1
|
Trujillo EM, Lee SR, Aguayo A, Torosian TC, Cripps RM. Enhanced expression of the myogenic factor Myocyte enhancer factor-2 in imaginal disc myoblasts activates a partial, but incomplete, muscle development program. Dev Biol 2024; 516:82-95. [PMID: 39111615 DOI: 10.1016/j.ydbio.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
The Myocyte enhancer factor-2 (MEF2) transcription factor plays a vital role in orchestrating muscle differentiation. While MEF2 cannot effectively induce myogenesis in naïve cells, it can potently accelerate myogenesis in mesodermal cells. This includes in Drosophila melanogaster imaginal disc myoblasts, where triggering premature muscle gene expression in these adult muscle progenitors has become a paradigm for understanding the regulation of the myogenic program. Here, we investigated the global consequences of MEF2 overexpression in the imaginal wing disc myoblasts, by combining RNA-sequencing with RT-qPCR and immunofluorescence. We observed the formation of sarcomere-like structures that contained both muscle and cytoplasmic myosin, and significant upregulation of muscle gene expression, especially genes essential for myofibril formation and function. These transcripts were functional since numerous myofibrillar proteins were detected in discs using immunofluorescence. Interestingly, muscle genes whose expression is restricted to the adult stages were not activated in these adult myoblasts. These studies confirm a broad activation of the myogenic program in response to MEF2 expression and suggest that additional regulatory factors are required for promoting the adult muscle-specific program. Our findings contribute to understanding the regulatory mechanisms governing muscle development and highlight the multifaceted role of MEF2 in orchestrating this intricate process.
Collapse
Affiliation(s)
| | - Samuel R Lee
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Antonio Aguayo
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Tylee C Torosian
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Richard M Cripps
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
2
|
Rich J, Bennaroch M, Notel L, Patalakh P, Alberola J, Issa F, Opolon P, Bawa O, Rondof W, Marchais A, Dessen P, Meurice G, Le-Gall M, Polrot M, Ser-Le Roux K, Mamchaoui K, Droin N, Raslova H, Maire P, Geoerger B, Pirozhkova I. DiPRO1 distinctly reprograms muscle and mesenchymal cancer cells. EMBO Mol Med 2024; 16:1840-1885. [PMID: 39009887 PMCID: PMC11319797 DOI: 10.1038/s44321-024-00097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
We have recently identified the uncharacterized ZNF555 protein as a component of a productive complex involved in the morbid function of the 4qA locus in facioscapulohumeral dystrophy. Subsequently named DiPRO1 (Death, Differentiation, and PROliferation related PROtein 1), our study provides substantial evidence of its role in the differentiation and proliferation of human myoblasts. DiPRO1 operates through the regulatory binding regions of SIX1, a master regulator of myogenesis. Its relevance extends to mesenchymal tumors, such as rhabdomyosarcoma (RMS) and Ewing sarcoma, where DiPRO1 acts as a repressor via the epigenetic regulators TIF1B and UHRF1, maintaining methylation of cis-regulatory elements and gene promoters. Loss of DiPRO1 mimics the host defense response to virus, awakening retrotransposable repeats and the ZNF/KZFP gene family. This enables the eradication of cancer cells, reprogramming the cellular decision balance towards inflammation and/or apoptosis by controlling TNF-α via NF-kappaB signaling. Finally, our results highlight the vulnerability of mesenchymal cancer tumors to si/shDiPRO1-based nanomedicines, positioning DiPRO1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Jeremy Rich
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Melanie Bennaroch
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Laura Notel
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Polina Patalakh
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Julien Alberola
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Fayez Issa
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France
| | - Paule Opolon
- Pathology and Cytology Section, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Olivia Bawa
- Pathology and Cytology Section, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Windy Rondof
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Philippe Dessen
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Guillaume Meurice
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Morgane Le-Gall
- Proteom'IC facility, Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
| | - Melanie Polrot
- Pre-clinical Evaluation Unit (PFEP), INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Karine Ser-Le Roux
- Pre-clinical Evaluation Unit (PFEP), INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013, Paris, France
| | - Nathalie Droin
- Genomic Platform, UMS AMMICA US 23 INSERM UAR 3655 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- UMR1287 INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Hana Raslova
- UMR1287 INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Pascal Maire
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Iryna Pirozhkova
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France.
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France.
| |
Collapse
|
3
|
Secchia S, Forneris M, Heinen T, Stegle O, Furlong EEM. Simultaneous cellular and molecular phenotyping of embryonic mutants using single-cell regulatory trajectories. Dev Cell 2022; 57:496-511.e8. [PMID: 35176234 PMCID: PMC8893321 DOI: 10.1016/j.devcel.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/04/2021] [Accepted: 01/26/2022] [Indexed: 11/09/2022]
Abstract
Developmental progression and cellular diversity are largely driven by transcription factors (TFs); yet, characterizing their loss-of-function phenotypes remains challenging and often disconnected from their underlying molecular mechanisms. Here, we combine single-cell regulatory genomics with loss-of-function mutants to jointly assess both cellular and molecular phenotypes. Performing sci-ATAC-seq at eight overlapping time points during Drosophila mesoderm development could reconstruct the developmental trajectories of all major muscle types and reveal the TFs and enhancers involved. To systematically assess mutant phenotypes, we developed a single-nucleus genotyping strategy to process embryo pools of mixed genotypes. Applying this to four TF mutants could identify and quantify their characterized phenotypes de novo and discover new ones, while simultaneously revealing their regulatory input and mode of action. Our approach is a general framework to dissect the functional input of TFs in a systematic, unbiased manner, identifying both cellular and molecular phenotypes at a scale and resolution that has not been feasible before.
Collapse
Affiliation(s)
- Stefano Secchia
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Baden-Württemberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Baden-Württemberg, Germany
| | - Mattia Forneris
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Baden-Württemberg, Germany
| | - Tobias Heinen
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Baden-Württemberg, Germany; Heidelberg University, Faculty of Mathematics and Computer Science, 69120 Heidelberg, Baden-Württemberg, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Baden-Württemberg, Germany; Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Baden-Württemberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Baden-Württemberg, Germany.
| |
Collapse
|
4
|
Poovathumkadavil P, Jagla K. Genetic Control of Muscle Diversification and Homeostasis: Insights from Drosophila. Cells 2020; 9:cells9061543. [PMID: 32630420 PMCID: PMC7349286 DOI: 10.3390/cells9061543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
In the fruit fly, Drosophila melanogaster, the larval somatic muscles or the adult thoracic flight and leg muscles are the major voluntary locomotory organs. They share several developmental and structural similarities with vertebrate skeletal muscles. To ensure appropriate activity levels for their functions such as hatching in the embryo, crawling in the larva, and jumping and flying in adult flies all muscle components need to be maintained in a functionally stable or homeostatic state despite constant strain. This requires that the muscles develop in a coordinated manner with appropriate connections to other cell types they communicate with. Various signaling pathways as well as extrinsic and intrinsic factors are known to play a role during Drosophila muscle development, diversification, and homeostasis. In this review, we discuss genetic control mechanisms of muscle contraction, development, and homeostasis with particular emphasis on the contractile unit of the muscle, the sarcomere.
