1
|
Wang C, Lyv L, Solberg T, Zhang H, Wen Z, Gao F. GTSF1 is required for transposon silencing in the unicellular eukaryote Paramecium tetraurelia. Nucleic Acids Res 2024:gkae925. [PMID: 39441077 DOI: 10.1093/nar/gkae925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/30/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
The PIWI-interacting RNA (piRNA) pathway is crucial for transposon repression and the maintenance of genomic integrity. Gametocyte-specific factor 1 (GTSF1), a PIWI-associated protein indispensable for transposon repression, has been recently shown to potentiate the catalytic activity of PIWI in many metazoans. Whether the requirement of GTSF1 extends to PIWI proteins beyond metazoans is unknown. In this study, we identified a homolog of GTSF1 in the unicellular eukaryote Paramecium tetraurelia (PtGtsf1) and found that its role as a PIWI-cofactor is conserved. PtGtsf1 interacts with PIWI (Ptiwi09) and Polycomb Repressive Complex 2 and is essential for PIWI-dependent DNA elimination of transposons during sexual development. PtGtsf1 is crucial for the degradation of PIWI-bound small RNAs that recognize the organism's own genomic sequences. Without PtGtsf1, self-matching small RNAs are not degraded and results in an accumulation of H3K9me3 and H3K27me3, which may disturb transposon recognition. Our results demonstrate that the PIWI-GTSF1 interaction also exists in unicellular eukaryotes with a role in transposon silencing.
Collapse
Affiliation(s)
- Chundi Wang
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Liping Lyv
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Therese Solberg
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo 108-8345, Japan
| | - Haoyue Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Zhiwei Wen
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Feng Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Jiang Y, Chen X, Wang C, Lyu L, Al-Farraj SA, Stover NA, Gao F. Genes and proteins expressed at different life cycle stages in the model protist Euplotes vannus revealed by both transcriptomic and proteomic approaches. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-023-2605-9. [PMID: 39276255 DOI: 10.1007/s11427-023-2605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/15/2024] [Indexed: 09/16/2024]
Abstract
Sexual reproduction first appeared in unicellular protists and has continued to be an essential biological process in almost all eukaryotes. Ciliated protists, which contain both germline and somatic genomes within a single cell, have evolved a special form of sexual reproduction called conjugation that involves mitosis, meiosis, fertilization, nuclear differentiation, genome rearrangement, and the development of unique cellular structures. The molecular basis and mechanisms of conjugation vary dramatically among ciliates, and many details of the process and its regulation are still largely unknown. In order to better comprehend these processes and mechanisms from an evolutionary perspective, this study provides the first comprehensive overview of the transcriptome and proteome profiles during the entire life cycle of the newly-established marine model ciliate Euplotes vannus. Transcriptome analyses from 14 life cycle stages (three vegetative stages and 11 sexual stages) revealed over 26,000 genes that are specifically expressed at different stages, many of which are related to DNA replication, transcription, translation, mitosis, meiosis, nuclear differentiation, and/or genome rearrangement. Quantitative proteomic analyses identified 338 proteins with homologs associated with conjugation and/or somatic nuclear development in other ciliates, including dicer-like proteins, Hsp90 proteins, RNA polymerase II and transcription elongation factors, ribosomal-associated proteins, and ubiquitin-related proteins. Four of these homologs belong to the PIWI family, each with different expression patterns identified and confirmed by RT-qPCR, which may function in small RNA-mediated genome rearrangement. Proteins involved in the nonhomologous end-joining pathway are induced early during meiosis and accumulate in the developing new somatic nucleus, where more than 80% of the germline sequences are eliminated from the somatic genome. A number of new candidate genes and proteins likely to play roles in conjugation and its related genome rearrangements have also been revealed. The gene expression profiles reported here will be valuable resources for further studies of the origin and evolution of sexual reproduction in this new model species.
Collapse
Affiliation(s)
- Yaohan Jiang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiao Chen
- Marine College, Shandong University, Weihai, 264209, China
| | - Chundi Wang
- Marine College, Shandong University, Weihai, 264209, China
| | - Liping Lyu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Saleh A Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naomi A Stover
- Department of Biology, Bradley University, Peoria, 61625, USA
| | - Feng Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
3
|
Bischerour J, Arnaiz O, Zangarelli C, Régnier V, Iehl F, Ropars V, Charbonnier JB, Bétermier M. Uncoupling programmed DNA cleavage and repair scrambles the Paramecium somatic genome. Cell Rep 2024; 43:114001. [PMID: 38547127 DOI: 10.1016/j.celrep.2024.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
In the ciliate Paramecium, precise excision of numerous internal eliminated sequences (IESs) from the somatic genome is essential at each sexual cycle. DNA double-strands breaks (DSBs) introduced by the PiggyMac endonuclease are repaired in a highly concerted manner by the non-homologous end joining (NHEJ) pathway, illustrated by complete inhibition of DNA cleavage when Ku70/80 proteins are missing. We show that expression of a DNA-binding-deficient Ku70 mutant (Ku70-6E) permits DNA cleavage but leads to the accumulation of unrepaired DSBs. We uncoupled DNA cleavage and repair by co-expressing wild-type and mutant Ku70. High-throughput sequencing of the developing macronucleus genome in these conditions identifies the presence of extremities healed by de novo telomere addition and numerous translocations between IES-flanking sequences. Coupling the two steps of IES excision ensures that both extremities are held together throughout the process, suggesting that DSB repair proteins are essential for assembly of a synaptic precleavage complex.
Collapse
Affiliation(s)
- Julien Bischerour
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Coralie Zangarelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Vinciane Régnier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France; Université Paris Cité, UFR Sciences du vivant, 75205 Paris Cedex 13, France
| | - Florence Iehl
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Virginie Ropars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Jean-Baptiste Charbonnier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mireille Bétermier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Balan T, Lerner LK, Holoch D, Duharcourt S. Small-RNA-guided histone modifications and somatic genome elimination in ciliates. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1848. [PMID: 38605483 DOI: 10.1002/wrna.1848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Transposable elements and other repeats are repressed by small-RNA-guided histone modifications in fungi, plants and animals. The specificity of silencing is achieved through base-pairing of small RNAs corresponding to the these genomic loci to nascent noncoding RNAs, which allows the recruitment of histone methyltransferases that methylate histone H3 on lysine 9. Self-reinforcing feedback loops enhance small RNA production and ensure robust and heritable repression. In the unicellular ciliate Paramecium tetraurelia, small-RNA-guided histone modifications lead to the elimination of transposable elements and their remnants, a definitive form of repression. In this organism, germline and somatic functions are separated within two types of nuclei with different genomes. At each sexual cycle, development of the somatic genome is accompanied by the reproducible removal of approximately a third of the germline genome. Instead of recruiting a H3K9 methyltransferase, small RNAs corresponding to eliminated sequences tether Polycomb Repressive Complex 2, which in ciliates has the unique property of catalyzing both lysine 9 and lysine 27 trimethylation of histone H3. These histone modifications that are crucial for the elimination of transposable elements are thought to guide the endonuclease complex, which triggers double-strand breaks at these specific genomic loci. The comparison between ciliates and other eukaryotes underscores the importance of investigating small-RNAs-directed chromatin silencing in a diverse range of organisms. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Thomas Balan
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Daniel Holoch
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | | |
Collapse
|
5
|
Bazin-Gélis M, Eleftheriou E, Zangarelli C, Lelandais G, Sperling L, Arnaiz O, Bétermier M. Inter-generational nuclear crosstalk links the control of gene expression to programmed genome rearrangement during the Paramecium sexual cycle. Nucleic Acids Res 2023; 51:12337-12351. [PMID: 37953377 PMCID: PMC10711438 DOI: 10.1093/nar/gkad1006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Multinucleate cells are found in many eukaryotes, but how multiple nuclei coordinate their functions is still poorly understood. In the cytoplasm of the ciliate Paramecium tetraurelia, two micronuclei (MIC) serving sexual reproduction coexist with a somatic macronucleus (MAC) dedicated to gene expression. During sexual processes, the MAC is progressively destroyed while still ensuring transcription, and new MACs develop from copies of the zygotic MIC. Several gene clusters are successively induced and switched off before vegetative growth resumes. Concomitantly, programmed genome rearrangement (PGR) removes transposons and their relics from the new MACs. Development of the new MACs is controlled by the old MAC, since the latter expresses genes involved in PGR, including the PGM gene encoding the essential PiggyMac endonuclease that cleaves the ends of eliminated sequences. Using RNA deep sequencing and transcriptome analysis, we show that impairing PGR upregulates key known PGR genes, together with ∼600 other genes possibly also involved in PGR. Among these genes, 42% are no longer induced when no new MACs are formed, including 180 genes that are co-expressed with PGM under all tested conditions. We propose that bi-directional crosstalk between the two coexisting generations of MACs links gene expression to the progression of MAC development.
Collapse
Affiliation(s)
- Mélanie Bazin-Gélis
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Evangelia Eleftheriou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- Institut Pasteur, Université Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Coralie Zangarelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Gaëlle Lelandais
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Linda Sperling
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Mireille Bétermier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Singh A, Maurer‐Alcalá XX, Solberg T, Häußermann L, Gisler S, Ignarski M, Swart EC, Nowacki M. Chromatin remodeling is required for sRNA-guided DNA elimination in Paramecium. EMBO J 2022; 41:e111839. [PMID: 36221862 PMCID: PMC9670198 DOI: 10.15252/embj.2022111839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 01/13/2023] Open
Abstract
Small RNAs mediate the silencing of transposable elements and other genomic loci, increasing nucleosome density and preventing undesirable gene expression. The unicellular ciliate Paramecium is a model to study dynamic genome organization in eukaryotic cells, given its unique feature of nuclear dimorphism. Here, the formation of the somatic macronucleus during sexual reproduction requires eliminating thousands of transposon remnants (IESs) and transposable elements scattered throughout the germline micronuclear genome. The elimination process is guided by Piwi-associated small RNAs and leads to precise cleavage at IES boundaries. Here we show that IES recognition and precise excision are facilitated by recruiting ISWI1, a Paramecium homolog of the chromatin remodeler ISWI. ISWI1 knockdown substantially inhibits DNA elimination, quantitatively similar to development-specific sRNA gene knockdowns but with much greater aberrant IES excision at alternative boundaries. We also identify key development-specific sRNA biogenesis and transport proteins, Ptiwi01 and Ptiwi09, as ISWI1 cofactors in our co-immunoprecipitation studies. Nucleosome profiling indicates that increased nucleosome density correlates with the requirement for ISWI1 and other proteins necessary for IES excision. We propose that chromatin remodeling together with small RNAs is essential for efficient and precise DNA elimination in Paramecium.
