1
|
Yu H, Lesch BJ. Functional Roles of H3K4 Methylation in Transcriptional Regulation. Mol Cell Biol 2024; 44:505-515. [PMID: 39155435 PMCID: PMC11529435 DOI: 10.1080/10985549.2024.2388254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Histone 3 lysine 4 methylation (H3K4me) is a highly evolutionary conserved chromatin modification associated with active transcription, and its three methylation states-mono, di, and trimethylation-mark distinct regulatory elements. However, whether H3K4me plays functional roles in transcriptional regulation or is merely a by-product of histone methyltransferases recruited to actively transcribed loci is still under debate. Here, we outline the studies that have addressed this question in yeast, Drosophila, and mammalian systems. We review evidence from histone residue mutation, histone modifier manipulation, and epigenetic editing, focusing on the relative roles of H3K4me1 and H3K4me3. We conclude that H3K4me1 and H3K4me3 may have convergent functions in establishing open chromatin and promoting transcriptional activation during cell differentiation.
Collapse
Affiliation(s)
- Haoming Yu
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Bluma J. Lesch
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Song Y, Chang Z, Feng Y, Wang T, Liu L. Whole-genome landscape of histone H3K4me3 modification during sperm cell lineage development in tomato. BMC PLANT BIOLOGY 2024; 24:610. [PMID: 38926660 PMCID: PMC11210149 DOI: 10.1186/s12870-024-05318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND During male gametogenesis of flowering plants, sperm cell lineage (microspores, generative cells, and sperm cells) differentiated from somatic cells and acquired different cell fates. Trimethylation of histone H3 on lysine 4 (H3K4me3) epigenetically contributes to this process, however, it remained unclear how H3K4me3 influences the gene expression in each cell type. Here, we conducted chromatin immunoprecipitation sequencing (ChIP-seq) to obtain a genome-wide landscape of H3K4me3 during sperm cell lineage development in tomato (Solanum lycopersicum). RESULTS We show that H3K4me3 peaks were mainly enriched in the promoter regions, and intergenic H3K4me3 peaks expanded as sperm cell lineage differentiated from somatic cells. H3K4me3 was generally positively associated with transcript abundance and served as a better indicator of gene expression in somatic and vegetative cells, compared to sperm cell lineage. H3K4me3 was mutually exclusive with DNA methylation at 3' proximal of the transcription start sites. The microspore maintained the H3K4me3 features of somatic cells, while generative cells and sperm cells shared an almost identical H3K4me3 pattern which differed from that of the vegetative cell. After microspore division, significant loss of H3K4me3 in genes related to brassinosteroid and cytokinin signaling was observed in generative cells and vegetative cells, respectively. CONCLUSIONS Our results suggest the asymmetric division of the microspore significantly reshapes the genome-wide distribution of H3K4me3. Selective loss of H3K4me3 in genes related to hormone signaling may contribute to functional differentiation of sperm cell lineage. This work provides new resource data for the epigenetic studies of gametogenesis in plants.
Collapse
Affiliation(s)
- Yunyun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhikai Chang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
3
|
Oh J, Kim S, Kim S, Kim J, Yeom S, Lee JS. An epitope-tagged Swd2 reveals the different requirements of Swd2 concentration in H3K4 methylation and viability. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195009. [PMID: 38331025 DOI: 10.1016/j.bbagrm.2024.195009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Swd2/Cps35 is a common component of the COMPASS H3K4 methyltransferase and CPF transcription termination complex in Saccharomyces cerevisiae. The deletion of SWD2 is lethal, which results from transcription termination defects in snoRNA genes. This study isolated a yeast strain that showed significantly reduced protein level of Swd2 following epitope tagging at its N-terminus (9MYC-SWD2). The reduced level of Swd2 in the 9MYC-SWD2 strain was insufficient for the stability of the Set1 H3K4 methyltransferase, H3K4me3 and snoRNA termination, but the level was enough for viability and growth similar to the wildtype strain. In addition, we presented the genes differentially regulated by the essential protein Swd2 under optimal culture conditions for the first time. The expression of genes known to be decreased in the absence of Set1 and H3K4me3, including NAD biosynthetic process genes and histone genes, was decreased in the 9MYC-SWD2 strain, as expected. However, the effects of Swd2 on the ribosome biogenesis (RiBi) genes were opposite to those of Set1, suggesting that the expression of RiBi genes is regulated by more complex relationship between COMPASS and other Swd2-containing complexes. These data suggest that different concentrations of Swd2 are required for its roles in H3K4me3 and viability and that it may be either contributory or contrary to the transcriptional regulation of Set1/H3K4me3, depending on the gene group.
Collapse
Affiliation(s)
- Junsoo Oh
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute of Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seho Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - SangMyung Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jueun Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon-si 24341, Republic of Korea
| | - Soojin Yeom
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute of Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute of Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
4
|
Policarpi C, Munafò M, Tsagkris S, Carlini V, Hackett JA. Systematic epigenome editing captures the context-dependent instructive function of chromatin modifications. Nat Genet 2024; 56:1168-1180. [PMID: 38724747 PMCID: PMC11176084 DOI: 10.1038/s41588-024-01706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/05/2024] [Indexed: 05/22/2024]
Abstract
Chromatin modifications are linked with regulating patterns of gene expression, but their causal role and context-dependent impact on transcription remains unresolved. Here we develop a modular epigenome editing platform that programs nine key chromatin modifications, or combinations thereof, to precise loci in living cells. We couple this with single-cell readouts to systematically quantitate the magnitude and heterogeneity of transcriptional responses elicited by each specific chromatin modification. Among these, we show that installing histone H3 lysine 4 trimethylation (H3K4me3) at promoters can causally instruct transcription by hierarchically remodeling the chromatin landscape. We further dissect how DNA sequence motifs influence the transcriptional impact of chromatin marks, identifying switch-like and attenuative effects within distinct cis contexts. Finally, we examine the interplay of combinatorial modifications, revealing that co-targeted H3K27 trimethylation (H3K27me3) and H2AK119 monoubiquitination (H2AK119ub) maximizes silencing penetrance across single cells. Our precision-perturbation strategy unveils the causal principles of how chromatin modification(s) influence transcription and dissects how quantitative responses are calibrated by contextual interactions.