Collapse
|
5
|
Zia A, Imran M, Rashid S. In Silico Exploration of Conformational Dynamics and Novel Inhibitors for Targeting MEF2-Associated Transcriptional Activity. J Chem Inf Model 2020; 60:1892-1909. [PMID: 32031799 DOI: 10.1021/acs.jcim.0c00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Myocyte enhancer factor 2 (MEF2; MEF2A-MEF2D) transcription factors regulate gene expression in a variety of developmental processes by binding to AT-rich DNA motifs via highly conserved N-terminal extensions known as MADS-box and MEF2 domains. Despite the fact that MEF2 proteins exhibit high similarity at their N-terminal regions and share a common consensus DNA binding motif, their functional preferences may vary significantly in the adjacent regions to the DNA binding core segment. The current study delineates the conformational paradigm, clustered recognition, and comparative DNA binding preferences for MEF2A and MEF2B-specific MADS-box/MEF2 domains at the YTA(A/T)4TAR consensus motif. In both MEF2A and MEF2B proteins, α1-helix plays a crucial role through acquiring more flexibility by attaining loop conformation. In comparison to apo-MEF2, an outward disposition of the distal portion of α1-helix and movement of its proximal part to β1 allows synergistic repositioning of the α1-α2 linker, C-terminal region, and MEF2 domain, resulting in the formation of a hydrophobic groove for DNA binding. In both instances, conformational switching of the helical content is the main contributing factor while preserving the overall β-topology to maintain the inside-out conformation of subdivided α1-helix flip. Multivariate statistical analysis reveals that MEF2B obscures less accessible conformational space for DNA binding as compared to the MEF2A-DNA complex. The presence of similar structural requirements and conserved residues including Arg10, Phe21, and Arg24 in accentuating the MEF2-specific DNA recognition mechanism led us to perform structure-based virtual screening for isolating novel inhibitors that are able to target MEF2-DNA binding regions. The top hits (acetamide, benzamide, carboxamide, and enamide) obtained through preliminary assay were scrutinized to binding potential analysis at the MEF2-DNA binding groove, energy values, absorption, distribution, toxicity, and Lipinski's rule of five assessments. Based on these findings, we propose valuable active drug-like molecules for selective applications against MEF2A and MEF2B. The current study may help in uncovering the atomistic-level mechanistic DNA binding patterns of MEF2 proteins, and data may be valuable in devising effective therapeutic strategies for MEF2-associated disorders.
Collapse
Affiliation(s)
- Ayisha Zia
- National Center for Bioinformatics, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Muhammad Imran
- National Center for Bioinformatics, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| |
Collapse
|
6
|
Williams RM, Candido-Ferreira I, Repapi E, Gavriouchkina D, Senanayake U, Ling ITC, Telenius J, Taylor S, Hughes J, Sauka-Spengler T. Reconstruction of the Global Neural Crest Gene Regulatory Network In Vivo. Dev Cell 2019; 51:255-276.e7. [PMID: 31639368 PMCID: PMC6838682 DOI: 10.1016/j.devcel.2019.10.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/31/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
Precise control of developmental processes is encoded in the genome in the form of gene regulatory networks (GRNs). Such multi-factorial systems are difficult to decode in vertebrates owing to their complex gene hierarchies and dynamic molecular interactions. Here we present a genome-wide in vivo reconstruction of the GRN underlying development of the multipotent neural crest (NC) embryonic cell population. By coupling NC-specific epigenomic and transcriptional profiling at population and single-cell levels with genome/epigenome engineering in vivo, we identify multiple regulatory layers governing NC ontogeny, including NC-specific enhancers and super-enhancers, novel trans-factors, and cis-signatures allowing reverse engineering of the NC-GRN at unprecedented resolution. Furthermore, identification and dissection of divergent upstream combinatorial regulatory codes has afforded new insights into opposing gene circuits that define canonical and neural NC fates early during NC ontogeny. Our integrated approach, allowing dissection of cell-type-specific regulatory circuits in vivo, has broad implications for GRN discovery and investigation.
Collapse
Affiliation(s)
- Ruth M Williams
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Ivan Candido-Ferreira
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Emmanouela Repapi
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK
| | - Daria Gavriouchkina
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Upeka Senanayake
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Irving T C Ling
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK; University of Oxford, Department of Paediatric Surgery, Children's Hospital Oxford, Oxford, UK
| | - Jelena Telenius
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK; University of Oxford, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Stephen Taylor
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK
| | - Jim Hughes
- University of Oxford, MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK; University of Oxford, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK.
| |
Collapse
|
7
|
Zhou Y, Popadowski SE, Deutschman E, Halfon MS. Distinct roles and requirements for Ras pathway signaling in visceral versus somatic muscle founder specification. Development 2019; 146:dev.169003. [PMID: 30630823 DOI: 10.1242/dev.169003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022]
Abstract
Pleiotropic signaling pathways must somehow engender specific cellular responses. In the Drosophila mesoderm, Ras pathway signaling specifies muscle founder cells from among the broader population of myoblasts. For somatic muscles, this is an inductive process mediated by the ETS-domain downstream Ras effectors Pointed and Aop (Yan). We demonstrate here that for the circular visceral muscles, despite superficial similarities, a significantly different specification mechanism is at work. Not only is visceral founder cell specification not dependent on Pointed or Aop, but Ras pathway signaling in its entirety can be bypassed. Our results show that de-repression, not activation, is the predominant role of Ras signaling in the visceral mesoderm and that, accordingly, Ras signaling is not required in the absence of repression. The key repressor acts downstream of the transcription factor Lame duck and is likely a member of the ETS transcription factor family. Our findings fit with a growing body of data that point to a complex interplay between the Ras pathway, ETS transcription factors, and enhancer binding as a crucial mechanism for determining unique responses to Ras signaling.