Collapse
Affiliation(s)
- Aditi Singh
- Institute of Cell BiologyUniversity of BernBernSwitzerland,Graduate School for Cellular and Biomedical SciencesUniversity of BernBernSwitzerland,Max Planck Institute for BiologyTubingenGermany
| | | | - Therese Solberg
- Institute of Cell BiologyUniversity of BernBernSwitzerland,Graduate School for Cellular and Biomedical SciencesUniversity of BernBernSwitzerland
| | | | - Silvan Gisler
- Institute of Cell BiologyUniversity of BernBernSwitzerland
| | | | - Estienne C Swart
- Institute of Cell BiologyUniversity of BernBernSwitzerland,Max Planck Institute for BiologyTubingenGermany
| | | |
Collapse
|
7
|
Wang C, Solberg T, Maurer-Alcalá XX, Swart EC, Gao F, Nowacki M. A small RNA-guided PRC2 complex eliminates DNA as an extreme form of transposon silencing. Cell Rep 2022; 40:111263. [PMID: 36001962 PMCID: PMC10073204 DOI: 10.1016/j.celrep.2022.111263] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/27/2022] [Accepted: 08/04/2022] [Indexed: 01/04/2023] Open
Abstract
In animal germlines, transposons are silenced at the transcriptional or post-transcriptional level to prevent deleterious expression. Ciliates employ a more direct approach by physically eliminating transposons from their soma, utilizing piRNAs to recognize transposons and imprecisely excise them. Ancient, mutated transposons often do not require piRNAs and are precisely eliminated. Here, we characterize the Polycomb Repressive Complex 2 (PRC2) in Paramecium and demonstrate its involvement in the removal of transposons and transposon-derived DNA. Our results reveal a striking difference between the elimination of new and ancient transposons at the chromatin level and show that the complex may be guided by Piwi-bound small RNAs (sRNAs). We propose that imprecise elimination in ciliates originates from an ancient transposon silencing mechanism, much like in plants and metazoans, through sRNAs, repressive methylation marks, and heterochromatin formation. However, it is taken a step further by eliminating DNA as an extreme form of transposon silencing.
Collapse
Affiliation(s)
- Chundi Wang
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Therese Solberg
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Xyrus X Maurer-Alcalá
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Estienne C Swart
- Max Planck Institute for Biology, Max Planck Ring 5, 72076 Tuebingen, Germany
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture (OUC), Ministry of Education, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland.
| |
Collapse
|
8
|
Drews F, Boenigk J, Simon M. Paramecium epigenetics in development and proliferation. J Eukaryot Microbiol 2022; 69:e12914. [PMID: 35363910 DOI: 10.1111/jeu.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The term epigenetics is used for any layer of genetic information aside from the DNA base-sequence information. Mammalian epigenetic research increased our understanding of chromatin dynamics in terms of cytosine methylation and histone modification during differentiation, aging, and disease. Instead, ciliate epigenetics focused more on small RNA-mediated effects. On the one hand, these do concern the transport of RNA from parental to daughter nuclei, representing a regulated transfer of epigenetic information across generations. On the other hand, studies of Paramecium, Tetrahymena, Oxytricha, and Stylonychia revealed an almost unique function of transgenerational RNA. Rather than solely controlling chromatin dynamics, they control sexual progeny's DNA content quantitatively and qualitatively. Thus epigenetics seems to control genetics, at least genetics of the vegetative macronucleus. This combination offers ciliates, in particular, an epigenetically controlled genetic variability. This review summarizes the epigenetic mechanisms that contribute to macronuclear heterogeneity and relates these to nuclear dimorphism. This system's adaptive and evolutionary possibilities raise the critical question of whether such a system is limited to unicellular organisms or binuclear cells. We discuss here the relevance of ciliate genetics and epigenetics to multicellular organisms.
Collapse
Affiliation(s)
- Franziska Drews
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| | | | - Martin Simon
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| |
Collapse
|
9
|
Owsian D, Gruchota J, Arnaiz O, Nowak JK. The transient Spt4-Spt5 complex as an upstream regulator of non-coding RNAs during development. Nucleic Acids Res 2022; 50:2603-2620. [PMID: 35188560 PMCID: PMC8934623 DOI: 10.1093/nar/gkac106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
The Spt4-Spt5 complex is conserved and essential RNA polymerase elongation factor. To investigate the role of the Spt4-Spt5 complex in non-coding transcription during development, we used the unicellular model Paramecium tetraurelia. In this organism harboring both germline and somatic nuclei, massive transcription of the entire germline genome takes place during meiosis. This phenomenon starts a series of events mediated by different classes of non-coding RNAs that control developmentally programmed DNA elimination. We focused our study on Spt4, a small zinc-finger protein encoded in P. tetraurelia by two genes expressed constitutively and two genes expressed during meiosis. SPT4 genes are not essential in vegetative growth, but they are indispensable for sexual reproduction, even though genes from both expression families show functional redundancy. Silencing of the SPT4 genes resulted in the absence of double-stranded ncRNAs and reduced levels of scnRNAs - 25 nt-long sRNAs produced from these double-stranded precursors in the germline nucleus. Moreover, we observed that the presence of a germline-specific Spt4-Spt5m complex is necessary for transfer of the scnRNA-binding PIWI protein between the germline and somatic nucleus. Our study establishes that Spt4, together with Spt5m, is essential for expression of the germline genome and necessary for developmental genome rearrangements.
Collapse
Affiliation(s)
- Dawid Owsian
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Julita Gruchota
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jacek K Nowak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
10
|
Zangarelli C, Arnaiz O, Bourge M, Gorrichon K, Jaszczyszyn Y, Mathy N, Escoriza L, Bétermier M, Régnier V. Developmental timing of programmed DNA elimination in Paramecium tetraurelia recapitulates germline transposon evolutionary dynamics. Genome Res 2022; 32:2028-2042. [PMID: 36418061 PMCID: PMC9808624 DOI: 10.1101/gr.277027.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
With its nuclear dualism, the ciliate Paramecium constitutes a unique model to study how host genomes cope with transposable elements (TEs). P. tetraurelia harbors two germline micronuclei (MICs) and a polyploid somatic macronucleus (MAC) that develops from one MIC at each sexual cycle. Throughout evolution, the MIC genome has been continuously colonized by TEs and related sequences that are removed from the somatic genome during MAC development. Whereas TE elimination is generally imprecise, excision of approximately 45,000 TE-derived internal eliminated sequences (IESs) is precise, allowing for functional gene assembly. Programmed DNA elimination is concomitant with genome amplification. It is guided by noncoding RNAs and repressive chromatin marks. A subset of IESs is excised independently of this epigenetic control, raising the question of how IESs are targeted for elimination. To gain insight into the determinants of IES excision, we established the developmental timing of DNA elimination genome-wide by combining fluorescence-assisted nuclear sorting with high-throughput sequencing. Essentially all IESs are excised within only one endoreplication round (32C to 64C), whereas TEs are eliminated at a later stage. We show that DNA elimination proceeds independently of replication. We defined four IES classes according to excision timing. The earliest excised IESs tend to be independent of epigenetic factors, display strong sequence signals at their ends, and originate from the most ancient integration events. We conclude that old IESs have been optimized during evolution for early and accurate excision by acquiring stronger sequence determinants and escaping epigenetic control.
Collapse
Affiliation(s)
- Coralie Zangarelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Mickaël Bourge
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Kevin Gorrichon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Nathalie Mathy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Loïc Escoriza
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Mireille Bétermier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France
| | - Vinciane Régnier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette Cedex, France;,Université Paris Cité, UFR Sciences du Vivant, 75205 Paris Cedex 13, France
| |
Collapse
|
11
|
Rzeszutek I, Maurer-Alcalá XX, Nowacki M. Programmed genome rearrangements in ciliates. Cell Mol Life Sci 2020; 77:4615-4629. [PMID: 32462406 PMCID: PMC7599177 DOI: 10.1007/s00018-020-03555-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Ciliates are a highly divergent group of unicellular eukaryotes with separate somatic and germline genomes found in distinct dimorphic nuclei. This characteristic feature is tightly linked to extremely laborious developmentally regulated genome rearrangements in the development of a new somatic genome/nuclei following sex. The transformation from germline to soma genome involves massive DNA elimination mediated by non-coding RNAs, chromosome fragmentation, as well as DNA amplification. In this review, we discuss the similarities and differences in the genome reorganization processes of the model ciliates Paramecium and Tetrahymena (class Oligohymenophorea), and the distantly related Euplotes, Stylonychia, and Oxytricha (class Spirotrichea).
