1
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Morimoto Y, Gamage USK, Yamochi T, Saeki N, Morimoto N, Yamanaka M, Koike A, Miyamoto Y, Tanaka K, Fukuda A, Hashimoto S, Yanagimachi R. Mitochondrial Transfer into Human Oocytes Improved Embryo Quality and Clinical Outcomes in Recurrent Pregnancy Failure Cases. Int J Mol Sci 2023; 24:2738. [PMID: 36769061 PMCID: PMC9917531 DOI: 10.3390/ijms24032738] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
One of the most critical issues to be solved in reproductive medicine is the treatment of patients with multiple failures of assisted reproductive treatment caused by low-quality embryos. This study investigated whether mitochondrial transfer to human oocytes improves embryo quality and provides subsequent acceptable clinical results and normality to children born due to the use of this technology. We transferred autologous mitochondria extracted from oogonia stem cells to mature oocytes with sperm at the time of intracytoplasmic sperm injection in 52 patients with recurrent failures (average 5.3 times). We assessed embryo quality using the following three methods: good-quality embryo rates, transferable embryo rates, and a novel embryo-scoring system (embryo quality score; EQS) in 33 patients who meet the preset inclusion criteria for analysis. We also evaluated the clinical outcomes of the in vitro fertilization and development of children born using this technology and compared the mtDNA sequences of the children and their mothers. The good-quality embryo rates, transferable embryo rates, and EQS significantly increased after mitochondrial transfer and resulted in 13 babies born in normal conditions. The mtDNA sequences were almost identical to the respective maternal sequences at the 83 major sites examined. Mitochondrial transfer into human oocytes is an effective clinical option to enhance embryo quality in recurrent in vitro fertilization-failure cases.
Collapse
Affiliation(s)
- Yoshiharu Morimoto
- Department of Obstetrics and Gynecology, HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan
| | | | - Takayuki Yamochi
- Reproductive Science Institute, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Noriatsu Saeki
- Department of Obstetrics and Gynecology, Nippon Life Hospital, Osaka 550-0006, Japan
| | - Naoharu Morimoto
- Department of Obstetrics and Gynecology, IVF Namba Clinic, Osaka 550-0015, Japan
| | - Masaya Yamanaka
- Department of Research, IVF Namba Clinic, Osaka 550-0015, Japan
| | - Akiko Koike
- Department of Reproductive Technology, HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan
| | - Yuki Miyamoto
- Department of Reproductive Technology, HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan
| | - Kumiko Tanaka
- Department of Integrated Medicine, HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan
| | - Aisaku Fukuda
- Department of Obstetrics and Gynecology, IVF Osaka Clinic, Osaka 577-0012, Japan
| | - Shu Hashimoto
- Reproductive Science Institute, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Ryuzo Yanagimachi
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA
| |
Collapse
|
3
|
Blumenfeld Z. Fertility Preservation Using GnRH Agonists: Rationale, Possible Mechanisms, and Explanation of Controversy. CLINICAL MEDICINE INSIGHTS. REPRODUCTIVE HEALTH 2019; 13:1179558119870163. [PMID: 31488958 PMCID: PMC6710670 DOI: 10.1177/1179558119870163] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
The only clinically accepted method of fertility preservation in young women facing gonadotoxic chemo- and/or radiotherapy for malignant or autoimmune diseases is cryopreservation of embryos or unfertilized ova, whereas cryopreservation of ovarian tissue for future reimplantation, or in vitro maturation of follicles, and the use of gonadotropin-releasing hormone agonists (GnRHa) are still considered investigational, by several authorities. Whereas previous publications have raised the fear of GnRHa's possible detrimental effects in patients with hormone receptor-positive breast cancers, recent randomized controlled trials (RCTs) have shown that it either improves or does not affect disease-free survival (DFS) in such patients. This review summarizes the pros and cons of GnRHa co-treatment for fertility preservation, suggesting 5 theoretical mechanisms for GnRHa action: (1) simulating the prepubertal hypogonadotropic milieu, (2) direct effect on GnRH receptors, (3) decreased ovarian perfusion, (4) upregulation of an ovarian-protecting molecule such as sphingosine-1-phosphate, and (5) protecting a possible germinative stem cell. We try to explain the reasons for the discrepancy between most publications that support the use of GnRHa for fertility preservation and the minority of publications that did not support its efficiency.