Collapse
Affiliation(s)
- Yiyun Zhou
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
| | - Sarah E Popadowski
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
| | - Emily Deutschman
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA .,Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14203, USA.,Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, NY 14203, USA.,NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.,Molecular and Cellular Biology Department and Program in Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
8
|
Di Giorgio E, Hancock WW, Brancolini C. MEF2 and the tumorigenic process, hic sunt leones. Biochim Biophys Acta Rev Cancer 2018; 1870:261-273. [PMID: 29879430 DOI: 10.1016/j.bbcan.2018.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 12/14/2022]
Abstract
While MEF2 transcription factors are well known to cooperate in orchestrating cell fate and adaptive responses during development and adult life, additional studies over the last decade have identified a wide spectrum of genetic alterations of MEF2 in different cancers. The consequences of these alterations, including triggering and maintaining the tumorigenic process, are not entirely clear. A deeper knowledge of the molecular pathways that regulate MEF2 expression and function, as well as the nature and consequences of MEF2 mutations are necessary to fully understand the many roles of MEF2 in malignant cells. This review discusses the current knowledge of MEF2 transcription factors in cancer.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
9
|
Taylor MV, Hughes SM. Mef2 and the skeletal muscle differentiation program. Semin Cell Dev Biol 2017; 72:33-44. [PMID: 29154822 DOI: 10.1016/j.semcdb.2017.11.020] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 02/06/2023]
Abstract
Mef2 is a conserved and significant transcription factor in the control of muscle gene expression. In cell culture Mef2 synergises with MyoD-family members in the activation of gene expression and in the conversion of fibroblasts into myoblasts. Amongst its in vivo roles, Mef2 is required for both Drosophila muscle development and mammalian muscle regeneration. Mef2 has functions in other cell-types too, but this review focuses on skeletal muscle and surveys key findings on Mef2 from its discovery, shortly after that of MyoD, up to the present day. In particular, in vivo functions, underpinning mechanisms and areas of uncertainty are highlighted. We describe how Mef2 sits at a nexus in the gene expression network that controls the muscle differentiation program, and how Mef2 activity must be regulated in time and space to orchestrate specific outputs within the different aspects of muscle development. A theme that emerges is that there is much to be learnt about the different Mef2 proteins (from different paralogous genes, spliced transcripts and species) and how the activity of these proteins is controlled.
Collapse
Affiliation(s)
- Michael V Taylor
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Simon M Hughes
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL UK
| |
Collapse
|
10
|
Insights into DDT Resistance from the Drosophila melanogaster Genetic Reference Panel. Genetics 2017; 207:1181-1193. [PMID: 28935691 PMCID: PMC5676240 DOI: 10.1534/genetics.117.300310] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/18/2017] [Indexed: 01/12/2023] Open
Abstract
Insecticide resistance is considered a classic model of microevolution, where a strong selective agent is applied to a large natural population, resulting in a change in frequency of alleles that confer resistance. While many insecticide resistance variants have been characterized at the gene level, they are typically single genes of large effect identified in highly resistant pest species. In contrast, multiple variants have been implicated in DDT resistance in Drosophila melanogaster; however, only the Cyp6g1 locus has previously been shown to be relevant to field populations. Here we use genome-wide association studies (GWAS) to identify DDT-associated polygenes and use selective sweep analyses to assess their adaptive significance. We identify and verify two candidate DDT resistance loci. A largely uncharacterized gene, CG10737, has a function in muscles that ameliorates the effects of DDT, while a putative detoxifying P450, Cyp6w1, shows compelling evidence of positive selection.
Collapse
|
11
|
Khadilkar RJ, Ray A, Chetan DR, Sinha AR, Magadi SS, Kulkarni V, Inamdar MS. Differential modulation of the cellular and humoral immune responses in Drosophila is mediated by the endosomal ARF1-Asrij axis. Sci Rep 2017; 7:118. [PMID: 28273919 PMCID: PMC5427928 DOI: 10.1038/s41598-017-00118-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/10/2017] [Indexed: 12/15/2022] Open
Abstract
How multicellular organisms maintain immune homeostasis across various organs and cell types is an outstanding question in immune biology and cell signaling. In Drosophila, blood cells (hemocytes) respond to local and systemic cues to mount an immune response. While endosomal regulation of Drosophila hematopoiesis is reported, the role of endosomal proteins in cellular and humoral immunity is not well-studied. Here we demonstrate a functional role for endosomal proteins in immune homeostasis. We show that the ubiquitous trafficking protein ADP Ribosylation Factor 1 (ARF1) and the hemocyte-specific endosomal regulator Asrij differentially regulate humoral immunity. Asrij and ARF1 play an important role in regulating the cellular immune response by controlling the crystal cell melanization and phenoloxidase activity. ARF1 and Asrij mutants show reduced survival and lifespan upon infection, indicating perturbed immune homeostasis. The ARF1-Asrij axis suppresses the Toll pathway anti-microbial peptides (AMPs) by regulating ubiquitination of the inhibitor Cactus. The Imd pathway is inversely regulated- while ARF1 suppresses AMPs, Asrij is essential for AMP production. Several immune mutants have reduced Asrij expression, suggesting that Asrij co-ordinates with these pathways to regulate the immune response. Our study highlights the role of endosomal proteins in modulating the immune response by maintaining the balance of AMP production. Similar mechanisms can now be tested in mammalian hematopoiesis and immunity.
Collapse
Affiliation(s)
- Rohan J Khadilkar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Arindam Ray
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - D R Chetan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | - Srivathsa S Magadi
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Vani Kulkarni
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Maneesha S Inamdar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
| |
Collapse
|
12
|
Saha A, Kizaki S, De D, Endo M, Kim KK, Sugiyama H. Examining cooperative binding of Sox2 on DC5 regulatory element upon complex formation with Pax6 through excess electron transfer assay. Nucleic Acids Res 2016; 44:e125. [PMID: 27229137 PMCID: PMC5001601 DOI: 10.1093/nar/gkw478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/17/2016] [Indexed: 12/29/2022] Open
Abstract
Functional cooperativity among transcription factors on regulatory genetic elements is pivotal for milestone decision-making in various cellular processes including mammalian development. However, their molecular interaction during the cooperative binding cannot be precisely understood due to lack of efficient tools for the analyses of protein-DNA interaction in the transcription complex. Here, we demonstrate that photoinduced excess electron transfer assay can be used for analysing cooperativity of proteins in transcription complex using cooperative binding of Pax6 to Sox2 on the regulatory DNA element (DC5 enhancer) as an example. In this assay, (Br)U-labelled DC5 was introduced for the efficient detection of transferred electrons from Sox2 and Pax6 to the DNA, and guanine base in the complementary strand was replaced with hypoxanthine (I) to block intra-strand electron transfer at the Sox2-binding site. By examining DNA cleavage occurred as a result of the electron transfer process, from tryptophan residues of Sox2 and Pax6 to DNA after irradiation at 280 nm, we not only confirmed their binding to DNA but also observed their increased occupancy on DC5 with respect to that of Sox2 and Pax6 alone as a result of their cooperative interaction.