Collapse
Affiliation(s)
- Cristina Policarpi
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Marzia Munafò
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Stylianos Tsagkris
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Valentina Carlini
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
- Faculty of Biosciences, EMBL and Heidelberg University, Heidelberg, Germany
| | - Jamie A Hackett
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy.
- Genome Biology Unit, EMBL, Heidelberg, Germany.
| |
Collapse
|
5
|
Fenstermaker TK, Petruk S, Mazo A. An emerging paradigm in epigenetic marking: coordination of transcription and replication. Transcription 2024; 15:22-37. [PMID: 38378467 DOI: 10.1080/21541264.2024.2316965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
DNA replication and RNA transcription both utilize DNA as a template and therefore need to coordinate their activities. The predominant theory in the field is that in order for the replication fork to proceed, transcription machinery has to be evicted from DNA until replication is complete. If that does not occur, these machineries collide, and these collisions elicit various repair mechanisms which require displacement of one of the enzymes, often RNA polymerase, in order for replication to proceed. This model is also at the heart of the epigenetic bookmarking theory, which implies that displacement of RNA polymerase during replication requires gradual re-building of chromatin structure, which guides recruitment of transcriptional proteins and resumption of transcription. We discuss these theories but also bring to light newer data that suggest that these two processes may not be as detrimental to one another as previously thought. This includes findings suggesting that these processes can occur without fork collapse and that RNA polymerase may only be transiently displaced during DNA replication. We discuss potential mechanisms by which RNA polymerase may be retained at the replication fork and quickly rebind to DNA post-replication. These discoveries are important, not only as new evidence as to how these two processes are able to occur harmoniously but also because they have implications on how transcriptional programs are maintained through DNA replication. To this end, we also discuss the coordination of replication and transcription in light of revising the current epigenetic bookmarking theory of how the active gene status can be transmitted through S phase.
Collapse
Affiliation(s)
- Tyler K Fenstermaker
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander Mazo
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Liu H, Marayati BF, de la Cerda D, Lemezis BM, Gao J, Song Q, Chen M, Reid KZ. The Cross-Regulation Between Set1, Clr4, and Lsd1/2 in Schizosaccharomyces pombe. PLoS Genet 2024; 20:e1011107. [PMID: 38181050 PMCID: PMC10795994 DOI: 10.1371/journal.pgen.1011107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Eukaryotic chromatin is organized into either silenced heterochromatin or relaxed euchromatin regions, which controls the accessibility of transcriptional machinery and thus regulates gene expression. In fission yeast, Schizosaccharomyces pombe, Set1 is the sole H3K4 methyltransferase and is mainly enriched at the promoters of actively transcribed genes. In contrast, Clr4 methyltransferase initiates H3K9 methylation, which has long been regarded as a hallmark of heterochromatic silencing. Lsd1 and Lsd2 are two highly conserved H3K4 and H3K9 demethylases. As these histone-modifying enzymes perform critical roles in maintaining histone methylation patterns and, consequently, gene expression profiles, cross-regulations among these enzymes are part of the complex regulatory networks. Thus, elucidating the mechanisms that govern their signaling and mutual regulations remains crucial. Here, we demonstrated that C-terminal truncation mutants, lsd1-ΔHMG and lsd2-ΔC, do not compromise the integrity of the Lsd1/2 complex but impair their chromatin-binding capacity at the promoter region of target genomic loci. We identified protein-protein interactions between Lsd1/2 and Raf2 or Swd2, which are the subunits of the Clr4 complex (CLRC) and Set1-associated complex (COMPASS), respectively. We showed that Clr4 and Set1 modulate the protein levels of Lsd1 and Lsd2 in opposite ways through the ubiquitin-proteasome-dependent pathway. During heat stress, the protein levels of Lsd1 and Lsd2 are upregulated in a Set1-dependent manner. The increase in protein levels is crucial for differential gene expression under stress conditions. Together, our results support a cross-regulatory model by which Set1 and Clr4 methyltransferases control the protein levels of Lsd1/2 demethylases to shape the dynamic chromatin landscape.
Collapse
Affiliation(s)
- Haoran Liu
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Bahjat Fadi Marayati
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David de la Cerda
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Brendan Matthew Lemezis
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Jieyu Gao
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, Florida, United States of America
| | - Minghan Chen
- Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Ke Zhang Reid
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
7
|
González-Novo R, de Lope-Planelles A, Cruz Rodríguez MP, González-Murillo Á, Madrazo E, Acitores D, García de Lacoba M, Ramírez M, Redondo-Muñoz J. 3D environment controls H3K4 methylation and the mechanical response of the nucleus in acute lymphoblastic leukemia cells. Eur J Cell Biol 2023; 102:151343. [PMID: 37494871 DOI: 10.1016/j.ejcb.2023.151343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/30/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, and the infiltration of leukemic cells is critical for disease progression and relapse. Nuclear deformability plays a critical role in cancer cell invasion through confined spaces; however, the direct impact of epigenetic changes on the nuclear deformability of leukemic cells remains unclear. Here, we characterized how 3D collagen matrix conditions induced H3K4 methylation in ALL cell lines and clinical samples. We used specific shRNA and chemical inhibitors to target WDR5 (a core subunit involved in H3K4 methylation) and determined that targeting WDR5 reduced the H3K4 methylation induced by the 3D environment and the invasiveness of ALL cells in vitro and in vivo. Intriguingly, targeting WDR5 did not reduce the adhesion or the chemotactic response of leukemia cells, suggesting a different mechanism by which H3K4 methylation might govern ALL cell invasiveness. Finally, we conducted biochemical, and biophysical experiments to determine that 3D environments promoted the alteration of the chromatin, the morphology, and the mechanical behavior of the nucleus in ALL cells. Collectively, our data suggest that 3D environments control an upregulation of H3K4 methylation in ALL cells, and targeting WDR5 might serve as a promising therapeutic target against ALL invasiveness in vivo.