Collapse
Affiliation(s)
- Zeev Blumenfeld
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
4
|
Mitochondria and Female Germline Stem Cells-A Mitochondrial DNA Perspective. Cells 2019; 8:cells8080852. [PMID: 31398797 PMCID: PMC6721711 DOI: 10.3390/cells8080852] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria and mitochondrial DNA have important roles to play in development. In primordial germ cells, they progress from small numbers to populate the maturing oocyte with high numbers to support post-fertilization events. These processes take place under the control of significant changes in DNA methylation and other epigenetic modifiers, as well as changes to the DNA methylation status of the nuclear-encoded mitochondrial DNA replication factors. Consequently, the differentiating germ cell requires significant synchrony between the two genomes in order to ensure that they are fit for purpose. In this review, I examine these processes in the context of female germline stem cells that are isolated from the ovary and those derived from embryonic stem cells and reprogrammed somatic cells. Although our knowledge is limited in this respect, I provide predictions based on other cellular systems of what is expected and provide insight into how these cells could be used in clinical medicine.
Collapse
|
5
|
Akahori T, Woods DC, Tilly JL. Female Fertility Preservation through Stem Cell-based Ovarian Tissue Reconstitution In Vitro and Ovarian Regeneration In Vivo. CLINICAL MEDICINE INSIGHTS. REPRODUCTIVE HEALTH 2019; 13:1179558119848007. [PMID: 31191070 PMCID: PMC6540489 DOI: 10.1177/1179558119848007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
Historically, approaches designed to offer women diagnosed with cancer the prospects of having a genetically matched child after completion of their cytotoxic treatments focused on the existing oocyte population as the sole resource available for clinical management of infertility. In this regard, elective oocyte and embryo cryopreservation, as well as autologous ovarian cortical tissue grafting posttreatment, have gained widespread support as options for young girls and reproductive-age women who are faced with cancer to consider. In addition, the use of ovarian protective therapies, including gonadotropin-releasing hormone agonists and sphingosine-1-phosphate analogs, has been put forth as an alternative way to preserve fertility by shielding existing oocytes in the ovaries in vivo from the side-effect damage caused by radiotherapy and many chemotherapeutic regimens. This viewpoint changed with the publication of now numerous reports that adult ovaries of many mammalian species, including humans, contain a rare population of oocyte-producing germ cells-referred to as female germline or oogonial stem cells (OSCs). This new line of study has fueled research into the prospects of generating new oocytes, rather than working with existing oocytes, as a novel approach to sustain or restore fertility in female cancer survivors. Here, we overview the history of work from laboratories around the world focused on improving our understanding of the biology of OSCs and how these cells may be used to reconstitute "artificial" ovarian tissue in vitro or to regenerate damaged ovarian tissue in vivo as future fertility-preservation options.