Collapse
Affiliation(s)
- Abhijit Saha
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Seiichiro Kizaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Debojyoti De
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon 440-746, Korea
| | - Masayuki Endo
- Institute for Integrated Cell-Materials Sciences (iCeMS) Kyoto University, Yoshida-ushinomiyacho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon 440-746, Korea
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan Institute for Integrated Cell-Materials Sciences (iCeMS) Kyoto University, Yoshida-ushinomiyacho, Sakyo-Ku, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Carrasco-Rando M, Atienza-Manuel A, Martín P, Burke R, Ruiz-Gómez M. Fear-of-intimacy mediated zinc transport controls the function of Zn-finger transcription factors involved in myogenesis. Development 2016; 143:1948-57. [DOI: 10.1242/dev.131953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/31/2016] [Indexed: 12/17/2022]
Abstract
Zinc is a component of one tenth of all human proteins. Its cellular concentration is tightly regulated because its dyshomeostasis has catastrophic health consequences. Two families of zinc transporters control zinc homeostasis in organisms, but there is little information about their specific developmental roles. We show that the ZIP transporter fear-of-intimacy (foi) is necessary for the formation of Drosophila muscles. In foi mutants, myoblasts segregate normally, but their specification is affected, leading to the formation of a misshapen muscle pattern and distorted midgut. The observed phenotypes could be ascribed to the inactivation of specific zing-finger transcription factors (ZFTFs), supporting the hypothesis that they a consequence of a zinc intracellular depletion. Accordingly, foi phenotypes can be rescued by mesodermal expression of other ZIP members with similar subcellular localization. We propose that Foi acts mostly as a transporter to regulate zinc intracellular homeostasis, thereby impacting on the activity of ZFTFs that control specific developmental processes. Our results additionally suggest a possible explanation for the presence of large numbers of zinc transporters in organisms based on differences in ion transport specificity and/or degrees of activity among transporters.
Collapse
Affiliation(s)
- Marta Carrasco-Rando
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, C/ Nicolás Cabrera 1, 28049-Madrid, Spain
| | - Alexandra Atienza-Manuel
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, C/ Nicolás Cabrera 1, 28049-Madrid, Spain
| | - Paloma Martín
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, C/ Nicolás Cabrera 1, 28049-Madrid, Spain
| | - Richard Burke
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Mar Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, C/ Nicolás Cabrera 1, 28049-Madrid, Spain
| |
Collapse
|
14
|
Bertin B, Renaud Y, Aradhya R, Jagla K, Junion G. TRAP-rc, Translating Ribosome Affinity Purification from Rare Cell Populations of Drosophila Embryos. J Vis Exp 2015. [PMID: 26381166 PMCID: PMC4692598 DOI: 10.3791/52985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Measuring levels of mRNAs in the process of translation in individual cells provides information on the proteins involved in cellular functions at a given point in time. The protocol dubbed Translating Ribosome Affinity Purification (TRAP) is able to capture this mRNA translation process in a cell-type-specific manner. Based on the affinity purification of polysomes carrying a tagged ribosomal subunit, TRAP can be applied to translatome analyses in individual cells, making it possible to compare cell types during the course of developmental processes or to track disease development progress and the impact of potential therapies at molecular level. Here we report an optimized version of the TRAP protocol, called TRAP-rc (rare cells), dedicated to identifying engaged-in-translation RNAs from rare cell populations. TRAP-rc was validated using the Gal4/UAS targeting system in a restricted population of muscle cells in Drosophila embryos. This novel protocol allows the recovery of cell-type-specific RNA in sufficient quantities for global gene expression analytics such as microarrays or RNA-seq. The robustness of the protocol and the large collections of Gal4 drivers make TRAP-rc a highly versatile approach with potential applications in cell-specific genome-wide studies.
Collapse
|
15
|
Dobi KC, Schulman VK, Baylies MK. Specification of the somatic musculature in Drosophila. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:357-75. [PMID: 25728002 PMCID: PMC4456285 DOI: 10.1002/wdev.182] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/16/2015] [Accepted: 02/04/2015] [Indexed: 11/09/2022]
Abstract
The somatic muscle system formed during Drosophila embryogenesis is required for larvae to hatch, feed, and crawl. This system is replaced in the pupa by a new adult muscle set, responsible for activities such as feeding, walking, and flight. Both the larval and adult muscle systems are comprised of distinct muscle fibers to serve these specific motor functions. In this way, the Drosophila musculature is a valuable model for patterning within a single tissue: while all muscle cells share properties such as the contractile apparatus, properties such as size, position, and number of nuclei are unique for a particular muscle. In the embryo, diversification of muscle fibers relies first on signaling cascades that pattern the mesoderm. Subsequently, the combinatorial expression of specific transcription factors leads muscle fibers to adopt particular sizes, shapes, and orientations. Adult muscle precursors (AMPs), set aside during embryonic development, proliferate during the larval phases and seed the formation of the abdominal, leg, and flight muscles in the adult fly. Adult muscle fibers may either be formed de novo from the fusion of the AMPs, or are created by the binding of AMPs to an existing larval muscle. While less is known about adult muscle specification compared to the larva, expression of specific transcription factors is also important for its diversification. Increasingly, the mechanisms required for the diversification of fly muscle have found parallels in vertebrate systems and mark Drosophila as a robust model system to examine questions about how diverse cell types are generated within an organism.