Collapse
Affiliation(s)
- Raquel González-Novo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Ana de Lope-Planelles
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - María Pilar Cruz Rodríguez
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - África González-Murillo
- Oncolohematology Unit, Hospital Universitario Niño Jesús, Madrid, Spain; Health Research Institute La Princesa, Madrid, Spain
| | - Elena Madrazo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - David Acitores
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Mario García de Lacoba
- Bioinformatics and Biostatistics Unit, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Manuel Ramírez
- Oncolohematology Unit, Hospital Universitario Niño Jesús, Madrid, Spain; Health Research Institute La Princesa, Madrid, Spain
| | - Javier Redondo-Muñoz
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain.
| |
Collapse
|
8
|
Xie J, Wu S, Szadowski H, Min S, Yang Y, Bowman AB, Rochet JC, Freeman JL, Yuan C. Developmental Pb exposure increases AD risk via altered intracellular Ca 2+ homeostasis in hiPSC-derived cortical neurons. J Biol Chem 2023; 299:105023. [PMID: 37423307 PMCID: PMC10413359 DOI: 10.1016/j.jbc.2023.105023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
Exposure to environmental chemicals such as lead (Pb) during vulnerable developmental periods can result in adverse health outcomes later in life. Human cohort studies have demonstrated associations between developmental Pb exposure and Alzheimer's disease (AD) onset in later life which were further corroborated by findings from animal studies. The molecular pathway linking developmental Pb exposure and increased AD risk, however, remains elusive. In this work, we used human iPSC-derived cortical neurons as a model system to study the effects of Pb exposure on AD-like pathogenesis in human cortical neurons. We exposed neural progenitor cells derived from human iPSC to 0, 15, and 50 ppb Pb for 48 h, removed Pb-containing medium, and further differentiated them into cortical neurons. Immunofluorescence, Western blotting, RNA-sequencing, ELISA, and FRET reporter cell lines were used to determine changes in AD-like pathogenesis in differentiated cortical neurons. Exposing neural progenitor cells to low-dose Pb, mimicking a developmental exposure, can result in altered neurite morphology. Differentiated neurons exhibit altered calcium homeostasis, synaptic plasticity, and epigenetic landscape along with elevated AD-like pathogenesis markers, including phosphorylated tau, tau aggregates, and Aβ42/40. Collectively, our findings provide an evidence base for Ca dysregulation caused by developmental Pb exposure as a plausible molecular mechanism accounting for increased AD risk in populations with developmental Pb exposure.
Collapse
Affiliation(s)
- Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Shichen Wu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Hailey Szadowski
- Agriculture and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Sehong Min
- Department of Medicinal Chemistry and Molecular Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacy, Purdue University, West Lafayette, Indiana, USA; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Aaron B Bowman
- Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, Indiana, USA; School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacy, Purdue University, West Lafayette, Indiana, USA; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Jennifer L Freeman
- Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, Indiana, USA; School of Health Sciences, Purdue University, West Lafayette, Indiana, USA; Purdue Center of Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, Indiana, USA; Purdue Center of Cancer Research, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
9
|
Deshpande N, Bryk M. Diverse and dynamic forms of gene regulation by the S. cerevisiae histone methyltransferase Set1. Curr Genet 2023; 69:91-114. [PMID: 37000206 DOI: 10.1007/s00294-023-01265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 04/01/2023]
Abstract
Gene transcription is an essential and highly regulated process. In eukaryotic cells, the structural organization of nucleosomes with DNA wrapped around histone proteins impedes transcription. Chromatin remodelers, transcription factors, co-activators, and histone-modifying enzymes work together to make DNA accessible to RNA polymerase. Histone lysine methylation can positively or negatively regulate gene transcription. Methylation of histone 3 lysine 4 by SET-domain-containing proteins is evolutionarily conserved from yeast to humans. In higher eukaryotes, mutations in SET-domain proteins are associated with defects in the development and segmentation of embryos, skeletal and muscle development, and diseases, including several leukemias. Since histone methyltransferases are evolutionarily conserved, the mechanisms of gene regulation mediated by these enzymes are also conserved. Budding yeast Saccharomyces cerevisiae is an excellent model system to study the impact of histone 3 lysine 4 (H3K4) methylation on eukaryotic gene regulation. Unlike larger eukaryotes, yeast cells have only one enzyme that catalyzes H3K4 methylation, Set1. In this review, we summarize current knowledge about the impact of Set1-catalyzed H3K4 methylation on gene transcription in S. cerevisiae. We describe the COMPASS complex, factors that influence H3K4 methylation, and the roles of Set1 in gene silencing at telomeres and heterochromatin, as well as repression and activation at euchromatic loci. We also discuss proteins that "read" H3K4 methyl marks to regulate transcription and summarize alternate functions for Set1 beyond H3K4 methylation.
Collapse
Affiliation(s)
- Neha Deshpande
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Mary Bryk
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
10
|
Di Nisio E, Danovska S, Condemi L, Cirigliano A, Rinaldi T, Licursi V, Negri R. H3 Lysine 4 Methylation Is Required for Full Activation of Genes Involved in α-Ketoglutarate Availability in the Nucleus of Yeast Cells after Diauxic Shift. Metabolites 2023; 13:metabo13040507. [PMID: 37110165 PMCID: PMC10146420 DOI: 10.3390/metabo13040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
We show that in S. cerevisiae the metabolic diauxic shift is associated with a H3 lysine 4 tri-methylation (H3K4me3) increase which involves a significant fraction of transcriptionally induced genes which are required for the metabolic changes, suggesting a role for histone methylation in their transcriptional regulation. We show that histone H3K4me3 around the start site correlates with transcriptional induction in some of these genes. Among the methylation-induced genes are IDP2 and ODC1, which regulate the nuclear availability of α-ketoglutarate, which, as a cofactor for Jhd2 demethylase, regulates H3K4 tri-methylation. We propose that this feedback circuit could be used to regulate the nuclear α-ketoglutarate pool concentration. We also show that yeast cells adapt to the absence of Jhd2 by decreasing Set1 methylation activity.