Collapse
Affiliation(s)
- Taichi Akahori
- Laboratory for Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, USA.,On leave from the Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Dori C Woods
- Laboratory for Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, USA
| | - Jonathan L Tilly
- Laboratory for Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, USA
| |
Collapse
|
6
|
MacDonald JA, Takai Y, Ishihara O, Seki H, Woods DC, Tilly JL. Extracellular matrix signaling activates differentiation of adult ovary-derived oogonial stem cells in a species-specific manner. Fertil Steril 2019; 111:794-805. [PMID: 30871765 DOI: 10.1016/j.fertnstert.2018.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/01/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To test if ovarian microenvironmental cues affect oogonial stem cell (OSC) function in a species-specific manner. DESIGN Animal and human study. SETTING Research laboratory. PATIENT(S)/ANIMAL(S) Human ovarian cells obtained from cryopreserved ovarian cortical tissue of reproductive-age women, and ovarian cells and tissues from female C57BL/6 mice. INTERVENTION(S) Mouse ovarian tissue, mouse OSCs (mOSCs) and human OSCs (hOSCs) were analyzed for extracellular matrix (ECM) protein expression, and OSCs isolated from adult mouse and human ovaries were cultured in the absence or presence of ECM proteins without or with an integrin signaling inhibitor. MAIN OUTCOME MEASURE(S) Gene expression and in vitro derived (IVD) oocyte formation. RESULT(S) Culture of mOSCs on a collagen-based ECM significantly elevated the rate of differentiation of the cells into IVD oocytes. Mouse OSCs expressed many integrins, including Arg-Gly-Asp (RGD)-binding subunits, and ECM-mediated increases in mOSC differentiation were blocked by addition of integrin-antagonizing RGD peptides. In comparison, hOSCs expressed a different pattern of integrin subunits compared with mOSCs, and hOSCs were unresponsive to a collagen-based ECM; however, hOSCs exhibited increased differentiation into IVD oocytes when cultured on laminin. CONCLUSION(S) These data, along with in silico analysis of ECM protein profiles in human ovaries, indicate that ovarian ECM-based niche components function in a species-specific manner to control OSC differentiation.
Collapse
Affiliation(s)
- Julie A MacDonald
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts
| | - Yasushi Takai
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Osamu Ishihara
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Hiroyuki Seki
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Dori C Woods
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts
| | - Jonathan L Tilly
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
7
|
Martin JJ, Woods DC, Tilly JL. Implications and Current Limitations of Oogenesis from Female Germline or Oogonial Stem Cells in Adult Mammalian Ovaries. Cells 2019; 8:E93. [PMID: 30696098 PMCID: PMC6407002 DOI: 10.3390/cells8020093] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022] Open
Abstract
A now large body of evidence supports the existence of mitotically active germ cells in postnatal ovaries of diverse mammalian species, including humans. This opens the possibility that adult stem cells naturally committed to a germline fate could be leveraged for the production of female gametes outside of the body. The functional properties of these cells, referred to as female germline or oogonial stem cells (OSCs), in ovaries of women have recently been tested in various ways, including a very recent investigation of the differentiation capacity of human OSCs at a single cell level. The exciting insights gained from these experiments, coupled with other data derived from intraovarian transplantation and genetic tracing analyses in animal models that have established the capacity of OSCs to generate healthy eggs, embryos and offspring, should drive constructive discussions in this relatively new field to further exploring the value of these cells to the study, and potential management, of human female fertility. Here, we provide a brief history of the discovery and characterization of OSCs in mammals, as well as of the in-vivo significance of postnatal oogenesis to adult ovarian function. We then highlight several key observations made recently on the biology of OSCs, and integrate this information into a broader discussion of the potential value and limitations of these adult stem cells to achieving a greater understanding of human female gametogenesis in vivo and in vitro.
Collapse
Affiliation(s)
- Jessica J Martin
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | - Dori C Woods
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | - Jonathan L Tilly
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Yazdekhasti H, Rajabi Z, Parvari S, Abbasi M. Used protocols for isolation and propagation of ovarian stem cells, different cells with different traits. J Ovarian Res 2016; 9:68. [PMID: 27765047 PMCID: PMC5072317 DOI: 10.1186/s13048-016-0274-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 10/03/2016] [Indexed: 11/10/2022] Open
Abstract
Although existence of ovarian stem cells (OSCs) in mammalian postnatal ovary is still under controversy, however, it has been almost accepted that OSCs are contributing actively to folliculogenesis and neo-oogenesis. Recently, various methods with different efficacies have been employed for OSCs isolation from ovarian tissue, which these methods could be chosen depends on aim of isolation and accessible equipments and materials in lab. Although isolated OSCs from different methods have various traits and characterizations, which might become from their different nature and origin, however these stem cells are promising source for woman infertility treatment or source of energy for women with a history of repeat IVF failure in near future. This review has brought together and summarized currently used protocols for isolation and propagation of OSCs in vitro.