Collapse
Affiliation(s)
- Krista C. Dobi
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| | - Victoria K. Schulman
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Mary K. Baylies
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| |
Collapse
|
16
|
Baëza M, Viala S, Heim M, Dard A, Hudry B, Duffraisse M, Rogulja-Ortmann A, Brun C, Merabet S. Inhibitory activities of short linear motifs underlie Hox interactome specificity in vivo. eLife 2015; 4. [PMID: 25869471 PMCID: PMC4392834 DOI: 10.7554/elife.06034] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/16/2015] [Indexed: 12/30/2022] Open
Abstract
Hox proteins are well-established developmental regulators that coordinate cell fate and morphogenesis throughout embryogenesis. In contrast, our knowledge of their specific molecular modes of action is limited to the interaction with few cofactors. Here, we show that Hox proteins are able to interact with a wide range of transcription factors in the live Drosophila embryo. In this context, specificity relies on a versatile usage of conserved short linear motifs (SLiMs), which, surprisingly, often restrains the interaction potential of Hox proteins. This novel buffering activity of SLiMs was observed in different tissues and found in Hox proteins from cnidarian to mouse species. Although these interactions remain to be analysed in the context of endogenous Hox regulatory activities, our observations challenge the traditional role assigned to SLiMs and provide an alternative concept to explain how Hox interactome specificity could be achieved during the embryonic development. DOI:http://dx.doi.org/10.7554/eLife.06034.001 In all animals, it is important that cells are correctly organised into tissues and organs. This organisation starts in the embryo, and cells are instructed to perform different roles depending on their position within the body. A family of proteins called the Hox proteins coordinates the organisation of the cells in the animal embryo by binding to and controlling the expression of specific genes. To properly control their target genes, Hox proteins need to interact with other proteins called transcription factors that can also bind to the genes. However, only a few of these transcription factors have been identified so far, and it is not clear how Hox proteins are able to interact with them. Here, Baëza, Viala, Heim et al. identified several more transcription factors that can bind to the Hox proteins in fruit fly embryos. The experiments show that Hox proteins are able to bind to many transcription factors that are very different from each other. Baëza, Viala, Heim et al. also show that two short sections within the Hox proteins known as short linear motifs are important for controlling these interactions. A fly Hox protein that was missing these motifs was able to interact with new transcription factors. This inhibitory role was found in Hox proteins from mice and sea anemones, suggesting that these motifs may play the same role in all animals. Baëza, Viala, Heim et al.'s findings challenge the traditional view of the role of the short linear motifs in interactions between proteins. Also, the findings provide an alternative explanation for how the Hox proteins are only able to interact with particular transcription factors in animal embryos. The next step will be to find out whether the inhibitory role of short linear motifs could more generally apply to many other protein families. DOI:http://dx.doi.org/10.7554/eLife.06034.002
Collapse
Affiliation(s)
- Manon Baëza
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | - Séverine Viala
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | - Marjorie Heim
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | - Amélie Dard
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | - Bruno Hudry
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Marilyne Duffraisse
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| | | | - Christine Brun
- Technological Advances for Genomics and clinics, Institut national de la santé et de la recherche médicale, University Aix-Marseille, Parc Scientifique de Luminy, Marseille, France
| | - Samir Merabet
- Institut de génomique fonctionnelle de Lyon, Centre National de Recherche Scientifique, Lyon, France
| |
Collapse
|
17
|
Rincon MY, Sarcar S, Danso-Abeam D, Keyaerts M, Matrai J, Samara-Kuko E, Acosta-Sanchez A, Athanasopoulos T, Dickson G, Lahoutte T, De Bleser P, VandenDriessche T, Chuah MK. Genome-wide computational analysis reveals cardiomyocyte-specific transcriptional Cis-regulatory motifs that enable efficient cardiac gene therapy. Mol Ther 2015; 23:43-52. [PMID: 25195597 PMCID: PMC4426801 DOI: 10.1038/mt.2014.178] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/29/2014] [Indexed: 12/19/2022] Open
Abstract
Gene therapy is a promising emerging therapeutic modality for the treatment of cardiovascular diseases and hereditary diseases that afflict the heart. Hence, there is a need to develop robust cardiac-specific expression modules that allow for stable expression of the gene of interest in cardiomyocytes. We therefore explored a new approach based on a genome-wide bioinformatics strategy that revealed novel cardiac-specific cis-acting regulatory modules (CS-CRMs). These transcriptional modules contained evolutionary-conserved clusters of putative transcription factor binding sites that correspond to a "molecular signature" associated with robust gene expression in the heart. We then validated these CS-CRMs in vivo using an adeno-associated viral vector serotype 9 that drives a reporter gene from a quintessential cardiac-specific α-myosin heavy chain promoter. Most de novo designed CS-CRMs resulted in a >10-fold increase in cardiac gene expression. The most robust CRMs enhanced cardiac-specific transcription 70- to 100-fold. Expression was sustained and restricted to cardiomyocytes. We then combined the most potent CS-CRM4 with a synthetic heart and muscle-specific promoter (SPc5-12) and obtained a significant 20-fold increase in cardiac gene expression compared to the cytomegalovirus promoter. This study underscores the potential of rational vector design to improve the robustness of cardiac gene therapy.
Collapse
Affiliation(s)
- Melvin Y Rincon
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Shilpita Sarcar
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Dina Danso-Abeam
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Marleen Keyaerts
- Nuclear Medicine Department, UZ Brussel & In vivo Cellular and Molecular Imaging Lab, Free University of Brussels (VUB), Brussels, Belgium
| | - Janka Matrai
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Abel Acosta-Sanchez
- Vesalius Research Center, Flanders Institute of Biotechnology (VIB) & University of Leuven, Leuven, Belgium
| | | | - George Dickson
- School of Biological Sciences, Royal Holloway - University of London, Egham, UK
| | - Tony Lahoutte
- Nuclear Medicine Department, UZ Brussel & In vivo Cellular and Molecular Imaging Lab, Free University of Brussels (VUB), Brussels, Belgium
| | - Pieter De Bleser
- Inflammation Research Center, Flanders Institute of Biotechnology (VIB) and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Ciglar L, Girardot C, Wilczyński B, Braun M, Furlong EEM. Coordinated repression and activation of two transcriptional programs stabilizes cell fate during myogenesis. Development 2014; 141:2633-43. [PMID: 24961800 PMCID: PMC4146391 DOI: 10.1242/dev.101956] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular models of cell fate specification typically focus on the activation of specific lineage programs. However, the concurrent repression of unwanted transcriptional networks is also essential to stabilize certain cellular identities, as shown in a number of diverse systems and phyla. Here, we demonstrate that this dual requirement also holds true in the context of Drosophila myogenesis. By integrating genetics and genomics, we identified a new role for the pleiotropic transcriptional repressor Tramtrack69 in myoblast specification. Drosophila muscles are formed through the fusion of two discrete cell types: founder cells (FCs) and fusion-competent myoblasts (FCMs). When tramtrack69 is removed, FCMs appear to adopt an alternative muscle FC-like fate. Conversely, ectopic expression of this repressor phenocopies muscle defects seen in loss-of-function lame duck mutants, a transcription factor specific to FCMs. This occurs through Tramtrack69-mediated repression in FCMs, whereas Lame duck activates a largely distinct transcriptional program in the same cells. Lineage-specific factors are therefore not sufficient to maintain FCM identity. Instead, their identity appears more plastic, requiring the combination of instructive repressive and activating programs to stabilize cell fate.
