorting of cargoes into distinct populations of transport vesicles. There have been significant advances in defining the molecular mechanism involved in the recognition of membrane cargoes for recruitment into different populations of transport carriers. This machinery includes cargo adaptors of the adaptor protein (AP) complex family, and monomeric Golgi-localized γ ear-containing Arf-binding protein (GGA) family, small G proteins, coat proteins, as well as accessory factors to promote budding and fission of transport vesicles. Here, we review this literature with a particular focus on the transport pathway(s) mediated by the individual cargo adaptors and the cargo motifs recognized by these adaptors. Defects in these cargo adaptors lead to a wide variety of diseases.
Collapse
|
48
|
[Syndromes with scales and keratosis]. Hautarzt 2019; 70:497-505. [PMID: 31087125 DOI: 10.1007/s00105-019-4417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Approximately 9000 different phenotypes are known in medicine. The definition phenotype includes both manifest diseases as well as features without any disease value and the pure genetic disposition to develop a disease (e.g. tumors or complex diseases); however, most phenotypes are rare monogenic hereditary diseases. Approximately 6400 of these phenotypes have so far been elucidated by molecular genetics and are caused by mutations in 4064 different genes. Of all genetic diseases, an estimated one third are associated with skin symptoms. Genodermatoses are the phenotypes predominantly related to the skin, of which approximately 600 are familiar to dermatologists. The syndromes with scaling and keratosis include cornification disorders where the symptoms are not limited to the skin. They are associated with skin symptoms such as ichthyosis, erythroderma and palmoplantar keratoderma but show additional symptoms from other organ groups. The typical combination of symptoms may be unique to a syndrome and therefore seminal for the diagnosis.
Collapse
|
49
|
Hermann W. Classification and differential diagnosis of Wilson's disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S63. [PMID: 31179300 PMCID: PMC6531651 DOI: 10.21037/atm.2019.02.07] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
Abstract
Wilson's disease is characterized by hepatic and extrapyramidal movement disorders (EPS) with variable manifestation primarily between age 5 and 45. This variability often makes an early diagnosis difficult. A classification defines different clinical variants of Wilson's disease, which enables classifying the current clinical findings and making an early tentative diagnosis. Until the unequivocal proof or an autosomal recessive disorder of the hepatic copper transporter ATP7B has been ruled out, differential diagnoses have to be examined. Laboratory-chemical parameters of copper metabolism can both be deviations from the norm not related to the disease as well as other copper metabolism disorders besides Wilson's disease. In addition to known diseases such as Menkes disease, occipital horn syndrome (OHS), Indian childhood cirrhosis (ICC) and ceruloplasmin deficiency, recently discovered disorders are taken into account. These include MEDNIK syndrome, Huppke-Brendel syndrome and CCS chaperone deficiency. Another main focus is on differential diagnoses of childhood icterus correlated with age and anaemia as well as disorders of the extrapyramidal motor system. The Kayser-Fleischer ring (KFR) is qualified as classical ophthalmologic manifestation. The recently described manganese storage disease presents another rare metabolic disorder with symptoms similar to Wilson's disease. As this overview shows, Wilson's disease fits into a broad spectrum of internal and neurological disease patterns with icterus, anaemia and EPS.
Collapse
Affiliation(s)
- Wieland Hermann
- Department of Neurology, SRO AG Spital Langenthal, Langenthal, Switzerland
| |
Collapse
|
50
|
Trafficking mechanisms of P-type ATPase copper transporters. Curr Opin Cell Biol 2019; 59:24-33. [PMID: 30928671 DOI: 10.1016/j.ceb.2019.02.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Copper is an essential micronutrient required for oxygen-dependent enzymes, yet excess of the metal is a toxicant. The tug-of-war between these copper activities is balanced by chaperones and membrane transporters, which control copper distribution and availability. The P-type ATPase transporters, ATP7A and ATP7B, regulate cytoplasmic copper by pumping copper out of cells or into the endomembrane system. Mutations in ATP7A and ATP7B cause diseases that share neuropsychiatric phenotypes, which are similar to phenotypes observed in mutations affecting cytoplasmic trafficking complexes required for ATP7A/B dynamics. Here, we discuss evidence indicating that phenotypes associated to genetic defects in trafficking complexes, such as retromer and the adaptor complex AP-1, result in part from copper dyshomeostasis due to mislocalized ATP7A and ATP7B.
Collapse
|