Collapse
Affiliation(s)
- Hossein Yazdekhasti
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rajabi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Parvari
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Abbasi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Scally A. The mutation rate in human evolution and demographic inference. Curr Opin Genet Dev 2016; 41:36-43. [PMID: 27589081 DOI: 10.1016/j.gde.2016.07.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 01/23/2023]
Abstract
The germline mutation rate has long been a major source of uncertainty in human evolutionary and demographic analyses based on genetic data, but estimates have improved substantially in recent years. I discuss our current knowledge of the mutation rate in humans and the underlying biological factors affecting it, which include generation time, parental age and other developmental and reproductive timescales. There is good evidence for a slowdown in mean mutation rate during great ape evolution, but not for a more recent change within the timescale of human genetic diversity. Hence, pending evidence to the contrary, it is reasonable to use a present-day rate of approximately 0.5×10-9bp-1year-1 in all human or hominin demographic analyses.
Collapse
Affiliation(s)
- Aylwyn Scally
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, United Kingdom.
| |
Collapse
|
10
|
Guo K, Li CH, Wang XY, He DJ, Zheng P. Germ stem cells are active in postnatal mouse ovary under physiological conditions. Mol Hum Reprod 2016; 22:316-28. [PMID: 26916381 DOI: 10.1093/molehr/gaw015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/19/2016] [Indexed: 11/12/2022] Open
Abstract
STUDY HYPOTHESIS Are active ovarian germ stem cells present in postnatal mouse ovaries under physiological conditions? STUDY FINDING Active ovarian germ stem cells exist and function in adult mouse ovaries under physiological conditions. WHAT IS KNOWN ALREADY In vitro studies suggested the existence of germ stem cells in postnatal ovaries of mouse, pig and human. However, in vivo studies provided evidence against the existence of active germ stem cells in postnatal mouse ovaries. Thus, it remains controversial whether such germ stem cells really exist and function in vivo in postnatal mammalian ovaries. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Octamer-binding transcription factor 4 (Oct4)-MerCreMer transgenic mice were crossed with R26R-enhanced yellow fluorescent protein (EYFP) mice to establish a tamoxifen-inducible tracing system so that Oct4-expressing potential ovarian germ stem cells in young adult mice (5-6 weeks old) can be labeled with EYFP. The germ cell activities of DNA replication, mitotic division, entry into meiosis and progression to primordial follicle stage were investigated by means of immunofluorescent staining of ovarian tissues collected at different time points post-tamoxifen injection (1 day, 3 days, 2 months and 4 months). Meiosis entry and primordial follicle formation were also measured by EYFP-labeled single-cell RT-PCR. Germ cell proliferation and mitotic division were examined through 5-bromodeoxyuridine triphosphate incorporation assay. At each time point, ovaries from two to three animals were used for each set of experiment. MAIN RESULTS AND THE ROLE OF CHANCE By labeling the Oct4-expressing small germ cells and tracing their fates for up to 4 months, we observed persistent meiosis entry and primordial follicle replenishment. Furthermore, we captured the transient processes of mitotic DNA replication as well as mitotic division of the marked germ cells at various time periods after tracing. These lines of evidence unambiguously support the presence of active germ stem cells in postnatal ovaries and their function in replenishing primordial follicle pool under physiological conditions. Moreover, we pointed out that Oct4(+) deleted in azoospermia-like (Dazl)(-) but not Oct4(+)Dazl(+) or Oct4(+) DEAD (Asp-Glu-Ala-Asp) Box Polypeptide 4 (Ddx4)(+) cells contain a population of germ stem cells in mouse ovary. LIMITATIONS, REASONS FOR CAUTION This study was conducted in mice. Whether or not the results are applicable to human remain unclear. The future work should aim at identifying the specific ovarian germ stem cell marker and evaluating the significance of these stem cells to normal ovarian function. WIDER IMPLICATIONS OF THE FINDINGS Clarifying the existence of active germ stem cells and their functional significance in postnatal mammalian ovaries could provide new insights in understanding the mechanism of ovarian aging and failure. LARGE SCALE DATA Not applicable. STUDY FUNDING/COMPETING INTERESTS This work was supported by the National Key Basic Research Program of China (grant number 2012CBA01300) and the National Natural Science Foundation of China to P.Z. (31571484). No competing interests are reported.