Collapse
Affiliation(s)
- Iwona Rzeszutek
- Institute of Biology and Biotechnology, Department of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| | - Xyrus X Maurer-Alcalá
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland.
| |
Collapse
|
12
|
The Paramecium histone chaperone Spt16-1 is required for Pgm endonuclease function in programmed genome rearrangements. PLoS Genet 2020; 16:e1008949. [PMID: 32702045 PMCID: PMC7402521 DOI: 10.1371/journal.pgen.1008949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/04/2020] [Accepted: 06/24/2020] [Indexed: 12/31/2022] Open
Abstract
In Paramecium tetraurelia, a large proportion of the germline genome is reproducibly removed from the somatic genome after sexual events via a process involving small (s)RNA-directed heterochromatin formation and DNA excision and repair. How germline limited DNA sequences are specifically recognized in the context of chromatin remains elusive. Here, we use a reverse genetics approach to identify factors involved in programmed genome rearrangements. We have identified a P. tetraurelia homolog of the highly conserved histone chaperone Spt16 subunit of the FACT complex, Spt16-1, and show its expression is developmentally regulated. A functional GFP-Spt16-1 fusion protein localized exclusively in the nuclei where genome rearrangements take place. Gene silencing of Spt16-1 showed it is required for the elimination of all germline-limited sequences, for the survival of sexual progeny, and for the accumulation of internal eliminated sequence (ies)RNAs, an sRNA population produced when elimination occurs. Normal accumulation of 25 nt scanRNAs and deposition of silent histone marks H3K9me3 and H3K27me3 indicated that Spt16-1 does not regulate the scanRNA-directed heterochromatin pathway involved in the early steps of DNA elimination. We further show that Spt16-1 is required for the correct nuclear localization of the PiggyMac (Pgm) endonuclease, which generates the DNA double-strand breaks required for DNA elimination. Thus, Spt16-1 is essential for Pgm function during programmed genome rearrangements. We propose a model in which Spt16-1 mediates interactions between the excision machinery and chromatin, facilitating endonuclease access to DNA cleavage sites during genome rearrangements. The genome is generally similar in all the cells of an organism. However, in the ciliate Paramecium tetraurelia, massive and reproducible programmed DNA elimination leads to a highly streamlined somatic genome. In eukaryotes, DNA is packaged into nucleosomes, which ensure genome integrity but act as a barrier to enzymes acting on DNA. How the endonuclease PiggyMac gains access to the genome to initiate DNA elimination remains elusive. Here, we identified four P. tetraurelia genes encoding homologs of the conserved histone chaperone Spt16, which can modulate access to DNA by promoting nucleosome assembly and disassembly. We demonstrated that the most divergent gene, SPT16-1, has a highly specialized expression pattern, similar to that of PiggyMac, and a specific role in programmed DNA elimination. We show that the Spt16-1 protein, like PiggyMac, is exclusively localized in the differentiating somatic nucleus, and is also required for the dramatic elimination of germline-limited sequences. We further show that Spt16-1 directs the correct nuclear localization of the PiggyMac endonuclease. Thus, Spt16-1 is essential for PiggyMac function during programmed DNA elimination. We propose that Spt16-1 mediates the interaction between PiggyMac and chromatin or DNA, facilitating endonuclease access to DNA cleavage sites.
Collapse
|
13
|
Allen SE, Nowacki M. Roles of Noncoding RNAs in Ciliate Genome Architecture. J Mol Biol 2020; 432:4186-4198. [PMID: 31926952 PMCID: PMC7374600 DOI: 10.1016/j.jmb.2019.12.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022]
Abstract
Ciliates are an interesting model system for investigating diverse functions of noncoding RNAs, especially in genome defence pathways. During sexual development, the ciliate somatic genome undergoes massive rearrangement and reduction through removal of transposable elements and other repetitive DNA. This is guided by a multitude of noncoding RNAs of different sizes and functions, the extent of which is only recently becoming clear. The genome rearrangement pathways evolved as a defence against parasitic DNA, but interestingly also use the transposable elements and transposases to execute their own removal. Thus, ciliates are also a good model for the coevolution of host and transposable element, and the mutual dependence between the two. In this review, we summarise the genome rearrangement pathways in three diverse species of ciliate, with focus on recent discoveries and the roles of noncoding RNAs. Ciliate genomes undergo massive rearrangement and reduction during development. Transposon elimination is guided by small RNAs and carried out by transposases. New pathways for noncoding RNA production have recently been discovered in ciliates. Diverse ciliate species have different mechanisms for RNA-guided genome remodeling.
Collapse
Affiliation(s)
- Sarah E Allen
- Institute of Cell Biology, University of Bern, Switzerland
| | | |
Collapse
|
14
|
Functional diversification of Paramecium Ku80 paralogs safeguards genome integrity during precise programmed DNA elimination. PLoS Genet 2020; 16:e1008723. [PMID: 32298257 PMCID: PMC7161955 DOI: 10.1371/journal.pgen.1008723] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/18/2020] [Indexed: 11/19/2022] Open
Abstract
Gene duplication and diversification drive the emergence of novel functions during evolution. Because of whole genome duplications, ciliates from the Paramecium aurelia group constitute a remarkable system to study the evolutionary fate of duplicated genes. Paramecium species harbor two types of nuclei: a germline micronucleus (MIC) and a somatic macronucleus (MAC) that forms from the MIC at each sexual cycle. During MAC development, ~45,000 germline Internal Eliminated Sequences (IES) are excised precisely from the genome through a 'cut-and-close' mechanism. Here, we have studied the P. tetraurelia paralogs of KU80, which encode a key DNA double-strand break repair factor involved in non-homologous end joining. The three KU80 genes have different transcription patterns, KU80a and KU80b being constitutively expressed, while KU80c is specifically induced during MAC development. Immunofluorescence microscopy and high-throughput DNA sequencing revealed that Ku80c stably anchors the PiggyMac (Pgm) endonuclease in the developing MAC and is essential for IES excision genome-wide, providing a molecular explanation for the previously reported Ku-dependent licensing of DNA cleavage at IES ends. Expressing Ku80a under KU80c transcription signals failed to complement a depletion of endogenous Ku80c, indicating that the two paralogous proteins have distinct properties. Domain-swap experiments identified the α/β domain of Ku80c as the major determinant for its specialized function, while its C-terminal part is required for excision of only a small subset of IESs located in IES-dense regions. We conclude that Ku80c has acquired the ability to license Pgm-dependent DNA cleavage, securing precise DNA elimination during programmed rearrangements. The present study thus provides novel evidence for functional diversification of genes issued from a whole-genome duplication.
Collapse
|
15
|
Bétermier M, Borde V, de Villartay JP. Coupling DNA Damage and Repair: an Essential Safeguard during Programmed DNA Double-Strand Breaks? Trends Cell Biol 2019; 30:87-96. [PMID: 31818700 DOI: 10.1016/j.tcb.2019.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022]
Abstract
DNA double-strand breaks (DSBs) are the most toxic DNA lesions given their oncogenic potential. Nevertheless, programmed DSBs (prDSBs) contribute to several biological processes. Formation of prDSBs is the 'price to pay' to achieve these essential biological functions. Generated by domesticated PiggyBac transposases, prDSBs have been integrated in the life cycle of ciliates. Created by Spo11 during meiotic recombination, they constitute a driving force of evolution and ensure balanced chromosome content for successful reproduction. Produced by the RAG1/2 recombinase, they are required for the development of the adaptive immune system in many species. The coevolution of processes that couple introduction of prDSBs to their accurate repair may constitute an effective safeguard against genomic instability.
Collapse
Affiliation(s)
- Mireille Bétermier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
| | - Valérie Borde
- Institut Curie, CNRS UMR3244, Sorbonne Université, Paris, France.
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France.
| |
Collapse
|
16
|
Yerlici VT, Lu MW, Hoge CR, Miller RV, Neme R, Khurana JS, Bracht JR, Landweber LF. Programmed genome rearrangements in Oxytricha produce transcriptionally active extrachromosomal circular DNA. Nucleic Acids Res 2019; 47:9741-9760. [PMID: 31504770 PMCID: PMC6765146 DOI: 10.1093/nar/gkz725] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/02/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is both a driver of eukaryotic genome instability and a product of programmed genome rearrangements, but its extent had not been surveyed in Oxytricha, a ciliate with elaborate DNA elimination and translocation during development. Here, we captured rearrangement-specific circular DNA molecules across the genome to gain insight into its processes of programmed genome rearrangement. We recovered thousands of circularly excised Tc1/mariner-type transposable elements and high confidence non-repetitive germline-limited loci. We verified their bona fide circular topology using circular DNA deep-sequencing, 2D gel electrophoresis and inverse polymerase chain reaction. In contrast to the precise circular excision of transposable elements, we report widespread heterogeneity in the circular excision of non-repetitive germline-limited loci. We also demonstrate that circular DNAs are transcribed in Oxytricha, producing rearrangement-specific long non-coding RNAs. The programmed formation of thousands of eccDNA molecules makes Oxytricha a model system for studying nucleic acid topology. It also suggests involvement of eccDNA in programmed genome rearrangement.
Collapse
Affiliation(s)
- V Talya Yerlici
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michael W Lu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Carla R Hoge
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Richard V Miller
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rafik Neme
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jaspreet S Khurana
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - John R Bracht
- Department of Biology, American University, Washington, DC 20016, USA
| | - Laura F Landweber
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.,Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
17
|
Diversification of small RNA amplification mechanisms for targeting transposon-related sequences in ciliates. Proc Natl Acad Sci U S A 2019; 116:14639-14644. [PMID: 31262823 DOI: 10.1073/pnas.1903491116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The silencing of repetitive transposable elements (TEs) is ensured by signal amplification of the initial small RNA trigger, which occurs at distinct steps of TE silencing in different eukaryotes. How such a variety of secondary small RNA biogenesis mechanisms has evolved has not been thoroughly elucidated. Ciliated protozoa perform small RNA-directed programmed DNA elimination of thousands of TE-related internal eliminated sequences (IESs) in the newly developed somatic nucleus. In the ciliate Paramecium, secondary small RNAs are produced after the excision of IESs. In this study, we show that in another ciliate, Tetrahymena, secondary small RNAs accumulate at least a few hours before their derived IESs are excised. We also demonstrate that DNA excision is dispensable for their biogenesis in this ciliate. Therefore, unlike in Paramecium, small RNA amplification occurs before IES excision in Tetrahymena This study reveals the remarkable diversity of secondary small RNA biogenesis mechanisms, even among ciliates with similar DNA elimination processes, and thus raises the possibility that the evolution of TE-targeting small RNA amplification can be traced by investigating the DNA elimination mechanisms of ciliates.
Collapse
|
18
|
Bhullar S, Denby Wilkes C, Arnaiz O, Nowacki M, Sperling L, Meyer E. A mating-type mutagenesis screen identifies a zinc-finger protein required for specific DNA excision events in Paramecium. Nucleic Acids Res 2019; 46:9550-9562. [PMID: 30165457 PMCID: PMC6182129 DOI: 10.1093/nar/gky772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
In the ciliate Paramecium tetraurelia, functional genes are reconstituted during development of the somatic macronucleus through the precise excision of ∼45 000 single-copy Internal Eliminated Sequences (IESs), thought to be the degenerate remnants of ancient transposon insertions. Like introns, IESs are marked only by a weak consensus at their ends. How such a diverse set of sequences is faithfully recognized and precisely excised remains unclear: specialized small RNAs have been implicated, but in their absence up to ∼60% of IESs are still correctly excised. To get further insight, we designed a mutagenesis screen based on the hypersensitivity of a specific excision event in the mtA gene, which determines mating types. Unlike most IES-containing genes, the active form of mtA is the unexcised one, allowing the recovery of hypomorphic alleles of essential IES recognition/excision factors. Such is the case of one mutation recovered in the Piwi gene PTIWI09, a key player in small RNA-mediated IES recognition. Another mutation identified a novel protein with a C2H2 zinc finger, mtGa, which is required for excision of a small subset of IESs characterized by enrichment in a 5-bp motif. The unexpected implication of a sequence-specific factor establishes a new paradigm for IES recognition and/or excision.