Collapse
|
11
|
Jezek M, Sun W, Negesse MY, Smith ZM, Orosz A, Green EM. Set1 regulates telomere function via H3K4 methylation-dependent and -independent pathways and calibrates the abundance of telomere maintenance factors. Mol Biol Cell 2023; 34:ar6. [PMID: 36416860 PMCID: PMC9816643 DOI: 10.1091/mbc.e22-06-0213] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Set1 is an H3K4 methyltransferase that comprises the catalytic subunit of the COMPASS complex and has been implicated in transcription, DNA repair, cell cycle control, and numerous other genomic functions. Set1 also promotes proper telomere maintenance, as cells lacking Set1 have short telomeres and disrupted subtelomeric gene repression; however, the precise role for Set1 in these processes has not been fully defined. In this study, we have tested mutants of Set1 and the COMPASS complex that differentially alter H3K4 methylation status, and we have attempted to separate catalytic and noncatalytic functions of Set1. Our data reveal that Set1-dependent subtelomeric gene repression relies on its catalytic activity toward H3K4, whereas telomere length is regulated by Set1 catalytic activity but likely independent of the H3K4 substrate. Furthermore, we uncover a role for Set1 in calibrating the abundance of critical telomere maintenance proteins, including components of the telomerase holoenzyme and members of the telomere capping CST (Cdc13-Stn1-Ten1) complex, through both transcriptional and posttranscriptional pathways. Altogether, our data provide new insights into the H3K4 methylation-dependent and -independent roles for Set1 in telomere maintenance in yeast and shed light on possible roles for Set1-related methyltransferases in other systems.
Collapse
Affiliation(s)
- Meagan Jezek
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Winny Sun
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Maraki Y. Negesse
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Zachary M. Smith
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Alexander Orosz
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Erin M. Green
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
12
|
Barsoum M, Stenzel AT, Bochyńska A, Kuo CC, Tsompanidis A, Sayadi-Boroujeni R, Bussmann P, Lüscher-Firzlaff J, Costa IG, Lüscher B. Loss of the Ash2l subunit of histone H3K4 methyltransferase complexes reduces chromatin accessibility at promoters. Sci Rep 2022; 12:21506. [PMID: 36513698 PMCID: PMC9747801 DOI: 10.1038/s41598-022-25881-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Changes in gene expression programs are intimately linked to cell fate decisions. Post-translational modifications of core histones contribute to control gene expression. Methylation of lysine 4 of histone H3 (H3K4) correlates with active promoters and gene transcription. This modification is catalyzed by KMT2 methyltransferases, which require interaction with 4 core subunits, WDR5, RBBP5, ASH2L and DPY30, for catalytic activity. Ash2l is necessary for organismal development and for tissue homeostasis. In mouse embryo fibroblasts (MEFs), Ash2l loss results in gene repression, provoking a senescence phenotype. We now find that upon knockout of Ash2l both H3K4 mono- and tri-methylation (H3K4me1 and me3, respectively) were deregulated. In particular, loss of H3K4me3 at promoters correlated with gene repression, especially at CpG island promoters. Ash2l loss resulted in increased loading of histone H3 and reduced chromatin accessibility at promoters, accompanied by an increase of repressing and a decrease of activating histone marks. Moreover, we observed altered binding of CTCF upon Ash2l loss. Lost and gained binding was noticed at promoter-associated and intergenic sites, respectively. Thus, Ash2l loss and reduction of H3K4me3 correlate with altered chromatin accessibility and transcription factor binding. These findings contribute to a more detailed understanding of mechanistic consequences of H3K4me3 loss and associated repression of gene transcription and thus of the observed cellular consequences.
Collapse
Affiliation(s)
- Mirna Barsoum
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Alexander T. Stenzel
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Agnieszka Bochyńska
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Chao-Chung Kuo
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XInterdisciplinary Center for Clinical Research (IZKF), Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Alexander Tsompanidis
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Roksaneh Sayadi-Boroujeni
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Philip Bussmann
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Juliane Lüscher-Firzlaff
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Ivan G. Costa
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
13
|
Korenfeld HT, Avram-Shperling A, Zukerman Y, Iluz A, Boocholez H, Ben-Shimon L, Ben-Aroya S. Reversal of histone H2B mono-ubiquitination is required for replication stress recovery. DNA Repair (Amst) 2022; 119:103387. [DOI: 10.1016/j.dnarep.2022.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/11/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022]
|
14
|
Santos F, Capela AM, Mateus F, Nóbrega-Pereira S, Bernardes de Jesus B. Non-coding antisense transcripts: fine regulation of gene expression in cancer. Comput Struct Biotechnol J 2022; 20:5652-5660. [PMID: 36284703 PMCID: PMC9579725 DOI: 10.1016/j.csbj.2022.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/14/2022] Open
Abstract
Natural antisense transcripts (NATs) are coding or non-coding RNA sequences transcribed on the opposite direction from the same genomic locus. NATs are widely distributed throughout the human genome and seem to play crucial roles in physiological and pathological processes, through newly described and targeted mechanisms. NATs represent the intricate complexity of the genome organization and constitute another layer of potential targets in disease. Here, we focus on the interesting and unique role of non-coding NATs in cancer, paying particular attention to those acting as miRNA sponges.
Collapse
Affiliation(s)
| | | | | | | | - Bruno Bernardes de Jesus
- Corresponding author at: Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
15
|
Berger H, Bacher M, Labuda R, Eppel IM, Bayer F, Sulyok M, Gasparotto E, Zehetbauer F, Doppler M, Gratzl H, Strauss J. Polaramycin B, and not physical interaction, is the signal that rewires fungal metabolism in the Streptomyces-Aspergillus interaction. Environ Microbiol 2022; 24:4899-4914. [PMID: 35848075 PMCID: PMC9796313 DOI: 10.1111/1462-2920.16118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/26/2022] [Indexed: 01/01/2023]
Abstract
Co-culturing the bacterium Streptomyces rapamycinicus and the ascomycete Aspergillus nidulans has previously been shown to trigger the production of orsellinic acid (ORS) and its derivates in the fungal cells. Based on these studies it was assumed that direct physical contact is a prerequisite for the metabolic reaction that involves a fungal amino acid starvation response and activating chromatin modifications at the biosynthetic gene cluster (BGC). Here we show that not physical contact, but a guanidine containing macrolide, named polaramycin B, triggers the response. The substance is produced constitutively by the bacterium and above a certain concentration, provokes the production of ORS. In addition, several other secondary metabolites were induced by polaramycin B. Our genome-wide transcriptome analysis showed that polaramycin B treatment causes downregulation of fungal genes necessary for membrane stability, general metabolism and growth. A compensatory genetic response can be observed in the fungus that included upregulation of BGCs and genes necessary for ribosome biogenesis, translation and membrane stability. Our work discovered a novel chemical communication, in which the antifungal bacterial metabolite polaramycin B leads to the production of antibacterial defence chemicals and to the upregulation of genes necessary to compensate for the cellular damage caused by polaramycin B.