Collapse
Affiliation(s)
- Lucia Ciglar
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Bartek Wilczyński
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Martina Braun
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| |
Collapse
|
19
|
Yamamoto S, De D, Hidaka K, Kim KK, Endo M, Sugiyama H. Single molecule visualization and characterization of Sox2-Pax6 complex formation on a regulatory DNA element using a DNA origami frame. NANO LETTERS 2014; 14:2286-2292. [PMID: 24660747 DOI: 10.1021/nl4044949] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report the use of atomic force microscopy (AFM) to study Sox2-Pax6 complex formation on the regulatory DNA element at a single molecule level. Using an origami DNA scaffold containing two DNA strands with different levels of tensile force, we confirmed that DNA bending is necessary for Sox2 binding. We also demonstrated that two transcription factors bind cooperatively by observing the increased occupancy of Sox2-Pax6 on the DNA element compared to that of Sox2 alone.
Collapse
Affiliation(s)
- Seigi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Bargiela A, Llamusi B, Cerro-Herreros E, Artero R. Two enhancers control transcription of Drosophila muscleblind in the embryonic somatic musculature and in the central nervous system. PLoS One 2014; 9:e93125. [PMID: 24667536 PMCID: PMC3965525 DOI: 10.1371/journal.pone.0093125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/01/2014] [Indexed: 12/19/2022] Open
Abstract
The phylogenetically conserved family of Muscleblind proteins are RNA-binding factors involved in a variety of gene expression processes including alternative splicing regulation, RNA stability and subcellular localization, and miRNA biogenesis, which typically contribute to cell-type specific differentiation. In humans, sequestration of Muscleblind-like proteins MBNL1 and MBNL2 has been implicated in degenerative disorders, particularly expansion diseases such as myotonic dystrophy type 1 and 2. Drosophila muscleblind was previously shown to be expressed in embryonic somatic and visceral muscle subtypes, and in the central nervous system, and to depend on Mef2 for transcriptional activation. Genomic approaches have pointed out candidate gene promoters and tissue-specific enhancers, but experimental confirmation of their regulatory roles was lacking. In our study, luciferase reporter assays in S2 cells confirmed that regions P1 (515 bp) and P2 (573 bp), involving the beginning of exon 1 and exon 2, respectively, were able to initiate RNA transcription. Similarly, transgenic Drosophila embryos carrying enhancer reporter constructs supported the existence of two regulatory regions which control embryonic expression of muscleblind in the central nerve cord (NE, neural enhancer; 830 bp) and somatic (skeletal) musculature (ME, muscle enhancer; 3.3 kb). Both NE and ME were able to boost expression from the Hsp70 heterologous promoter. In S2 cell assays most of the ME enhancer activation could be further narrowed down to a 1200 bp subregion (ME.3), which contains predicted binding sites for the Mef2 transcription factor. The present study constitutes the first characterization of muscleblind enhancers and will contribute to a deeper understanding of the transcriptional regulation of the gene.
Collapse
Affiliation(s)
- Ariadna Bargiela
- Translational Genomics Group, Department of Genetics, University of Valencia, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
| | - Beatriz Llamusi
- Translational Genomics Group, Department of Genetics, University of Valencia, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
| | - Estefanía Cerro-Herreros
- Translational Genomics Group, Department of Genetics, University of Valencia, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
| | - Ruben Artero
- Translational Genomics Group, Department of Genetics, University of Valencia, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
- * E-mail:
| |
Collapse
|
21
|
Spletter ML, Schnorrer F. Transcriptional regulation and alternative splicing cooperate in muscle fiber-type specification in flies and mammals. Exp Cell Res 2013; 321:90-8. [PMID: 24145055 PMCID: PMC4040393 DOI: 10.1016/j.yexcr.2013.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/06/2013] [Accepted: 10/09/2013] [Indexed: 11/21/2022]
Abstract
Muscles coordinate body movements throughout the animal kingdom. Each skeletal muscle is built of large, multi-nucleated cells, called myofibers, which are classified into several functionally distinct types. The typical fiber-type composition of each muscle arises during development, and in mammals is extensively adjusted in response to postnatal exercise. Understanding how functionally distinct muscle fiber-types arise is important for unraveling the molecular basis of diseases from cardiomyopathies to muscular dystrophies. In this review, we focus on recent advances in Drosophila and mammals in understanding how muscle fiber-type specification is controlled by the regulation of transcription and alternative splicing. We illustrate the cooperation of general myogenic transcription factors with muscle fiber-type specific transcriptional regulators as a basic principle for fiber-type specification, which is conserved from flies to mammals. We also examine how regulated alternative splicing of sarcomeric proteins in both flies and mammals can directly instruct the physiological and biophysical differences between fiber-types. Thus, research in Drosophila can provide important mechanistic insight into muscle fiber specification, which is relevant to homologous processes in mammals and to the pathology of muscle diseases.
Collapse
Affiliation(s)
- Maria L Spletter
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Frank Schnorrer
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
22
|
Popichenko D, Hugosson F, Sjögren C, Dogru M, Yamazaki Y, Wolfstetter G, Schönherr C, Fallah M, Hallberg B, Nguyen H, Palmer RH. Jeb/Alk signalling regulates the Lame duck GLI family transcription factor in the Drosophila visceral mesoderm. Development 2013; 140:3156-66. [PMID: 23824577 DOI: 10.1242/dev.094466] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The Jelly belly (Jeb)/Anaplastic Lymphoma Kinase (Alk) signalling pathway regulates myoblast fusion in the circular visceral mesoderm (VM) of Drosophila embryos via specification of founder cells. However, only a limited number of target molecules for this pathway are described. We have investigated the role of the Lame Duck (Lmd) transcription factor in VM development in relationship to Jeb/Alk signal transduction. We show that Alk signalling negatively regulates Lmd activity post-transcriptionally through the MEK/MAPK (ERK) cascade resulting in a relocalisation of Lmd protein from the nucleus to cytoplasm. It has previously been shown that downregulation of Lmd protein is necessary for the correct specification of founder cells. In the visceral mesoderm of lmd mutant embryos, fusion-competent myoblasts seem to be converted to 'founder-like' cells that are still able to build a gut musculature even in the absence of fusion. The ability of Alk signalling to downregulate Lmd protein requires the N-terminal 140 amino acids, as a Lmd(141-866) mutant remains nuclear in the presence of active ALK and is able to drive robust expression of the Lmd downstream target Vrp1 in the developing VM. Our results suggest that Lmd is a target of Jeb/Alk signalling in the VM of Drosophila embryos.