Collapse
Affiliation(s)
- Simran Bhullar
- IBENS, Ecole Normale Supérieure, CNRS, Inserm, PSL University, F-75005 Paris, France.,Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Cyril Denby Wilkes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Eric Meyer
- IBENS, Ecole Normale Supérieure, CNRS, Inserm, PSL University, F-75005 Paris, France
| |
Collapse
|
19
|
Godau J, Ferretti LP, Trenner A, Dubois E, von Aesch C, Marmignon A, Simon L, Kapusta A, Guérois R, Bétermier M, Sartori AA. Identification of a miniature Sae2/Ctp1/CtIP ortholog from Paramecium tetraurelia required for sexual reproduction and DNA double-strand break repair. DNA Repair (Amst) 2019; 77:96-108. [DOI: 10.1016/j.dnarep.2019.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/28/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022]
|
20
|
Bischerour J, Bhullar S, Denby Wilkes C, Régnier V, Mathy N, Dubois E, Singh A, Swart E, Arnaiz O, Sperling L, Nowacki M, Bétermier M. Six domesticated PiggyBac transposases together carry out programmed DNA elimination in Paramecium. eLife 2018; 7:37927. [PMID: 30223944 PMCID: PMC6143343 DOI: 10.7554/elife.37927] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
The domestication of transposable elements has repeatedly occurred during evolution and domesticated transposases have often been implicated in programmed genome rearrangements, as remarkably illustrated in ciliates. In Paramecium, PiggyMac (Pgm), a domesticated PiggyBac transposase, carries out developmentally programmed DNA elimination, including the precise excision of tens of thousands of gene-interrupting germline Internal Eliminated Sequences (IESs). Here, we report the discovery of five groups of distant Pgm-like proteins (PgmLs), all able to interact with Pgm and essential for its nuclear localization and IES excision genome-wide. Unlike Pgm, PgmLs lack a conserved catalytic site, suggesting that they rather have an architectural function within a multi-component excision complex embedding Pgm. PgmL depletion can increase erroneous targeting of residual Pgm-mediated DNA cleavage, indicating that PgmLs contribute to accurately position the complex on IES ends. DNA rearrangements in Paramecium constitute a rare example of a biological process jointly managed by six distinct domesticated transposases.
Collapse
Affiliation(s)
- Julien Bischerour
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Simran Bhullar
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | - Cyril Denby Wilkes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Vinciane Régnier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.,Univ Paris Diderot, Paris, France
| | - Nathalie Mathy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emeline Dubois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aditi Singh
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Estienne Swart
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Mireille Bétermier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
21
|
Duharcourt S, Sperling L. The Challenges of Genome-Wide Studies in a Unicellular Eukaryote With Two Nuclear Genomes. Methods Enzymol 2018; 612:101-126. [PMID: 30502938 DOI: 10.1016/bs.mie.2018.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We present here methods to study a eukaryotic microorganism with two nuclear genomes, both originating from the same zygotic genome. Paramecium, like other ciliates, is characterized by nuclear dimorphism, which is the presence of two types of nuclei with distinct organization and functions in the same cytoplasm. The two diploid germline micronuclei (MIC) undergo meiosis and fertilization to transmit the genetic information across sexual generations. The highly polyploid somatic macronucleus (MAC) contains a reduced version of the genome optimized for gene expression. Reproducible programmed DNA elimination of about 30% of the complexity of the 100Mb MIC genome occurs during development of the MAC along with endoreplication to 800 copies. Large regions that contain transposable elements and other repeats are eliminated, and short single copy remnants of transposable elements, which often interrupt coding sequences, are precisely excised to restore functional open reading frames. Genome-wide studies of this process require access to MIC DNA which has long been impossible. The breakthrough with respect to this technical obstacle came with development of a MIC purification protocol involving a critical step of flow cytometry to sort nuclei representing only 0.5% of total genomic DNA. Here, we provide a step-by-step protocol and important tips for purifying nuclei, and present the methods developed for downstream analysis of NGS data.
Collapse
Affiliation(s)
- Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR7592, Sorbonne Paris Cité, Paris, France.
| | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| |
Collapse
|
22
|
Michelini F, Jalihal AP, Francia S, Meers C, Neeb ZT, Rossiello F, Gioia U, Aguado J, Jones-Weinert C, Luke B, Biamonti G, Nowacki M, Storici F, Carninci P, Walter NG, d'Adda di Fagagna F. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond. Chem Rev 2018; 118:4365-4403. [PMID: 29600857 DOI: 10.1021/acs.chemrev.7b00487] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.
Collapse
Affiliation(s)
- Flavia Michelini
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Ameya P Jalihal
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Sofia Francia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Chance Meers
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zachary T Neeb
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | | | - Ubaldo Gioia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Julio Aguado
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | | | - Brian Luke
- Institute of Developmental Biology and Neurobiology , Johannes Gutenberg University , 55099 Mainz , Germany.,Institute of Molecular Biology (IMB) , 55128 Mainz , Germany
| | - Giuseppe Biamonti
- Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Mariusz Nowacki
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | - Francesca Storici
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Piero Carninci
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama City , Kanagawa 230-0045 , Japan
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Fabrizio d'Adda di Fagagna
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| |
Collapse
|
23
|
Neeb ZT, Nowacki M. RNA-mediated transgenerational inheritance in ciliates and plants. Chromosoma 2018; 127:19-27. [PMID: 29230532 PMCID: PMC5818585 DOI: 10.1007/s00412-017-0655-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 11/30/2022]
Abstract
In the age of next-generation sequencing (NGS) and with the availability of whole sequenced genomes and epigenomes, some attention has shifted from purely sequence-based studies to those of heritable epigenetic modifications. Transgenerational inheritance can be defined as heritable changes to the state of DNA that may be passed on to subsequent generations without alterations to the underlying DNA sequence. Although this phenomenon has been extensively studied in many systems, studies of transgenerational inheritance in mammals and other higher-level eukaryotes may be complicated by the fact that many epigenetic marks are reprogrammed during sexual reproduction. This, by definition, may obscure our interpretation of what is in fact truly transgenerational. Therefore, in this mini review, we discuss what is currently known in the field about transgenerational epigenetic inheritance in ciliates and plants, with a particular emphasis on RNA-mediated processes and changes in chromatin states.
Collapse
Affiliation(s)
- Zachary T Neeb
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland.
| |
Collapse
|
24
|
Dubois E, Mathy N, Régnier V, Bischerour J, Baudry C, Trouslard R, Bétermier M. Multimerization properties of PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements. Nucleic Acids Res 2017; 45:3204-3216. [PMID: 28104713 PMCID: PMC5389696 DOI: 10.1093/nar/gkw1359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/28/2016] [Indexed: 02/05/2023] Open
Abstract
During sexual processes, the ciliate Paramecium eliminates 25–30% of germline DNA from its somatic genome. DNA elimination includes excision of ∼45 000 short, single-copy internal eliminated sequences (IESs) and depends upon PiggyMac (Pgm), a domesticated piggyBac transposase that is essential for DNA cleavage at IES ends. Pgm carries a core transposase region with a putative catalytic domain containing three conserved aspartic acids, and a downstream cysteine-rich (CR) domain. A C-terminal extension of unknown function is predicted to adopt a coiled-coil (CC) structure. To address the role of the three domains, we designed an in vivo complementation assay by expressing wild-type or mutant Pgm-GFP fusions in cells depleted for their endogenous Pgm. The DDD triad and the CR domain are essential for Pgm activity and mutations in either domain have a dominant-negative effect in wild-type cells. A mutant lacking the CC domain is partially active in the presence of limiting Pgm amounts, but inactive when Pgm is completely absent, suggesting that presence of the mutant protein increases the overall number of active complexes. We conclude that IES excision involves multiple Pgm subunits, of which at least a fraction must contain the CC domain.
Collapse
Affiliation(s)
- Emeline Dubois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Nathalie Mathy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Vinciane Régnier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julien Bischerour
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Céline Baudry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Raphaëlle Trouslard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Mireille Bétermier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
25
|
Arnaiz O, Van Dijk E, Bétermier M, Lhuillier-Akakpo M, de Vanssay A, Duharcourt S, Sallet E, Gouzy J, Sperling L. Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression. BMC Genomics 2017; 18:483. [PMID: 28651633 PMCID: PMC5485702 DOI: 10.1186/s12864-017-3887-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/21/2017] [Indexed: 12/22/2022] Open
Abstract
Background The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. Results We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. Conclusions We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3′ and 5′ UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis regulatory motifs). The P. tetraurelia improved transcriptome resource, gene annotations for P. tetraurelia, P. biaurelia, P. sexaurelia and P. caudatum, and Paramecium-trained EuGene configuration are available through ParameciumDB (http://paramecium.i2bc.paris-saclay.fr). TrUC software is freely distributed under a GNU GPL v3 licence (https://github.com/oarnaiz/TrUC). Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3887-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France
| | - Erwin Van Dijk
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France
| | - Mireille Bétermier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France
| | - Maoussi Lhuillier-Akakpo
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France.,Current address: IRCM, CEA, INSERM UMR 967, Université Paris Diderot, Université Paris-Saclay, 92265, Fontenay-aux-Roses CEDEX, France
| | - Augustin de Vanssay
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Erika Sallet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Jérôme Gouzy
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Linda Sperling
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette CEDEX, France.