Collapse
Affiliation(s)
- Kun Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Chao-Hui Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Xin-Yi Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Da-Jian He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiao Chang Dong Lu, Kunming 650223, Yunnan, China
| |
Collapse
|
11
|
Stindl R. The paradox of longer sperm telomeres in older men's testes: a birth-cohort effect caused by transgenerational telomere erosion in the female germline. Mol Cytogenet 2016; 9:12. [PMID: 26858775 PMCID: PMC4745172 DOI: 10.1186/s13039-016-0224-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/03/2016] [Indexed: 11/10/2022] Open
Abstract
Longer telomeres in the somatic cells of an individual have been regarded as a marker of youth and biological fitness within a population. Yet, several research groups have reported the surprising findings of longer telomeres in the germ cells of older men, which translated into longer leukocyte telomere length in their offspring. Although all these studies were purely cross-sectional, a longitudinal trend in the aging testes of individual males was taken for granted. Recently, a high-profile study reported a negative birth-cohort effect on leukocyte mean telomere length in human populations, namely the progressive loss of telomeric sequence between healthy human generations. This is what I based my theory of telomere-driven macroevolution on, 12 years ago. On the basis of published data on telomere length inheritance, I identified the source of human intergenerational telomere erosion in the female germline. Accordingly, because of the resulting birth-cohort effect, there is no need for any paradoxical telomere lengthening in older men’s gonads to interpret the old-father-long-telomered-offspring data.
Collapse
Affiliation(s)
- Reinhard Stindl
- apo-med-center, Alpharm, Plättenstrasse 7-9, 2380 Perchtoldsdorf, Austria, Europe
| |
Collapse
|
12
|
Grieve KM, McLaughlin M, Dunlop CE, Telfer EE, Anderson RA. The controversial existence and functional potential of oogonial stem cells. Maturitas 2015; 82:278-81. [PMID: 26278874 DOI: 10.1016/j.maturitas.2015.07.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/18/2015] [Accepted: 07/22/2015] [Indexed: 01/20/2023]
Abstract
The regenerative potential of the mammalian ovary has been a controversial area over the last decade. Isolation of cells, termed oogonial stem cells (OSCs), from adult rodent and human ovaries has been reported, with these cells exhibiting both germ and stem cell markers in culture. When re-introduced into an ovarian somatic environment these cells have generated follicles capable of producing healthy offspring in rodents, and there is some evidence of human OSCs being able to form oocyte-like structures in a xenotransplant model. Importantly, there are no data on their potential physiological role within the ovary, and specifically no evidence that they contribute to the primordial follicle pool and thus to later stages of follicle development. The cues required for oocyte differentiation from these cells are not well understood either in vivo or in vitro, and these will need to be further elucidated to maximise their potential for therapeutic intervention. OSCs may also be of value as a model to investigate normal human germ cell differentiation. It is likely that their interactions with ovarian somatic cells and/or extracellular signals will be important in these processes. This review summarises our current knowledge on the isolation and characterisation of mammalian oogonial stem cells.