Collapse
Affiliation(s)
- Dmitry Popichenko
- Department of Molecular Biology, Building 6L, Umeå University, Umeå S-90187, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gregis V, Andrés F, Sessa A, Guerra RF, Simonini S, Mateos JL, Torti S, Zambelli F, Prazzoli GM, Bjerkan KN, Grini PE, Pavesi G, Colombo L, Coupland G, Kater MM. Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biol 2013; 14:R56. [PMID: 23759218 PMCID: PMC3706845 DOI: 10.1186/gb-2013-14-6-r56] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 04/24/2013] [Accepted: 06/11/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND MADS-domain transcription factors play important roles during plant development. The Arabidopsis MADS-box gene SHORT VEGETATIVE PHASE (SVP) is a key regulator of two developmental phases. It functions as a repressor of the floral transition during the vegetative phase and later it contributes to the specification of floral meristems. How these distinct activities are conferred by a single transcription factor is unclear, but interactions with other MADS domain proteins which specify binding to different genomic regions is likely one mechanism. RESULTS To compare the genome-wide DNA binding profile of SVP during vegetative and reproductive development we performed ChIP-seq analyses. These ChIP-seq data were combined with tiling array expression analysis, induction experiments and qRT-PCR to identify biologically relevant binding sites. In addition, we compared genome-wide target genes of SVP with those published for the MADS domain transcription factors FLC and AP1, which interact with SVP during the vegetative and reproductive phases, respectively. CONCLUSIONS Our analyses resulted in the identification of pathways that are regulated by SVP including those controlling meristem development during vegetative growth and flower development whereas floral transition pathways and hormonal signaling were regulated predominantly during the vegetative phase. Thus, SVP regulates many developmental pathways, some of which are common to both of its developmental roles whereas others are specific to only one of them.
Collapse
Affiliation(s)
- Veronica Gregis
- Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Fernando Andrés
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Alice Sessa
- Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Rosalinda F Guerra
- Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Sara Simonini
- Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Julieta L Mateos
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Stefano Torti
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Federico Zambelli
- Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Gian Marco Prazzoli
- Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | - Paul E Grini
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Giulio Pavesi
- Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Lucia Colombo
- Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
- Consiglio Nazionale delle Ricerche Istituto di Biofisica, 20133 Milan, Italy
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Martin M Kater
- Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
24
|
Ettensohn CA. Encoding anatomy: Developmental gene regulatory networks and morphogenesis. Genesis 2013; 51:383-409. [PMID: 23436627 DOI: 10.1002/dvg.22380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Charles A. Ettensohn
- Department of Biological Sciences; Carnegie Mellon University; Pittsburgh; Pennsylvania
| |
Collapse
|
25
|
Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network. Proc Natl Acad Sci U S A 2012. [PMID: 23184988 DOI: 10.1073/pnas.1210415109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Contemporary high-throughput technologies permit the rapid identification of transcription factor (TF) target genes on a genome-wide scale, yet the functional significance of TFs requires knowledge of target gene expression patterns, cooperating TFs, and cis-regulatory element (CRE) structures. Here we investigated the myogenic regulatory network downstream of the Drosophila zinc finger TF Lame duck (Lmd) by combining both previously published and newly performed genomic data sets, including ChIP sequencing (ChIP-seq), genome-wide mRNA profiling, cell-specific expression patterns of putative transcriptional targets, analysis of histone mark signatures, studies of TF cooccupancy by additional mesodermal regulators, TF binding site determination using protein binding microarrays (PBMs), and machine learning of candidate CRE motif compositions. Our findings suggest that Lmd orchestrates an extensive myogenic regulatory network, a conclusion supported by the identification of Lmd-dependent genes, histone signatures of Lmd-bound genomic regions, and the relationship of these features to cell-specific gene expression patterns. The heterogeneous cooccupancy of Lmd-bound regions with additional mesodermal regulators revealed that different transcriptional inputs are used to mediate similar myogenic gene expression patterns. Machine learning further demonstrated diverse combinatorial motif patterns within tissue-specific Lmd-bound regions. PBM analysis established the complete spectrum of Lmd DNA binding specificities, and site-directed mutagenesis of Lmd and additional newly discovered motifs in known enhancers demonstrated the critical role of these TF binding sites in supporting full enhancer activity. Collectively, these findings provide insights into the transcriptional codes regulating muscle gene expression and offer a generalizable approach for similar studies in other systems.
Collapse
|
26
|
Zhu X, Ahmad SM, Aboukhalil A, Busser BW, Kim Y, Tansey TR, Haimovich A, Jeffries N, Bulyk ML, Michelson AM. Differential regulation of mesodermal gene expression by Drosophila cell type-specific Forkhead transcription factors. Development 2012; 139:1457-66. [PMID: 22378636 PMCID: PMC3308180 DOI: 10.1242/dev.069005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A common theme in developmental biology is the repeated use of the same gene in diverse spatial and temporal domains, a process that generally involves transcriptional regulation mediated by multiple separate enhancers, each with its own arrangement of transcription factor (TF)-binding sites and associated activities. Here, by contrast, we show that the expression of the Drosophila Nidogen (Ndg) gene at different embryonic stages and in four mesodermal cell types is governed by the binding of multiple cell-specific Forkhead (Fkh) TFs – including Biniou (Bin), Checkpoint suppressor homologue (CHES-1-like) and Jumeau (Jumu) – to three functionally distinguishable Fkh-binding sites in the same enhancer. Whereas Bin activates the Ndg enhancer in the late visceral musculature, CHES-1-like cooperates with Jumu to repress this enhancer in the heart. CHES-1-like also represses the Ndg enhancer in a subset of somatic myoblasts prior to their fusion to form multinucleated myotubes. Moreover, different combinations of Fkh sites, corresponding to two different sequence specificities, mediate the particular functions of each TF. A genome-wide scan for the occurrence of both classes of Fkh domain recognition sites in association with binding sites for known cardiac TFs showed an enrichment of combinations containing the two Fkh motifs in putative enhancers found within the noncoding regions of genes having heart expression. Collectively, our results establish that different cell-specific members of a TF family regulate the activity of a single enhancer in distinct spatiotemporal domains, and demonstrate how individual binding motifs for a TF class can differentially influence gene expression.