| |
Collapse
|
26
|
Allen SE, Hug I, Pabian S, Rzeszutek I, Hoehener C, Nowacki M. Circular Concatemers of Ultra-Short DNA Segments Produce Regulatory RNAs. Cell 2017; 168:990-999.e7. [PMID: 28283070 PMCID: PMC5346157 DOI: 10.1016/j.cell.2017.02.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/10/2017] [Accepted: 02/09/2017] [Indexed: 12/13/2022]
Abstract
In the ciliated protozoan Paramecium tetraurelia, Piwi-associated small RNAs are generated upon the elimination of tens of thousands of short transposon-derived DNA segments as part of development. These RNAs then target complementary DNA for elimination in a positive feedback process, contributing to germline defense and genome stability. In this work, we investigate the formation of these RNAs, which we show to be transcribed directly from the short (length mode 27 bp) excised DNA segments. Our data support a mechanism whereby the concatenation and circularization of excised DNA segments provides a template for RNA production. This process allows the generation of a double-stranded RNA for Dicer-like protein cleavage to give rise to a population of small regulatory RNAs that precisely match the excised DNA sequences. Video Abstract
In Paramecium, pieces of deleted DNA are transcribed to form regulatory RNAs Ultra-short DNA segments are concatenated and circularized, allowing transcription This concatenation is carried out by Ligase IV, which also repairs DNA ends Concatenation is random, which leads to diversity in the resulting sRNA population
Collapse
Affiliation(s)
- Sarah E Allen
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Iris Hug
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Sylwia Pabian
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Iwona Rzeszutek
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Cristina Hoehener
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland.
| |
Collapse
|
27
|
Allen SE, Nowacki M. Necessity Is the Mother of Invention: Ciliates, Transposons, and Transgenerational Inheritance. Trends Genet 2017; 33:197-207. [PMID: 28174020 DOI: 10.1016/j.tig.2017.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 01/01/2023]
Abstract
Ciliates are a fascinating model system for the study of the interaction between eukaryotic germlines and somatic lines, especially with regard to the invasion and defence against transposable elements. They separate their germline and somatic line into two nuclei within the same cell, and they silence transposons and repetitive elements by way of deleting them from their somatic genome. This large-scale deletion event uses a series of intricate sequence targeting pathways involving small RNAs and transposases, part of which consists of a transnuclear comparison between maternal soma and daughter germline. We present recent progress in this dynamic field, and argue that these DNA targeting pathways provide an optimal system for the transgenerational inheritance of acquired traits. Ciliates thus also demonstrate the evolutionary value of transposable elements, both as sources of sequence diversity and also as drivers of adaptive evolution by necessitating defensive systems.
Collapse
Affiliation(s)
- Sarah E Allen
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland.
| |
Collapse
|
28
|
Abstract
Programmed genome rearrangements in the ciliate Paramecium provide a nice illustration of the impact of transposons on genome evolution and plasticity. During the sexual cycle, development of the somatic macronucleus involves elimination of ∼30% of the germline genome, including repeated DNA (e.g., transposons) and ∼45,000 single-copy internal eliminated sequences (IES). IES excision is a precise cut-and-close process, in which double-stranded DNA cleavage at IES ends depends on PiggyMac, a domesticated piggyBac transposase. Genome-wide analysis has revealed that at least a fraction of IESs originate from Tc/mariner transposons unrelated to piggyBac. Moreover, genomic sequences with no transposon origin, such as gene promoters, can be excised reproducibly as IESs, indicating that genome rearrangements contribute to the control of gene expression. How the system has evolved to allow elimination of DNA sequences with no recognizable conserved motif has been the subject of extensive research during the past two decades. Increasing evidence has accumulated for the participation of noncoding RNAs in epigenetic control of elimination for a subset of IESs, and in trans-generational inheritance of alternative rearrangement patterns. This chapter summarizes our current knowledge of the structure of the germline and somatic genomes for the model species Paramecium tetraurelia, and describes the DNA cleavage and repair factors that constitute the IES excision machinery. We present an overview of the role of specialized RNA interference machineries and their associated noncoding RNAs in the control of DNA elimination. Finally, we discuss how RNA-dependent modification and/or remodeling of chromatin may guide PiggyMac to its cognate cleavage sites.
Collapse
|
29
|
Ferro D, Lepennetier G, Catania F. Cis-acting signals modulate the efficiency of programmed DNA elimination in Paramecium tetraurelia. Nucleic Acids Res 2015; 43:8157-68. [PMID: 26304543 PMCID: PMC4787833 DOI: 10.1093/nar/gkv843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/01/2015] [Indexed: 12/12/2022] Open
Abstract
In Paramecium, the regeneration of a functional somatic genome at each sexual event relies on the elimination of thousands of germline DNA sequences, known as Internal Eliminated Sequences (IESs), from the zygotic nuclear DNA. Here, we provide evidence that IESs’ length and sub-terminal bases jointly modulate IES excision by affecting DNA conformation in P. tetraurelia. Our study reveals an excess of complementary base pairing between IESs’ sub-terminal and contiguous sites, suggesting that IESs may form DNA loops prior to cleavage. The degree of complementary base pairing between IESs’ sub-terminal sites (termed Cin-score) is positively associated with IES length and is shaped by natural selection. Moreover, it escalates abruptly when IES length exceeds 45 nucleotides (nt), indicating that only sufficiently large IESs may form loops. Finally, we find that IESs smaller than 46 nt are favored targets of the cellular surveillance systems, presumably because of their relatively inefficient excision. Our findings extend the repertoire of cis-acting determinants for IES recognition/excision and provide unprecedented insights into the distinct selective pressures that operate on IESs and somatic DNA regions. This information potentially moves current models of IES evolution and of mechanisms of IES recognition/excision forward.
Collapse
Affiliation(s)
- Diana Ferro
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Gildas Lepennetier
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| |
Collapse
|
30
|
Maliszewska-Olejniczak K, Gruchota J, Gromadka R, Denby Wilkes C, Arnaiz O, Mathy N, Duharcourt S, Bétermier M, Nowak JK. TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements. PLoS Genet 2015; 11:e1005383. [PMID: 26177014 PMCID: PMC4503560 DOI: 10.1371/journal.pgen.1005383] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/22/2015] [Indexed: 02/07/2023] Open
Abstract
Because of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs) in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline) nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, the genome is massively rearranged during this process through the reproducible elimination of repeated sequences and the precise excision of over 45,000 short, single-copy Internal Eliminated Sequences (IESs). Different types of ncRNAs resulting from genome-wide transcription were shown to be involved in the epigenetic regulation of genome rearrangements. To understand how ncRNAs are produced from the entire genome, we have focused on a homolog of the TFIIS elongation factor, which regulates RNA polymerase II transcriptional pausing. Six TFIIS-paralogs, representing four distinct families, can be found in P. tetraurelia genome. Using RNA interference, we showed that TFIIS4, which encodes a development-specific TFIIS protein, is essential for the formation of a functional somatic genome. Molecular analyses and high-throughput DNA sequencing upon TFIIS4 RNAi demonstrated that TFIIS4 is involved in all kinds of genome rearrangements, including excision of ~48% of IESs. Localization of a GFP-TFIIS4 fusion revealed that TFIIS4 appears specifically in the new somatic nucleus at an early developmental stage, before IES excision. RT-PCR experiments showed that TFIIS4 is necessary for the synthesis of IES-containing non-coding transcripts. We propose that these IES+ transcripts originate from the developing somatic nucleus and serve as pairing substrates for germline-specific short RNAs that target elimination of their homologous sequences. Our study, therefore, connects the onset of zygotic non coding transcription to the control of genome plasticity in Paramecium, and establishes for the first time a specific role of TFIIS in non-coding transcription in eukaryotes. Paramecium tetraurelia provides an excellent model for studying the mechanisms involved in the production of non-coding transcripts and their mode of action. Different types of non-coding RNAs (ncRNAs) were shown to be implicated in the programmed DNA elimination process that occurs in this organism. At each sexual cycle, during development of the somatic nucleus from the germline nucleus, the genome is massively rearranged through the reproducible elimination of germline-specific sequences including thousands of short, single copy, non-coding Internal Eliminated Sequences (IES). Here, we demonstrate, using RNA interference, that the TFIIS4 gene encoding a development-specific homolog of RNA polymerase II elongation factor TFIIS, is indispensable for ncRNA synthesis in the new somatic nucleus. TFIIS4 depletion impairs the assembly of a functional somatic genome and affects excision of a large fraction of IESs, which leads to strong lethality in the sexual progeny. We propose that TFIIS4-dependent ncRNAs provide an important component of the molecular machinery that is responsible for developmental genome remodeling in Paramecium.
Collapse
Affiliation(s)
| | - Julita Gruchota
- Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
| | - Robert Gromadka
- Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
| | - Cyril Denby Wilkes
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, Gif-sur-Yvette, France
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, Gif-sur-Yvette, France
| | - Nathalie Mathy
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, Gif-sur-Yvette, France
| | - Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Mireille Bétermier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, Gif-sur-Yvette, France
| | - Jacek K. Nowak
- Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
- * E-mail:
| |
Collapse
|
31
|
Grupp K, Roettger L, Kluth M, Hube-Magg C, Simon R, Lebok P, Minner S, Tsourlakis MC, Koop C, Graefen M, Adam M, Haese A, Wittmer C, Sauter G, Wilczak W, Huland H, Schlomm T, Steurer S, Krech T. Expression of DNA ligase IV is linked to poor prognosis and characterizes a subset of prostate cancers harboring TMPRSS2:ERG fusion and PTEN deletion. Oncol Rep 2015; 34:1211-20. [PMID: 26134445 DOI: 10.3892/or.2015.4080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/18/2015] [Indexed: 11/05/2022] Open
Abstract
DNA ligases are essential for the maintenance of genome integrity as they are indispensable for DNA replication, recombination and repair. The present study was undertaken to gain insights into the prevalence and clinical significance of ligase IV (LIG4) expression in prostate cancer. A total of 11,152 prostate cancer specimens were analyzed by immunohistochemistry for LIG4 expression. Results were compared to follow-up data, ERG status and deletions at PTEN, 3p13, 5q21 and 6q15. LIG4 expression was predominantly localized in the nucleus of the cells with increased intensities in malignant as compared to benign prostate epithelium. In prostate cancer, LIG4 expression was found in 91% of interpretable tumors, including 12% cancers with weak, 23% with moderate and 56% with strong LIG4 positivity. Strong LIG4 expression was tightly linked to advanced Gleason score (P<0.0001) and positive nodal involvement (P=0.03). There was a remarkable accumulation of strong LIG4 expression in tumors harboring TMPRSS2:ERG fusion and PTEN deletions (P<0.0001 each). High LIG4 expression was also tightly related to early biochemical recurrence when all tumors (P<0.0001) or the subsets of ERG-negative (P=0.0004) or ERG-positive prostate cancers (P=0.006) were analyzed. Multivariate analysis including parameters that are available before surgery demonstrated independent association with biochemical recurrence for advanced Gleason grade on biopsy, high preoperative PSA level, high clinical stage (P<0.0001 each) and for LIG4 immunostaining (P=0.03). Our study identifies LIG4 as a predictor of an increased risk for early PSA recurrence in prostate cancer. Moreover, the strong association with TMPRSS2:ERG fusion and PTEN deletions suggest important interactions between these pathways in prostate cancers.