Collapse
Affiliation(s)
- Kelsey M Grieve
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Institute of Cell Biology and Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Marie McLaughlin
- Institute of Cell Biology and Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Cheryl E Dunlop
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Evelyn E Telfer
- Institute of Cell Biology and Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
13
|
Nunes C, Silva JV, Silva V, Torgal I, Fardilha M. Signalling pathways involved in oocyte growth, acquisition of competence and activation. HUM FERTIL 2015; 18:149-55. [DOI: 10.3109/14647273.2015.1006692] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Abstract
There is now considerable epidemiological and experimental evidence indicating that early-life environmental conditions, including nutrition, affect subsequent development in later life. These conditions induce highly integrated responses in endocrine-related homeostasis, resulting in persistent changes in the developmental trajectory producing an altered adult phenotype. Early-life events trigger processes that prepare the individual for particular circumstances that are anticipated in the postnatal environment. However, where the intrauterine and postnatal environments differ markedly, such modifications to the developmental trajectory may prove maladaptive in later life. Reproductive maturation and function are similarly influenced by early-life events. This should not be surprising, because the primordial follicle pool is established early in life and is thus vulnerable to early-life events. Results of clinical and experimental studies have indicated that early-life adversity is associated with a decline in ovarian follicular reserve, changes in ovulation rates, and altered age at onset of puberty. However, the underlying mechanisms regulating the relationship between the early-life developmental environment and postnatal reproductive development and function are unclear. This review examines the evidence linking early-life nutrition and effects on the female reproductive system, bringing together clinical observations in humans and experimental data from targeted animal models.
Collapse
Affiliation(s)
- K A Chan
- Departments of Biochemistry and Biomedical SciencesPediatricsObstetrics and GynecologyMcMaster University, 1280 Main Street West HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1
| | - M W Tsoulis
- Departments of Biochemistry and Biomedical SciencesPediatricsObstetrics and GynecologyMcMaster University, 1280 Main Street West HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1
| | - D M Sloboda
- Departments of Biochemistry and Biomedical SciencesPediatricsObstetrics and GynecologyMcMaster University, 1280 Main Street West HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1 Departments of Biochemistry and Biomedical SciencesPediatricsObstetrics and GynecologyMcMaster University, 1280 Main Street West HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1 Departments of Biochemistry and Biomedical SciencesPediatricsObstetrics and GynecologyMcMaster University, 1280 Main Street West HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
15
|
Abstract
It has long been established that germline stem cells (GSCs) are responsible for lifelong gametogenesis in males, and some female invertebrates (for example, Drosophila) and lower vertebrates (for example, teleost fish and some prosimians) also appear to rely on GSCs to replenish their oocyte reserve in adulthood. However, the presence of such cells in the majority of female mammals is controversial, and the idea of a fixed ovarian reserve determined at birth is the prevailing belief among reproductive biologists. However, accumulating evidence demonstrates the isolation and culture of putative GSCs from the ovaries of adult mice and humans. Live offspring have been reportedly produced from the culture of adult mouse GSCs, and human GSCs formed primordial follicles using a mouse xenograft model. If GSCs were present in adult female ovaries, it could be postulated that the occurrence of menopause is not due to the exhaustion of a fixed supply of oocytes but instead is a result of GSC and somatic cell aging. Alternatively, they may be benign under normal physiological conditions. If their existence were confirmed, female GSCs could have many potential applications in both basic science and clinical therapies. GSCs not only may provide a valuable model for germ cell development and maturation but may have a role in the field of fertility preservation, with women potentially being able to store GSCs or GSC-derived oocytes from their own ovaries prior to infertility-inducing treatments. Essential future work in this field will include further independent corroboration of the existence of GSCs in female mammals and the demonstration of the production of mature competent oocytes from GSCs cultured entirely in vitro.