Collapse
Affiliation(s)
- Harald Berger
- Department of Applied Genetics and Cell Biology, Institute of Microbial GeneticsUniversity of Natural Resources and Life Sciences, ViennaTulln/DonauAustria
| | - Markus Bacher
- Research Platform Bioactive Microbial Metabolites (BiMM)Tulln/DonauAustria
- Department of Chemistry, Institute of Chemistry of Renewable ResourcesUniversity of Natural Resources and Life Sciences, ViennaTulln/DonauAustria
| | - Roman Labuda
- Research Platform Bioactive Microbial Metabolites (BiMM)Tulln/DonauAustria
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food ScienceUniversity of Veterinary Medicine, ViennaViennaAustria
| | - Isabel Maria Eppel
- Department of Applied Genetics and Cell Biology, Institute of Microbial GeneticsUniversity of Natural Resources and Life Sciences, ViennaTulln/DonauAustria
| | - Florentina Bayer
- Department of Applied Genetics and Cell Biology, Institute of Microbial GeneticsUniversity of Natural Resources and Life Sciences, ViennaTulln/DonauAustria
| | - Michael Sulyok
- Department of Agro‐BiotechnologyInstitute of Bioanalytics and Agro‐Metabolomics, University of Natural Resources and Life Sciences, ViennaTulln/DonauAustria
| | - Erika Gasparotto
- Department of Applied Genetics and Cell Biology, Institute of Microbial GeneticsUniversity of Natural Resources and Life Sciences, ViennaTulln/DonauAustria
- Research Platform Bioactive Microbial Metabolites (BiMM)Tulln/DonauAustria
| | - Franz Zehetbauer
- Department of Applied Genetics and Cell Biology, Institute of Microbial GeneticsUniversity of Natural Resources and Life Sciences, ViennaTulln/DonauAustria
| | - Maria Doppler
- Department of Agro‐BiotechnologyInstitute of Bioanalytics and Agro‐Metabolomics, University of Natural Resources and Life Sciences, ViennaTulln/DonauAustria
| | - Hannes Gratzl
- Research Platform Bioactive Microbial Metabolites (BiMM)Tulln/DonauAustria
- Department of Agro‐BiotechnologyInstitute of Bioanalytics and Agro‐Metabolomics, University of Natural Resources and Life Sciences, ViennaTulln/DonauAustria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial GeneticsUniversity of Natural Resources and Life Sciences, ViennaTulln/DonauAustria
- Research Platform Bioactive Microbial Metabolites (BiMM)Tulln/DonauAustria
| |
Collapse
|
16
|
James SW, Palmer J, Keller NP, Brown ML, Dunworth MR, Francisco SG, Watson KG, Titchen B, Achimovich A, Mahoney A, Artemiou JP, Buettner KG, Class M, Sydenstricker AL, Anglin SL. A reciprocal translocation involving Aspergillus nidulans snxAHrb1/Gbp2 and gyfA uncovers a new regulator of the G2-M transition and reveals a role in transcriptional repression for the setBSet2 histone H3-lysine-36 methyltransferase. Genetics 2022; 222:iyac130. [PMID: 36005881 PMCID: PMC9526064 DOI: 10.1093/genetics/iyac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Aspergillus nidulans snxA, an ortholog of Saccharomyces cerevisiae Hrb1/Gbp2 messenger RNA shuttle proteins, is-in contrast to budding yeast-involved in cell cycle regulation, in which snxA1 and snxA2 mutations as well as a snxA deletion specifically suppress the heat sensitivity of mutations in regulators of the CDK1 mitotic induction pathway. snxA mutations are strongly cold sensitive, and at permissive temperature snxA mRNA and protein expression are strongly repressed. Initial attempts to identify the causative snxA mutations revealed no defects in the SNXA protein. Here, we show that snxA1/A2 mutations resulted from an identical chromosome I-II reciprocal translocation with breakpoints in the snxA first intron and the fourth exon of a GYF-domain gene, gyfA. Surprisingly, a gyfA deletion and a reconstructed gyfA translocation allele suppressed the heat sensitivity of CDK1 pathway mutants in a snxA+ background, demonstrating that 2 unrelated genes, snxA and gyfA, act through the CDK1-CyclinB axis to restrain the G2-M transition, and for the first time identifying a role in G2-M regulation for a GYF-domain protein. To better understand snxA1/A2-reduced expression, we generated suppressors of snxA cold sensitivity in 2 genes: (1) loss of the abundant nucleolar protein Nsr1/nucleolin bypassed the requirement for snxA and (2) loss of the Set2 histone H3 lysine36 (H3K36) methyltransferase or a nonmethylatable histone H3K36L mutant rescued hypomorphic snxA mutants by restoring full transcriptional proficiency, indicating that methylation of H3K36 acts normally to repress snxA transcription. These observations are in line with known Set2 functions in preventing excessive and cryptic transcription of active genes.