Collapse
Affiliation(s)
- Katharina Grupp
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Laura Roettger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | | | - Christina Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Markus Graefen
- Martini‑Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Meike Adam
- Martini‑Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Alexander Haese
- Martini‑Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Hartwig Huland
- Martini‑Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Thorsten Schlomm
- Martini‑Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
32
|
SUMOylation is developmentally regulated and required for cell pairing during conjugation in Tetrahymena thermophila. EUKARYOTIC CELL 2014; 14:170-81. [PMID: 25527524 DOI: 10.1128/ec.00252-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The covalent attachment of small ubiquitin-like modifier (SUMO) to target proteins regulates numerous nuclear events in eukaryotes, including transcription, mitosis and meiosis, and DNA repair. Despite extensive interest in nuclear pathways within the field of ciliate molecular biology, there have been no investigations of the SUMO pathway in Tetrahymena. The developmental program of sexual reproduction of this organism includes cell pairing, micronuclear meiosis, and the formation of a new somatic macronucleus. We identified the Tetrahymena thermophila SMT3 (SUMO) and UBA2 (SUMO-activating enzyme) genes and demonstrated that the corresponding green fluorescent protein (GFP) tagged gene products are found predominantly in the somatic macronucleus during vegetative growth. Use of an anti-Smt3p antibody to perform immunoblot assays with whole-cell lysates during conjugation revealed a large increase in SUMOylation that peaked during formation of the new macronucleus. Immunofluorescence using the same antibody showed that the increase was localized primarily within the new macronucleus. To initiate functional analysis of the SUMO pathway, we created germ line knockout cell lines for both the SMT3 and UBA2 genes and found both are essential for cell viability. Conditional Smt3p and Uba2p cell lines were constructed by incorporation of the cadmium-inducible metallothionein promoter. Withdrawal of cadmium resulted in reduced cell growth and increased sensitivity to DNA-damaging agents. Interestingly, Smt3p and Uba2p conditional cell lines were unable to pair during sexual reproduction in the absence of cadmium, consistent with a function early in conjugation. Our studies are consistent with multiple roles for SUMOylation in Tetrahymena, including a dynamic regulation associated with the sexual life cycle.
Collapse
|
33
|
Marmignon A, Bischerour J, Silve A, Fojcik C, Dubois E, Arnaiz O, Kapusta A, Malinsky S, Bétermier M. Ku-mediated coupling of DNA cleavage and repair during programmed genome rearrangements in the ciliate Paramecium tetraurelia. PLoS Genet 2014; 10:e1004552. [PMID: 25166013 PMCID: PMC4148214 DOI: 10.1371/journal.pgen.1004552] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/19/2014] [Indexed: 11/19/2022] Open
Abstract
During somatic differentiation, physiological DNA double-strand breaks (DSB) can drive programmed genome rearrangements (PGR), during which DSB repair pathways are mobilized to safeguard genome integrity. Because of their unique nuclear dimorphism, ciliates are powerful unicellular eukaryotic models to study the mechanisms involved in PGR. At each sexual cycle, the germline nucleus is transmitted to the progeny, but the somatic nucleus, essential for gene expression, is destroyed and a new somatic nucleus differentiates from a copy of the germline nucleus. In Paramecium tetraurelia, the development of the somatic nucleus involves massive PGR, including the precise elimination of at least 45,000 germline sequences (Internal Eliminated Sequences, IES). IES excision proceeds through a cut-and-close mechanism: a domesticated transposase, PiggyMac, is essential for DNA cleavage, and DSB repair at excision sites involves the Ligase IV, a specific component of the non-homologous end-joining (NHEJ) pathway. At the genome-wide level, a huge number of programmed DSBs must be repaired during this process to allow the assembly of functional somatic chromosomes. To understand how DNA cleavage and DSB repair are coordinated during PGR, we have focused on Ku, the earliest actor of NHEJ-mediated repair. Two Ku70 and three Ku80 paralogs are encoded in the genome of P. tetraurelia: Ku70a and Ku80c are produced during sexual processes and localize specifically in the developing new somatic nucleus. Using RNA interference, we show that the development-specific Ku70/Ku80c heterodimer is essential for the recovery of a functional somatic nucleus. Strikingly, at the molecular level, PiggyMac-dependent DNA cleavage is abolished at IES boundaries in cells depleted for Ku80c, resulting in IES retention in the somatic genome. PiggyMac and Ku70a/Ku80c co-purify as a complex when overproduced in a heterologous system. We conclude that Ku has been integrated in the Paramecium DNA cleavage factory, enabling tight coupling between DSB introduction and repair during PGR. DNA double-strand breaks (DSBs) are potential threats for chromosome stability, but they are usually repaired by two major pathways, homologous recombination or non-homologous end joining (NHEJ). DSBs can also be essential during physiological processes, such as the programmed removal of germline sequences that takes place in various eukaryotes, including ciliates, during somatic differentiation. We use the ciliate Paramecium tetraurelia as a unicellular model to study how DNA breakage and DSB repair are coordinated during programmed genome rearrangements. In this organism, assembly of the somatic genome involves the elimination of ∼25% of germline DNA, including the precise excision of thousands of short Internal Eliminated Sequences (IES) scattered along germline chromosomes. A domesticated piggyBac transposase, PiggyMac, is required for double-strand DNA cleavage at IES ends and IES excision sites are very precisely repaired by the NHEJ pathway. Here, we report that a specialized Ku heterodimer, specifically expressed during programmed genome rearrangements, is an essential partner of PiggyMac and activates DNA cleavage. We propose that incorporation of DSB repair proteins in a pre-cleavage complex constitutes a safe and efficient way for Paramecium to direct thousands of programmed DSBs to the NHEJ pathway and make sure that somatic chromosomes are assembled correctly.
Collapse
Affiliation(s)
- Antoine Marmignon
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Julien Bischerour
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Aude Silve
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Clémentine Fojcik
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Emeline Dubois
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Olivier Arnaiz
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Aurélie Kapusta
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
| | - Sophie Malinsky
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France; INSERM, U1024, Paris, France; CNRS, UMR 8197, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UFR Sciences du Vivant, Paris, France
| | - Mireille Bétermier
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette, France; Université Paris-Sud, Département de Biologie, Orsay, France
- * E-mail:
| |
Collapse
|
34
|
Mehta A, Haber JE. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 2014; 6:a016428. [PMID: 25104768 PMCID: PMC4142968 DOI: 10.1101/cshperspect.a016428] [Citation(s) in RCA: 491] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA is subject to many endogenous and exogenous insults that impair DNA replication and proper chromosome segregation. DNA double-strand breaks (DSBs) are one of the most toxic of these lesions and must be repaired to preserve chromosomal integrity. Eukaryotes are equipped with several different, but related, repair mechanisms involving homologous recombination, including single-strand annealing, gene conversion, and break-induced replication. In this review, we highlight the chief sources of DSBs and crucial requirements for each of these repair processes, as well as the methods to identify and study intermediate steps in DSB repair by homologous recombination.
Collapse
Affiliation(s)
- Anuja Mehta
- Rosenstiel Basic Medical Sciences Research Center, MS029 Rosenstiel Center, Brandeis University, Waltham, Massachusetts 02454-9110
| | - James E Haber
- Rosenstiel Basic Medical Sciences Research Center, MS029 Rosenstiel Center, Brandeis University, Waltham, Massachusetts 02454-9110
| |
Collapse
|
35
|
Singh DP, Saudemont B, Guglielmi G, Arnaiz O, Goût JF, Prajer M, Potekhin A, Przybòs E, Aubusson-Fleury A, Bhullar S, Bouhouche K, Lhuillier-Akakpo M, Tanty V, Blugeon C, Alberti A, Labadie K, Aury JM, Sperling L, Duharcourt S, Meyer E. Genome-defence small RNAs exapted for epigenetic mating-type inheritance. Nature 2014; 509:447-52. [PMID: 24805235 DOI: 10.1038/nature13318] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 04/11/2014] [Indexed: 12/30/2022]
Abstract
In the ciliate Paramecium, transposable elements and their single-copy remnants are deleted during the development of somatic macronuclei from germline micronuclei, at each sexual generation. Deletions are targeted by scnRNAs, small RNAs produced from the germ line during meiosis that first scan the maternal macronuclear genome to identify missing sequences, and then allow the zygotic macronucleus to reproduce the same deletions. Here we show that this process accounts for the maternal inheritance of mating types in Paramecium tetraurelia, a long-standing problem in epigenetics. Mating type E depends on expression of the transmembrane protein mtA, and the default type O is determined during development by scnRNA-dependent excision of the mtA promoter. In the sibling species Paramecium septaurelia, mating type O is determined by coding-sequence deletions in a different gene, mtB, which is specifically required for mtA expression. These independently evolved mechanisms suggest frequent exaptation of the scnRNA pathway to regulate cellular genes and mediate transgenerational epigenetic inheritance of essential phenotypic polymorphisms.