Collapse
Affiliation(s)
- Xianmin Zhu
- Laboratory of Developmental Systems Biology, Genetics and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bonn S, Zinzen RP, Girardot C, Gustafson EH, Perez-Gonzalez A, Delhomme N, Ghavi-Helm Y, Wilczyński B, Riddell A, Furlong EEM. Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet 2012; 44:148-56. [PMID: 22231485 DOI: 10.1038/ng.1064] [Citation(s) in RCA: 375] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 12/07/2011] [Indexed: 12/15/2022]
Abstract
Chromatin modifications are associated with many aspects of gene expression, yet their role in cellular transitions during development remains elusive. Here, we use a new approach to obtain cell type-specific information on chromatin state and RNA polymerase II (Pol II) occupancy within the multicellular Drosophila melanogaster embryo. We directly assessed the relationship between chromatin modifications and the spatio-temporal activity of enhancers. Rather than having a unique chromatin state, active developmental enhancers show heterogeneous histone modifications and Pol II occupancy. Despite this complexity, combined chromatin signatures and Pol II presence are sufficient to predict enhancer activity de novo. Pol II recruitment is highly predictive of the timing of enhancer activity and seems dependent on the timing and location of transcription factor binding. Chromatin modifications typically demarcate large regulatory regions encompassing multiple enhancers, whereas local changes in nucleosome positioning and Pol II occupancy delineate single active enhancers. This cell type-specific view identifies dynamic enhancer usage, an essential step in deciphering developmental networks.
Collapse
Affiliation(s)
- Stefan Bonn
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Belu M, Mizutani CM. Variation in mesoderm specification across Drosophilids is compensated by different rates of myoblast fusion during body wall musculature development. PLoS One 2011; 6:e28970. [PMID: 22194964 PMCID: PMC3237579 DOI: 10.1371/journal.pone.0028970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/18/2011] [Indexed: 11/20/2022] Open
Abstract
Background It has been shown that species separated by relatively short evolutionary distances may have extreme variations in egg size and shape. Those variations are expected to modify the polarized morphogenetic gradients that pattern the dorso-ventral axis of embryos. Currently, little is known about the effects of scaling over the embryonic architecture of organisms. We began examining this problem by asking if changes in embryo size in closely related species of Drosophila modify all three dorso-ventral germ layers or only particular layers, and whether or not tissue patterning would be affected at later stages. Principal Findings Here we report that changes in scale affect predominantly the mesodermal layer at early stages, while the neuroectoderm remains constant across the species studied. Next, we examined the fate of somatic myoblast precursor cells that derive from the mesoderm to test whether the assembly of the larval body wall musculature would be affected by the variation in mesoderm specification. Our results show that in all four species analyzed, the stereotyped organization of the body wall musculature is not disrupted and remains the same as in D. melanogaster. Instead, the excess or shortage of myoblast precursors is compensated by the formation of individual muscle fibers containing more or less fused myoblasts. Conclusions Our data suggest that changes in embryonic scaling often lead to expansions or retractions of the mesodermal domain across Drosophila species. At later stages, two compensatory cellular mechanisms assure the formation of a highly stereotyped larval somatic musculature: an invariable selection of 30 muscle founder cells per hemisegment, which seed the formation of a complete array of muscle fibers, and a variable rate in myoblast fusion that modifies the number of myoblasts that fuse to individual muscle fibers.
Collapse
Affiliation(s)
- Mirela Belu
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Claudia M. Mizutani
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
29
|
Fernandez-Costa JM, Llamusi MB, Garcia-Lopez A, Artero R. Alternative splicing regulation by Muscleblind proteins: from development to disease. Biol Rev Camb Philos Soc 2011; 86:947-58. [PMID: 21489124 DOI: 10.1111/j.1469-185x.2011.00180.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulated use of exons in pre-mRNAs, a process known as alternative splicing, strongly contributes to proteome diversity. Alternative splicing is finely regulated by factors that bind specific sequences within the precursor mRNAs. Members of the Muscleblind (Mbl) family of splicing factors control critical exon use changes during the development of specific tissues, particularly heart and skeletal muscle. Muscleblind homologs are only found in metazoans from Nematoda to mammals. Splicing targets and recognition mechanisms are also conserved through evolution. In this recognition, Muscleblind CCCH-type zinc finger domains bind to intronic motifs in pre-mRNA targets in which the protein can either activate or repress splicing of nearby exons, depending on the localization of the binding motifs relative to the regulated alternative exon. In humans, the Muscleblind-like 1 (MBNL1) proteins play a critical role in hereditary diseases caused by microsatellite expansions, particularly myotonic dystrophy type 1 (DM1), in which depletion of MBNL1 activity through sequestration explains most misregulated alternative splicing events, at least in murine models. Because of the involvement of these proteins in human diseases, further understanding of the molecular mechanisms by which MBNL1 regulates splicing will help design therapies to revert pathological splicing alterations. Here we summarize the most relevant findings on this family of proteins in recent years, focusing on recently described functional motifs, transcriptional regulation of Muscleblind, regulatory activity on splicing, and involvement in human diseases.
Collapse
|
30
|
MacQuarrie KL, Fong AP, Morse RH, Tapscott SJ. Genome-wide transcription factor binding: beyond direct target regulation. Trends Genet 2011; 27:141-8. [PMID: 21295369 DOI: 10.1016/j.tig.2011.01.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/14/2010] [Accepted: 01/04/2011] [Indexed: 12/24/2022]
Abstract
The binding of transcription factors to specific DNA target sequences is the fundamental basis of gene regulatory networks. Chromatin immunoprecipitation combined with DNA tiling arrays or high-throughput sequencing (ChIP-chip and ChIP-seq, respectively) has been used in many recent studies that detail the binding sites of various transcription factors. Surprisingly, data from a variety of model organisms and tissues have demonstrated that transcription factors vary greatly in their number of genomic binding sites, and that binding events can significantly exceed the number of known or possible direct gene targets. Thus, current understanding of transcription factor function must expand to encompass what role, if any, binding might have outside of direct transcriptional target regulation. In this review, we discuss the biological significance of genome-wide binding of transcription factors and present models that can account for this phenomenon.
Collapse
Affiliation(s)
- Kyle L MacQuarrie
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | |
Collapse
|