Collapse
Affiliation(s)
- Steven W James
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, USA
| | - Jonathan Palmer
- Data Analytics, Genencor Technology Center, IFF, Palo Alto, CA, 94306, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Morgan L Brown
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Dunworth
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
| | - Sarah G Francisco
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Katherine G Watson
- School of Medicine, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| | - Breanna Titchen
- Department of Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Alecia Achimovich
- Department of Chemistry, Gettysburg College, Gettysburg, PA 17325, USA
| | - Andrew Mahoney
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | - Kyra G Buettner
- School of Medicine, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Madelyn Class
- School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
17
|
Chan J, Kumar A, Kono H. RNAPII driven post-translational modifications of nucleosomal histones. Trends Genet 2022; 38:1076-1095. [PMID: 35618507 DOI: 10.1016/j.tig.2022.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
Abstract
The current understanding of how specific distributions of histone post-translational modifications (PTMs) are achieved throughout the chromatin remains incomplete. This review focuses on the role of RNA polymerase II (RNAPII) in establishing H2BK120/K123 ubiquitination and H3K4/K36 methylation distribution. The rate of RNAPII transcription is mainly a function of the RNAPII elongation and recruitment rates. Two major mechanisms link RNAPII's transcription rate to the distribution of PTMs. First, the phosphorylation patterns of Ser2P/Ser5P in the C-terminal domain of RNAPII change as a function of time, since the start of elongation, linking them to the elongation rate. Ser2P/Ser5P recruits specific histone PTM enzymes/activators to the nucleosome. Second, multiple rounds of binding and catalysis by the enzymes are required to establish higher methylations (H3K4/36me3). Thus, methylation states are determined by the transcription rate. In summary, the first mechanism determines the location of methylations in the gene, while the second mechanism determines the methylation state.
Collapse
Affiliation(s)
- Justin Chan
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Amarjeet Kumar
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Hidetoshi Kono
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan.
| |
Collapse
|
18
|
Hanna CW, Huang J, Belton C, Reinhardt S, Dahl A, Andrews S, Stewart A, Kranz A, Kelsey G. OUP accepted manuscript. Nucleic Acids Res 2022; 50:1993-2004. [PMID: 35137160 PMCID: PMC8887468 DOI: 10.1093/nar/gkac051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | | | - Susanne Reinhardt
- Dresden Concept Genome Center, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, 01307, Germany
| | - Andreas Dahl
- Dresden Concept Genome Center, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, 01307, Germany
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, UK
| | - A Francis Stewart
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, 01307, Germany
- Max-Planck-Institute for Cell Biology and Genetics, Dresden 01307, Germany
| | - Andrea Kranz
- Correspondence may also be addressed to Andrea Kranz.
| | - Gavin Kelsey
- To whom correspondence should be addressed. Tel: +44 1223 496332;
| |
Collapse
|
19
|
Trans-tail regulation-mediated suppression of cryptic transcription. Exp Mol Med 2021; 53:1683-1688. [PMID: 34845331 PMCID: PMC8639711 DOI: 10.1038/s12276-021-00711-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Crosstalk between post-translational modifications of histone proteins influences the regulation of chromatin structure and gene expression. Among such crosstalk pathways, the best-characterized example is H2B monoubiquitination-mediated H3K4 and H3K79 methylation, which is referred to as trans-tail regulation. Although many studies have investigated the fragmentary effects of this pathway on silencing and transcription, its ultimate contribution to transcriptional control has remained unclear. Recent advances in molecular techniques and genomics have, however, revealed that the trans-tail crosstalk is linked to a more diverse cascade of histone modifications and has various functions in cotranscriptional processes. Furthermore, H2B monoubiquitination sequentially facilitates H3K4 dimethylation and histone sumoylation, thereby providing a binding platform for recruiting Set3 complex proteins, including two histone deacetylases, to restrict cryptic transcription from gene bodies. The removal of both ubiquitin and SUMO, small ubiquitin-like modifier, modifications from histones also facilitates a change in the phosphorylation pattern of the RNA polymerase II C-terminal domain that is required for subsequent transcriptional elongation. Therefore, this review describes recent findings regarding trans-tail regulation-driven processes to elaborate on their contribution to maintaining transcriptional fidelity. Crosstalk between different DNA-winding proteins, or histones, is a mechanism of molecular fidelity that helps prevent the initiation of aberrant gene expression, which may contribute to cancer and neurodegenerative disease. A team from South Korea, led by Jungmin Choi from the Korea University College of Medicine in Seoul and Hong-Yeoul Ryu from Kyungpook National University in Daegu, review the ways in which different histone proteins chemically modify parts of each other’s structure to regulate their functions. These modifications affect how histones interact with DNA, which in turn alters the dynamics of other factors implicated in gene expression. The correct interaction of histones is necessary to prevent the gene expression machinery from starting RNA synthesis from the wrong sites. Accurate control of these mechanisms is essential for cellular wellbeing
Collapse
|
20
|
Jethmalani Y, Tran K, Negesse MY, Sun W, Ramos M, Jaiswal D, Jezek M, Amos S, Garcia EJ, Park D, Green EM. Set4 regulates stress response genes and coordinates histone deacetylases within yeast subtelomeres. Life Sci Alliance 2021; 4:e202101126. [PMID: 34625508 PMCID: PMC8507492 DOI: 10.26508/lsa.202101126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
The yeast chromatin protein Set4 is a member of the Set3-subfamily of SET domain proteins which play critical roles in the regulation of gene expression in diverse developmental and environmental contexts. We previously reported that Set4 promotes survival during oxidative stress and regulates expression of stress response genes via stress-dependent chromatin localization. In this study, global gene expression analysis and investigation of histone modification status identified a role for Set4 in maintaining gene repressive mechanisms within yeast subtelomeres under both normal and stress conditions. We show that Set4 works in a partially overlapping pathway to the SIR complex and the histone deacetylase Rpd3 to maintain proper levels of histone acetylation and expression of stress response genes encoded in subtelomeres. This role for Set4 is particularly critical for cells under hypoxic conditions, where the loss of Set4 decreases cell fitness and cell wall integrity. These findings uncover a new regulator of subtelomeric chromatin that is key to stress defense pathways and demonstrate a function for Set4 in regulating repressive, heterochromatin-like environments.
Collapse
Affiliation(s)
- Yogita Jethmalani
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Khoa Tran
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Maraki Y Negesse
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Winny Sun
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Mark Ramos
- Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Deepika Jaiswal
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Meagan Jezek
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Shandon Amos
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Eric Joshua Garcia
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - DoHwan Park
- Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Erin M Green
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| |
Collapse
|
21
|
Oleson BJ, Bazopoulou D, Jakob U. Shaping longevity early in life: developmental ROS and H3K4me3 set the clock. Cell Cycle 2021; 20:2337-2347. [PMID: 34657571 PMCID: PMC8794500 DOI: 10.1080/15384101.2021.1986317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Studies in Caenorhabditis elegans have revealed that even a genetically identical population of animals exposed to the same environment displays a remarkable level of variability in individual lifespan. Stochasticity factors, occurring seemingly by chance or at random, are thought to account for a large part of this variability. Recent studies in our lab using C. elegans now revealed that naturally occurring variations in the levels of reactive oxygen species experienced early in life contribute to the observed lifespan variability, and likely serve as stochasticity factors in aging. Here, we will highlight how developmental events can positively shape lifespan and stress responses via a redox-sensitive epigenetic regulator, and discuss the outstanding questions and future directions on the complex relationship between reactive oxygen species and aging.