Collapse
Affiliation(s)
- Deepankar Pratap Singh
- 1] Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France [2] Sorbonne Universités, UPMC Univ., IFD, 4 place Jussieu, 75252 Paris cedex 05, France
| | - Baptiste Saudemont
- 1] Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France [2] Sorbonne Universités, UPMC Univ., IFD, 4 place Jussieu, 75252 Paris cedex 05, France [3] Laboratoire de Biochimie, Unité Mixte de Recherche 8231, École Supérieure de Physique et de Chimie Industrielles, 75231 Paris, France (B.S.); Department of Biology, Indiana University, Bloomington, Indiana 47405, USA (J.-F.G.); INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, IFR 145, Faculté des Sciences et Techniques, 87060 Limoges, France (K.B.)
| | - Gérard Guglielmi
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| | - Olivier Arnaiz
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette F-91198, and Université Paris-Sud, Département de Biologie, Orsay F-91405, France
| | - Jean-François Goût
- 1] CNRS UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 43 boulevard du 11 Novembre 1918, Villeurbanne F-69622, France [2] Laboratoire de Biochimie, Unité Mixte de Recherche 8231, École Supérieure de Physique et de Chimie Industrielles, 75231 Paris, France (B.S.); Department of Biology, Indiana University, Bloomington, Indiana 47405, USA (J.-F.G.); INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, IFR 145, Faculté des Sciences et Techniques, 87060 Limoges, France (K.B.)
| | - Malgorzata Prajer
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Krakow, Poland
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, St Petersburg State University, Saint Petersburg 199034, Russia
| | - Ewa Przybòs
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Krakow, Poland
| | - Anne Aubusson-Fleury
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette F-91198, and Université Paris-Sud, Département de Biologie, Orsay F-91405, France
| | - Simran Bhullar
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| | - Khaled Bouhouche
- 1] Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France [2] Laboratoire de Biochimie, Unité Mixte de Recherche 8231, École Supérieure de Physique et de Chimie Industrielles, 75231 Paris, France (B.S.); Department of Biology, Indiana University, Bloomington, Indiana 47405, USA (J.-F.G.); INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, IFR 145, Faculté des Sciences et Techniques, 87060 Limoges, France (K.B.)
| | - Maoussi Lhuillier-Akakpo
- 1] Sorbonne Universités, UPMC Univ., IFD, 4 place Jussieu, 75252 Paris cedex 05, France [2] Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Véronique Tanty
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| | - Corinne Blugeon
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| | - Adriana Alberti
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057 Evry, France
| | - Karine Labadie
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057 Evry, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057 Evry, France
| | - Linda Sperling
- CNRS UPR3404 Centre de Génétique Moléculaire, Gif-sur-Yvette F-91198, and Université Paris-Sud, Département de Biologie, Orsay F-91405, France
| | - Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Eric Meyer
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS; Inserm, U1024; CNRS, UMR 8197 Paris F-75005, France
| |
Collapse
|
36
|
Bétermier M, Bertrand P, Lopez BS. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet 2014; 10:e1004086. [PMID: 24453986 PMCID: PMC3894167 DOI: 10.1371/journal.pgen.1004086] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA double-strand breaks (DSBs) are harmful lesions leading to genomic instability or diversity. Non-homologous end-joining (NHEJ) is a prominent DSB repair pathway, which has long been considered to be error-prone. However, recent data have pointed to the intrinsic precision of NHEJ. Three reasons can account for the apparent fallibility of NHEJ: 1) the existence of a highly error-prone alternative end-joining process; 2) the adaptability of canonical C-NHEJ (Ku- and Xrcc4/ligase IV-dependent) to imperfect complementary ends; and 3) the requirement to first process chemically incompatible DNA ends that cannot be ligated directly. Thus, C-NHEJ is conservative but adaptable, and the accuracy of the repair is dictated by the structure of the DNA ends rather than by the C-NHEJ machinery. We present data from different organisms that describe the conservative/versatile properties of C-NHEJ. The advantages of the adaptability/versatility of C-NHEJ are discussed for the development of the immune repertoire and the resistance to ionizing radiation, especially at low doses, and for targeted genome manipulation.
Collapse
Affiliation(s)
- Mireille Bétermier
- CNRS, Centre de Génétique Moléculaire, UPR3404, Gif-sur-Yvette, France
- CNRS, Centre de Recherches de Gif-sur-Yvette, FRC3115, Gif-sur-Yvette, France
- Université Paris-Sud, Département de Biologie, Orsay, France
| | - Pascale Bertrand
- CEA, DSV, Institut de Radiobiologie Moléculaire et Cellulaire, Laboratoire Réparation et Vieillissement, Fontenay-aux-Roses, France
- UMR 8200 CNRS, Villejuif, France
| | - Bernard S. Lopez
- Université Paris-Sud, Département de Biologie, Orsay, France
- UMR 8200 CNRS, Villejuif, France
- Institut de Cancérologie, Gustave Roussy, Villejuif, France
- * E-mail:
| |
Collapse
|
37
|
Catania F, McGrath CL, Doak TG, Lynch M. Spliced DNA sequences in the Paramecium germline: their properties and evolutionary potential. Genome Biol Evol 2013; 5:1200-11. [PMID: 23737328 PMCID: PMC3698930 DOI: 10.1093/gbe/evt087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite playing a crucial role in germline-soma differentiation, the evolutionary significance of developmentally regulated genome rearrangements (DRGRs) has received scant attention. An example of DRGR is DNA splicing, a process that removes segments of DNA interrupting genic and/or intergenic sequences. Perhaps, best known for shaping immune-system genes in vertebrates, DNA splicing plays a central role in the life of ciliated protozoa, where thousands of germline DNA segments are eliminated after sexual reproduction to regenerate a functional somatic genome. Here, we identify and chronicle the properties of 5,286 sequences that putatively undergo DNA splicing (i.e., internal eliminated sequences [IESs]) across the genomes of three closely related species of the ciliate Paramecium (P. tetraurelia, P. biaurelia, and P. sexaurelia). The study reveals that these putative IESs share several physical characteristics. Although our results are consistent with excision events being largely conserved between species, episodes of differential IES retention/excision occur, may have a recent origin, and frequently involve coding regions. Our findings indicate interconversion between somatic--often coding--DNA sequences and noncoding IESs, and provide insights into the role of DNA splicing in creating potentially functional genetic innovation.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | | | | | | |
Collapse
|
38
|
Vogt A, Mochizuki K. A domesticated PiggyBac transposase interacts with heterochromatin and catalyzes reproducible DNA elimination in Tetrahymena. PLoS Genet 2013; 9:e1004032. [PMID: 24348275 PMCID: PMC3861120 DOI: 10.1371/journal.pgen.1004032] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/31/2013] [Indexed: 12/20/2022] Open
Abstract
The somatic genome of the ciliated protist Tetrahymena undergoes DNA elimination of defined sequences called internal eliminated sequences (IESs), which account for ~30% of the germline genome. During DNA elimination, IES regions are heterochromatinized and assembled into heterochromatin bodies in the developing somatic nucleus. The domesticated piggyBac transposase Tpb2p is essential for the formation of heterochromatin bodies and DNA elimination. In this study, we demonstrate that the activities of Tpb2p involved in forming heterochromatin bodies and executing DNA elimination are genetically separable. The cysteine-rich domain of Tpb2p, which interacts with the heterochromatin-specific histone modifications, is necessary for both heterochromatin body formation and DNA elimination, whereas the endonuclease activity of Tpb2p is only necessary for DNA elimination. Furthermore, we demonstrate that the endonuclease activity of Tpb2p in vitro and the endonuclease activity that executes DNA elimination in vivo have similar substrate sequence preferences. These results strongly indicate that Tpb2p is the endonuclease that directly catalyzes the excision of IESs and that the boundaries of IESs are at least partially determined by the combination of Tpb2p-heterochromatin interaction and relaxed sequence preference of the endonuclease activity of Tpb2p.
Collapse
Affiliation(s)
- Alexander Vogt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna, Austria
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna, Austria
- * E-mail:
| |
Collapse
|
39
|
Shieh AWY, Chalker DL. LIA5 is required for nuclear reorganization and programmed DNA rearrangements occurring during tetrahymena macronuclear differentiation. PLoS One 2013; 8:e75337. [PMID: 24069402 PMCID: PMC3775806 DOI: 10.1371/journal.pone.0075337] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/13/2013] [Indexed: 01/24/2023] Open
Abstract
During macronuclear differentiation of the ciliate Tetrahymena thermophila, genome-wide DNA rearrangements eliminate nearly 50 Mbp of germline derived DNA, creating a streamlined somatic genome. The transposon-like and other repetitive sequences to be eliminated are identified using a piRNA pathway and packaged as heterochromatin prior to their removal. In this study, we show that LIA5, which encodes a zinc-finger protein likely of transposon origin, is required for both chromosome fragmentation and DNA elimination events. Lia5p acts after the establishment of RNAi-directed heterochromatin modifications, but prior to the excision of the modified sequences. In ∆LIA5 cells, DNA elimination foci, large nuclear sub-structures containing the sequences to be eliminated and the essential chromodomain protein Pdd1p, do not form. Lia5p, unlike Pdd1p, is not stably associated with these structures, but is required for their formation. In the absence of Lia5p, we could recover foci formation by ectopically inducing DNA damage by UV treatment. Foci in both wild-type or UV-treated ∆LIA5 cells contain dephosphorylated Pdd1p. These studies of LIA5 reveal that DNA elimination foci form after the excision of germ-line limited sequences occurs and indicate that Pdd1p reorganization is likely mediated through a DNA damage response.
Collapse
Affiliation(s)
- Annie Wan Yi Shieh
- Biology Department, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Douglas L. Chalker
- Biology Department, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
40
|
Vogt A, Goldman AD, Mochizuki K, Landweber LF. Transposon domestication versus mutualism in ciliate genome rearrangements. PLoS Genet 2013; 9:e1003659. [PMID: 23935529 PMCID: PMC3731211 DOI: 10.1371/journal.pgen.1003659] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ciliated protists rearrange their genomes dramatically during nuclear development via chromosome fragmentation and DNA deletion to produce a trimmer and highly reorganized somatic genome. The deleted portion of the genome includes potentially active transposons or transposon-like sequences that reside in the germline. Three independent studies recently showed that transposase proteins of the DDE/DDD superfamily are indispensible for DNA processing in three distantly related ciliates. In the spirotrich Oxytricha trifallax, high copy-number germline-limited transposons mediate their own excision from the somatic genome but also contribute to programmed genome rearrangement through a remarkable transposon mutualism with the host. By contrast, the genomes of two oligohymenophorean ciliates, Tetrahymena thermophila and Paramecium tetraurelia, encode homologous PiggyBac-like transposases as single-copy genes in both their germline and somatic genomes. These domesticated transposases are essential for deletion of thousands of different internal sequences in these species. This review contrasts the events underlying somatic genome reduction in three different ciliates and considers their evolutionary origins and the relationships among their distinct mechanisms for genome remodeling.