Collapse
|
16
|
Abstract
The female germline comprises a reserve population of primordial (non-growing) follicles containing diplotene oocytes arrested in the first meiotic prophase. By convention, the reserve is established when all individual oocytes are enclosed by granulosa cells. This commonly occurs prior to or around birth, according to species. Histologically, the ‘reserve’ is the number of primordial follicles in the ovary at any given age and is ultimately depleted by degeneration and progression through folliculogenesis until exhausted. How and when the reserve reaches its peak number of follicles is determined by ovarian morphogenesis and germ cell dynamics involving i) oogonial proliferation and entry into meiosis producing an oversupply of oocytes and ii) large-scale germ cell death resulting in markedly reduced numbers surviving as the primordial follicle reserve. Our understanding of the processes maintaining the reserve comes primarily from genetically engineered mouse models, experimental activation or destruction of oocytes, and quantitative histological analysis. As the source of ovulated oocytes in postnatal life, the primordial follicle reserve requires regulation of i) its survival or maintenance, ii) suppression of development (dormancy), and iii) activation for growth and entry into folliculogenesis. The mechanisms influencing these alternate and complex inter-related phenomena remain to be fully elucidated. Drawing upon direct and indirect evidence, we discuss the controversial concept of postnatal oogenesis. This posits a rare population of oogonial stem cells that contribute new oocytes to partially compensate for the age-related decline in the primordial follicle reserve.
Collapse
|
17
|
Imudia AN, Wang N, Tanaka Y, White YAR, Woods DC, Tilly JL. Comparative gene expression profiling of adult mouse ovary-derived oogonial stem cells supports a distinct cellular identity. Fertil Steril 2013; 100:1451-8. [PMID: 23876535 DOI: 10.1016/j.fertnstert.2013.06.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Perform gene expression profiling of adult mouse ovary-derived oogonial stem cells (OSCs). DESIGN Experimental animal study. SETTING Research laboratory. ANIMAL(S) Adult C57BL/6 female mice. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Gene expression profiles were compared between freshly isolated and cultured OSCs, as well as between OSCs and embryonic stem cells (ESCs), fetal primordial germ cells (PGCs), and spermatogonial stem cells (SSCs); OSC yield from ovaries versus meiotic gene activation during the estrous cycle was determined. RESULT(S) Freshly isolated OSCs, PGCs, and SSCs exhibited distinct gene expression profiles. Cultured OSCs maintained their germline gene expression pattern but gained expression of pluripotency markers found in PGCs and ESCs. Cultured OSCs also expressed the meiotic marker, stimulated by retinoic acid gene 8 (Stra8). In vivo, OSC yield was higher from luteal versus follicular phase ovaries, and this was inversely related to Stra8 expression. CONCLUSION(S) Freshly isolated OSCs exhibit a germline gene expression profile that overlaps with, but is distinct from, that of PGCs and SSCs. After in vitro expansion, OSCs activate expression of pluripotency genes found in freshly isolated PGCs. In vivo, OSC numbers in the ovaries fluctuate during the estrous cycle, with the highest numbers noted during the luteal phase. This is followed by activation of Stra8 expression during the follicular phase, which may signify a wave of neo-oogenesis to partially offset follicular loss through atresia and ovulation in the prior cycle.
Collapse
Affiliation(s)
- Anthony N Imudia
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, and Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
18
|
Dunlop CE, Telfer EE, Anderson RA. Ovarian stem cells--potential roles in infertility treatment and fertility preservation. Maturitas 2013; 76:279-83. [PMID: 23693139 DOI: 10.1016/j.maturitas.2013.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/16/2013] [Accepted: 04/25/2013] [Indexed: 12/22/2022]
Abstract
One of the principal beliefs in reproductive biology is that women have a finite ovarian reserve, which is fixed from the time they are born. This theory has been questioned recently by the discovery of ovarian stem cells which are purported to have the ability to form new oocytes under specific conditions post-natally. Almost a decade after their discovery, ovarian, or oogonial, stem cells (OSCs) have been isolated in mice and humans but remain the subject of much debate. Studies in mice have shown that these cells can be cultured to a mature oocyte stage in vitro, and when injected into germ-cell depleted ovary they can form follicles and have resulted in the birth of healthy offspring. There are few data from human OSCs but this finding would open the door to novel fertility preservation strategies for women with both age-related and premature ovarian insufficiency (POI). As the number of girls and young women surviving cancer increases worldwide, POI secondary to gonadotoxic treatments, such as chemotherapy, is becoming more common. The ideal fertility preservation approach would prevent delays in commencing life-saving treatment and avoid transplanting malignant cells back into a woman after treatment: OSCs may offer one route to achieving this. This review summarises our current understanding of OSCs and discusses their potential clinical application in infertility treatment and fertility preservation.