Collapse
Affiliation(s)
- Bryndon J. Oleson
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Daphne Bazopoulou
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, USA,CONTACT Ursula Jakob Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, USA
| |
Collapse
|
22
|
Trainor BM, Ciccaglione K, Czymek M, Law MJ. Distinct requirements for the COMPASS core subunits Set1, Swd1, and Swd3 during meiosis in the budding yeast Saccharomyces cerevisiae. G3 GENES|GENOMES|GENETICS 2021; 11:6342418. [PMID: 34849786 PMCID: PMC8527496 DOI: 10.1093/g3journal/jkab283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022]
Abstract
Meiosis-specific chromatin structures, guided by histone modifications, are critical mediators of a meiotic transient transcription program and progression through prophase I. Histone H3K4 can be methylated up to three times by the Set1-containing COMPASS complex and each methylation mark corresponds to a different chromatin conformation. The level of H3K4 modification is directed by the activity of additional COMPASS components. In this study, we characterized the role of the COMPASS subunits during meiosis in Saccharomyces cerevisiae. In vegetative cells, previous studies revealed a role for subunits Swd2, Sdc1, and Bre2 for H3K4me2 while Spp1 supported trimethylation. However, we found that Bre2 and Sdc1 are required for H3K4me3 as yeast prepare to enter meiosis while Spp1 is not. Interestingly, we identified distinct meiotic functions for the core COMPASS complex members that required for all H3K4me, Set1, Swd1, and Swd3. While Set1 and Swd1 are required for progression through early meiosis, Swd3 is critical for late meiosis and spore morphogenesis. Furthermore, the meiotic requirement for Set1 is independent of H3K4 methylation, suggesting the presence of nonhistone substrates. Finally, checkpoint suppression analyses indicate that Set1 and Swd1 are required for both homologous recombination and chromosome segregation. These data suggest that COMPASS has important new roles for meiosis that are independent of its well-characterized functions during mitotic divisions.
Collapse
Affiliation(s)
- Brandon M Trainor
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University-School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Kerri Ciccaglione
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University-School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Miranda Czymek
- Biochemistry and Molecular Biology Program, School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ 08205, USA
| | - Michael J Law
- Biochemistry and Molecular Biology Program, School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ 08205, USA
- Biology Program, School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ 08205, USA
| |
Collapse
|
23
|
Klonou A, Chlamydas S, Piperi C. Structure, Activity and Function of the MLL2 (KMT2B) Protein Lysine Methyltransferase. Life (Basel) 2021; 11:823. [PMID: 34440566 PMCID: PMC8401916 DOI: 10.3390/life11080823] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022] Open
Abstract
The Mixed Lineage Leukemia 2 (MLL2) protein, also known as KMT2B, belongs to the family of mammalian histone H3 lysine 4 (H3K4) methyltransferases. It is a large protein of 2715 amino acids, widely expressed in adult human tissues and a paralog of the MLL1 protein. MLL2 contains a characteristic C-terminal SET domain responsible for methyltransferase activity and forms a protein complex with WRAD (WDR5, RbBP5, ASH2L and DPY30), host cell factors 1/2 (HCF 1/2) and Menin. The MLL2 complex is responsible for H3K4 trimethylation (H3K4me3) on specific gene promoters and nearby cis-regulatory sites, regulating bivalent developmental genes as well as stem cell and germinal cell differentiation gene sets. Moreover, MLL2 plays a critical role in development and germ line deletions of Mll2 have been associated with early growth retardation, neural tube defects and apoptosis that leads to embryonic death. It has also been involved in the control of voluntary movement and the pathogenesis of early stage childhood dystonia. Additionally, tumor-promoting functions of MLL2 have been detected in several cancer types, including colorectal, hepatocellular, follicular cancer and gliomas. In this review, we discuss the main structural and functional aspects of the MLL2 methyltransferase with particular emphasis on transcriptional mechanisms, gene regulation and association with diseases.
Collapse
Affiliation(s)
- Alexia Klonou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (S.C.)
| | - Sarantis Chlamydas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (S.C.)
- Research and Development Department, Active Motif, Inc., Carlsbad, CA 92008, USA
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (S.C.)
| |
Collapse
|
24
|
Investigating crosstalk between H3K27 acetylation and H3K4 trimethylation in CRISPR/dCas-based epigenome editing and gene activation. Sci Rep 2021; 11:15912. [PMID: 34354157 PMCID: PMC8342468 DOI: 10.1038/s41598-021-95398-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenome editing methods enable the precise manipulation of epigenetic modifications, such as histone posttranscriptional modifications (PTMs), for uncovering their biological functions. While histone PTMs have been correlated with certain gene expression status, the causalities remain elusive. Histone H3 Lysine 27 acetylation (H3K27ac) and histone H3 Lysine 4 trimethylation (H3K4me3) are both associated with active genes, and located at active promoters and enhancers or around transcriptional start sites (TSSs). Although crosstalk between histone lysine acetylation and H3K4me3 has been reported, relationships between specific epigenetic marks during transcriptional activation remain largely unclear. Here, using clustered regularly interspaced short palindromic repeats (CRISPR)/dCas-based epigenome editing methods, we discovered that the ectopic introduction of H3K27ac in the promoter region lead to H3K4me3 enrichment around TSS and transcriptional activation, while H3K4me3 installation at the promoter cannot induce H3K27ac increase and failed to activate gene expression. Blocking the reading of H3K27ac by BRD proteins using inhibitor JQ1 abolished H3K27ac-induced H3K4me3 installation and downstream gene activation. Furthermore, we uncovered that BRD2, not BRD4, mediated H3K4me3 installation and gene activation upon H3K27ac writing. Our studies revealed the relationships between H3K27ac and H3K4me3 in gene activation process and demonstrated the application of CRISPR/dCas-based epigenome editing methods in elucidating the crosstalk between epigenetic mechanisms.