Collapse
Affiliation(s)
- Alexander Vogt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Aaron David Goldman
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Laura F. Landweber
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
41
|
Zhou LP, Luan H, Dong XH, Jin GJ, Man DL, Shang H. Lack of association between LIG4 gene polymorphisms and the risk of breast cancer: a HuGE review and meta-analysis. Asian Pac J Cancer Prev 2013; 13:3417-22. [PMID: 22994770 DOI: 10.7314/apjcp.2012.13.7.3417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Non-homologous end joining (NHEJ) is one of the pathways of repair of DNA double-strand breaks. A number of genes involved in NHEJ have been implicated as breast cancer susceptibility genes such as LIG4. However, some studies have generated conflicting results. The aim of this Human Genome Epidemiology (HuGE) review and meta-analysis was to investigate association between LIG4 gene polymorphisms in the NHEJ pathway and breast cancer risk. METHODS Studies focusing on the relationship between LIG4 gene polymorphisms and susceptibility to breast cancer were selected from the Pubmed, Cochrane library, Embase, Web of Science, Springerlink, CNKI and CBM databases. Data were extracted by two independent reviewers and the meta-analysis was performed with Review Manager Version 5.1.6 and STATA Version 12.0 software, calculating odds ratios (ORs) with 95% confidence intervals (95%CIs). RESULTS According to the inclusion criteria, we final included seven studies with a total of 10,321 breast cancer cases and 10,160 healthy controls in the meta-analysis. The results showed no association between LIG4 gene polymorphisms (rs1805386 T>C, rs1805389 C>T, rs1805388 C>T and rs2232641 A>G) and breast cancer risk, suggesting that the mutant situation of these SNPs neither increased nor decreased the risk for breast cancer. In the subgroup analysis by Hardy-Weinberg equilibrium (HWE) and ethnicity, we also found no associations between the variants of LIG4 gene and breast cancer risk among HWE, non-HWE, Caucasians, Asians and Africans. CONCLUSION This meta-analysis suggests that there is a lack of any association between LIG4 gene polymorphisms and the risk of breast cancer.
Collapse
Affiliation(s)
- Li-Ping Zhou
- Department of Laboratory Medicine, the First Affiliated Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Ciliates are an ancient and diverse group of microbial eukaryotes that have emerged as powerful models for RNA-mediated epigenetic inheritance. They possess extensive sets of both tiny and long noncoding RNAs that, together with a suite of proteins that includes transposases, orchestrate a broad cascade of genome rearrangements during somatic nuclear development. This Review emphasizes three important themes: the remarkable role of RNA in shaping genome structure, recent discoveries that unify many deeply diverged ciliate genetic systems, and a surprising evolutionary "sign change" in the role of small RNAs between major species groups.
Collapse
|
43
|
The Paramecium germline genome provides a niche for intragenic parasitic DNA: evolutionary dynamics of internal eliminated sequences. PLoS Genet 2012; 8:e1002984. [PMID: 23071448 PMCID: PMC3464196 DOI: 10.1371/journal.pgen.1002984] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/09/2012] [Indexed: 12/30/2022] Open
Abstract
Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of ∼45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a ∼10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the genome in which parasitic DNA is not usually tolerated. Ciliates are unicellular eukaryotes that rearrange their genomes at every sexual generation when a new somatic macronucleus, responsible for gene expression, develops from a copy of the germline micronucleus. In Paramecium, assembly of a functional somatic genome requires precise excision of interstitial DNA segments, the Internal Eliminated Sequences (IES), involving a domesticated piggyBac transposase, PiggyMac. To study IES origin and evolution, we sequenced germline DNA and identified 45,000 IESs. We found that at least some of these unique-copy elements are decayed Tc1/mariner transposons and that IES insertion is likely an ongoing process. After insertion, elements decay rapidly by accumulation of deletions and substitutions. The 93% of IESs shorter than 150 bp display a remarkable size distribution with a periodicity of 10 bp, the helical repeat of double-stranded DNA, consistent with the idea that evolution has only retained IESs that can form a double-stranded DNA loop during assembly of an excision complex. We propose that the ancient domestication of a piggyBac transposase, which provided a precise excision mechanism, enabled transposons to subsequently invade Paramecium coding sequences, a fraction of the genome that does not usually tolerate parasitic DNA.
Collapse
|
44
|
Transposon Invasion of the Paramecium Germline Genome Countered by a Domesticated PiggyBac Transposase and the NHEJ Pathway. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:436196. [PMID: 22888464 PMCID: PMC3408717 DOI: 10.1155/2012/436196] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/07/2012] [Indexed: 12/15/2022]
Abstract
Sequences related to transposons constitute a large fraction of extant genomes, but insertions within coding sequences have generally not been tolerated during evolution. Thanks to their unique nuclear dimorphism and to their original mechanism of programmed DNA elimination from their somatic nucleus (macronucleus), ciliates are emerging model organisms for the study of the impact of transposable elements on genomes. The germline genome of the ciliate Paramecium, located in its micronucleus, contains thousands of short intervening sequences, the IESs, which interrupt 47% of genes. Recent data provided support to the hypothesis that an evolutionary link exists between Paramecium IESs and Tc1/mariner transposons. During development of the macronucleus, IESs are excised precisely thanks to the coordinated action of PiggyMac, a domesticated piggyBac transposase, and of the NHEJ double-strand break repair pathway. A PiggyMac homolog is also required for developmentally programmed DNA elimination in another ciliate, Tetrahymena. Here, we present an overview of the life cycle of these unicellular eukaryotes and of the developmentally programmed genome rearrangements that take place at each sexual cycle. We discuss how ancient domestication of a piggyBac transposase might have allowed Tc1/mariner elements to spread throughout the germline genome of Paramecium, without strong counterselection against insertion within genes.
Collapse
|
45
|
Lin IT, Chao JL, Yao MC. An essential role for the DNA breakage-repair protein Ku80 in programmed DNA rearrangements in Tetrahymena thermophila. Mol Biol Cell 2012; 23:2213-25. [PMID: 22513090 PMCID: PMC3364183 DOI: 10.1091/mbc.e11-11-0952] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Programmed DNA rearrangements are important processes present in many organisms. In the ciliated protozoan Tetrahymena thermophila, DNA rearrangements occur during the sexual conjugation process and lead to the deletion of thousands of specific DNA segments and fragmentation of the chromosomes. In this study, we found that the Ku80 homologue, a conserved component of the nonhomologous end-joining process of DNA repair, was essential for these two processes. During conjugation, TKU80 was highly expressed and localized to the new macronucleus, where DNA rearrangements occur. Homokaryon TKU80-knockout mutants are unable to complete conjugation and produce progeny and are arrested at the two-micronuclei/two-macronuclei stage. Analysis of their DNA revealed failure to complete DNA deletion. However, the DNA-cutting step appeared to have occurred, as evidenced by the presence of circularized excised DNA. Moreover, chromosome breakage or de novo telomere addition was affected. The mutant appears to accumulate free DNA ends detectable by terminal deoxynucleotidyl transferase dUTP nick end labeling assays that led to the degradation of most DNA in the developing macronucleus. These findings suggest that Tku80p may serve an end-protective role after DNA cleavage has occurred. Unexpectedly, the large heterochromatin structures that normally associate with DNA rearrangements failed to form without TKU80. Together the results suggest multiple roles for Tku80p and indicate that a Ku-dependent DNA-repair pathway is involved in programmed DNA rearrangements in Tetrahymena.
Collapse
Affiliation(s)
- I-Ting Lin
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 112, Taiwan, Republic of China
| | | | | |
Collapse
|
46
|
Coyne RS, Lhuillier-Akakpo M, Duharcourt S. RNA-guided DNA rearrangements in ciliates: is the best genome defence a good offence? Biol Cell 2012; 104:309-25. [PMID: 22352444 DOI: 10.1111/boc.201100057] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/15/2012] [Indexed: 12/13/2022]
Abstract
Genomes, like crazy patchwork quilts, are stitched together over evolutionary time from diverse elements, including some unwelcome invaders. To deal with parasitic mobile elements, most eukaryotes employ a genome self-defensive manoeuvre to recognise and silence such elements by homology-dependent interactions with RNA-protein complexes that alter chromatin. Ciliated protozoa employ more 'offensive' tactics by actually unstitching and reassembling their somatic genomes at every sexual generation to eliminate transposons and their remnants, using as patterns the maternal genomes that were rearranged in the previous cycle. Genetic and genomic studies of the distant relatives Paramecium and Tetrahymena have begun to reveal how such events are carried out with remarkable precision. Whole genome, non-coding transcripts from the maternal genome are compared with transcripts from the zygotic genome that are processed through an RNA interference (RNAi)-related process. Sequences found only in the latter are targeted for elimination by the resulting short 'scanRNAs' in many thousand DNA splicing reactions initiated by a domesticated transposase. The involvement of widely conserved mechanisms and protein factors clearly shows the relatedness of these phenomena to RNAi-mediated heterochromatic gene silencing. Such malleability of the genome on a generational time scale also has profound evolutionary implications, possibly including the epigenetic inheritance of acquired adaptive traits.
Collapse
|
47
|
Schoeberl UE, Mochizuki K. Keeping the soma free of transposons: programmed DNA elimination in ciliates. J Biol Chem 2011; 286:37045-52. [PMID: 21914793 DOI: 10.1074/jbc.r111.276964] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many transposon-related sequences are removed from the somatic macronucleus of ciliates during sexual reproduction. In the ciliate Tetrahymena, an RNAi-related mechanism produces small noncoding RNAs that induce heterochromatin formation, which is followed by DNA elimination. Because RNAi-related mechanisms repress transposon activities in a variety of eukaryotes, the DNA elimination mechanism of ciliates might have evolved from these types of transposon-silencing mechanisms. Nuclear dimorphism allows ciliates to identify any DNA that has invaded the germ-line micronucleus using small RNAs and a whole genome comparison of the micronucleus and the somatic macronucleus.
Collapse
Affiliation(s)
- Ursula E Schoeberl
- Institute of Molecular Biotechnology, Austrian Academy of Sciences (IMBA), A-1030 Vienna, Austria
| | | |
Collapse
|
48
|
Sperling L. Remembrance of things past retrieved from the Paramecium genome. Res Microbiol 2011; 162:587-97. [DOI: 10.1016/j.resmic.2011.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 02/17/2011] [Indexed: 11/30/2022]
|