Collapse
Affiliation(s)
- Cheryl E Dunlop
- MRC Centre for Reproductive Health, University of Edinburgh, Queens Medical Research Institute, Edinburgh, Scotland, UK
| | | | | |
Collapse
|
19
|
Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries. Nat Protoc 2013; 8:966-88. [PMID: 23598447 DOI: 10.1038/nprot.2013.047] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Accruing evidence indicates that production of new oocytes (oogenesis) and their enclosure by somatic cells (folliculogenesis) are processes not limited to the perinatal period in mammals. Endpoints ranging from oocyte counts to genetic lineage tracing and transplantation experiments support a paradigm shift in reproductive biology involving active renewal of oocyte-containing follicles during postnatal life. The recent purification of mitotically active oocyte progenitor cells, termed female germline stem cells (fGSCs) or oogonial stem cells (OSCs), from mouse and human ovaries opens up new avenues for research into the biology and clinical utility of these cells. Here we detail methods for the isolation of mouse and human OSCs from adult ovarian tissue, cultivation of the cells after purification, and characterization of the cells before and after ex vivo expansion. The latter methods include analysis of germ cell-specific markers and in vitro oogenesis, as well as the use of intraovarian transplantation to test the oocyte-forming potential of OSCs in vivo.
Collapse
|
20
|
Woods DC, White YAR, Niikura Y, Kiatpongsan S, Lee HJ, Tilly JL. Embryonic stem cell-derived granulosa cells participate in ovarian follicle formation in vitro and in vivo. Reprod Sci 2013; 20:7-15. [PMID: 23536570 DOI: 10.1177/1933719112462632] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Differentiating embryonic stem cells (ESCs) can form ovarian follicle-like structures in vitro, consisting of an oocyte-like cell surrounded by somatic cells capable of steroidogenesis. Using a dual-fluorescence reporter system in which mouse ESCs express green fluorescent protein (GFP) under the control of a germ cell-specific Pou5f1 gene promoter and red fluorescent protein (Discosoma sp red [DsRed]) driven by the granulosa cell-specific Forkhead box L2 (Foxl2) gene promoter, we first confirmed in vitro formation of follicle-like structures containing GFP-positive cells surrounded by DsRed-positive cells. Isolated DsRed-positive cells specified from ECSs exhibited a gene expression profile consistent with granulosa cells, as revealed by the detection of messenger RNAs (mRNAs) for Foxl2, follistatin (Fst), anti-Müllerian hormone (Amh), and follicle-stimulating hormone receptor (Fshr) as well as by production of both progesterone and estradiol. In addition, treatment of isolated DsRed-expressing cells with follicle-stimulating hormone (FSH) significantly increased estradiol production over basal levels, confirming the presence of functional FSH receptors in these cells. Last, ESC-derived DsRed-positive cells injected into neonatal mouse ovaries became incorporated within the granulosa cell layer of immature follicles. These studies demonstrate that Foxl2-expressing ovarian somatic cells derived in vitro from differentiating ESCs express granulosa cell markers, actively associate with germ cells in vitro, synthesize steroids, respond to FSH, and participate in folliculogenesis in vivo.
Collapse
Affiliation(s)
- Dori C Woods
- Vincent Center for Reproductive Biology, MGH Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
21
|
|