Collapse
|
25
|
Separovich RJ, Wilkins MR. Ready, SET, Go: Post-translational regulation of the histone lysine methylation network in budding yeast. J Biol Chem 2021; 297:100939. [PMID: 34224729 PMCID: PMC8329514 DOI: 10.1016/j.jbc.2021.100939] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/21/2022] Open
Abstract
Histone lysine methylation is a key epigenetic modification that regulates eukaryotic transcription. Here, we comprehensively review the function and regulation of the histone methylation network in the budding yeast and model eukaryote, Saccharomyces cerevisiae. First, we outline the lysine methylation sites that are found on histone proteins in yeast (H3K4me1/2/3, H3K36me1/2/3, H3K79me1/2/3, and H4K5/8/12me1) and discuss their biological and cellular roles. Next, we detail the reduced but evolutionarily conserved suite of methyltransferase (Set1p, Set2p, Dot1p, and Set5p) and demethylase (Jhd1p, Jhd2p, Rph1p, and Gis1p) enzymes that are known to control histone lysine methylation in budding yeast cells. Specifically, we illustrate the domain architecture of the methylation enzymes and highlight the structural features that are required for their respective functions and molecular interactions. Finally, we discuss the prevalence of post-translational modifications on yeast histone methylation enzymes and how phosphorylation, acetylation, and ubiquitination in particular are emerging as key regulators of enzyme function. We note that it will be possible to completely connect the histone methylation network to the cell's signaling system, given that all methylation sites and cognate enzymes are known, most phosphosites on the enzymes are known, and the mapping of kinases to phosphosites is tractable owing to the modest set of protein kinases in yeast. Moving forward, we expect that the rich variety of post-translational modifications that decorates the histone methylation machinery will explain many of the unresolved questions surrounding the function and dynamics of this intricate epigenetic network.
Collapse
Affiliation(s)
- Ryan J Separovich
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
26
|
Hsu CL, Lo YC, Kao CF. H3K4 Methylation in Aging and Metabolism. EPIGENOMES 2021; 5:14. [PMID: 34968301 PMCID: PMC8594702 DOI: 10.3390/epigenomes5020014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 02/03/2023] Open
Abstract
During the process of aging, extensive epigenetic alterations are made in response to both exogenous and endogenous stimuli. Here, we summarize the current state of knowledge regarding one such alteration, H3K4 methylation (H3K4me), as it relates to aging in different species. We especially highlight emerging evidence that links this modification with metabolic pathways, which may provide a mechanistic link to explain its role in aging. H3K4me is a widely recognized marker of active transcription, and it appears to play an evolutionarily conserved role in determining organism longevity, though its influence is context specific and requires further clarification. Interestingly, the modulation of H3K4me dynamics may occur as a result of nutritional status, such as methionine restriction. Methionine status appears to influence H3K4me via changes in the level of S-adenosyl methionine (SAM, the universal methyl donor) or the regulation of H3K4-modifying enzyme activities. Since methionine restriction is widely known to extend lifespan, the mechanistic link between methionine metabolic flux, the sensing of methionine concentrations and H3K4me status may provide a cogent explanation for several seemingly disparate observations in aging organisms, including age-dependent H3K4me dynamics, gene expression changes, and physiological aberrations. These connections are not yet entirely understood, especially at a molecular level, and will require further elucidation. To conclude, we discuss some potential H3K4me-mediated molecular mechanisms that may link metabolic status to the aging process.
Collapse
Affiliation(s)
- Chia-Ling Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Yi-Chen Lo
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan;
| |
Collapse
|
27
|
Cai S, Quan S, Yang G, Chen M, Ye Q, Wang G, Yu H, Wang Y, Qiao S, Zeng X. Nutritional Status Impacts Epigenetic Regulation in Early Embryo Development: A Scoping Review. Adv Nutr 2021; 12:1877-1892. [PMID: 33873200 PMCID: PMC8483970 DOI: 10.1093/advances/nmab038] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/03/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
With the increasing maternal age and the use of assisted reproductive technology in various countries worldwide, the influence of epigenetic modification on embryonic development is increasingly notable and prominent. Epigenetic modification disorders caused by various nutritional imbalance would cause embryonic development abnormalities and even have an indelible impact on health in adulthood. In this scoping review, we summarize the main epigenetic modifications in mammals and the synergies among different epigenetic modifications, especially DNA methylation, histone acetylation, and histone methylation. We performed an in-depth analysis of the regulation of various epigenetic modifications on mammals from zygote formation to cleavage stage and blastocyst stage, and reviewed the modifications of key sites and their potential molecular mechanisms. In addition, we discuss the effects of nutrition (protein, lipids, and one-carbon metabolism) on epigenetic modification in embryos and emphasize the importance of various nutrients in embryonic development and epigenetics during pregnancy. Failures in epigenetic regulation have been implicated in mammalian and human early embryo loss and disease. With the use of reproductive technologies, it is becoming even more important to establish developmentally competent embryos. Therefore, it is essential to evaluate the extent to which embryos are sensitive to these epigenetic modifications and nutrition status. Understanding the epigenetic regulation of early embryo development will help us make better use of reproductive technologies and nutrition regulation to improve reproductive health in mammals.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shuang Quan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Guangxin Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Qianhong Ye
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Gang Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | | |
Collapse
|
28
|
Floc'hlay S, Wong ES, Zhao B, Viales RR, Thomas-Chollier M, Thieffry D, Garfield DA, Furlong EEM. Cis-acting variation is common across regulatory layers but is often buffered during embryonic development. Genome Res 2021; 31:211-224. [PMID: 33310749 PMCID: PMC7849415 DOI: 10.1101/gr.266338.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Precise patterns of gene expression are driven by interactions between transcription factors, regulatory DNA sequences, and chromatin. How DNA mutations affecting any one of these regulatory "layers" are buffered or propagated to gene expression remains unclear. To address this, we quantified allele-specific changes in chromatin accessibility, histone modifications, and gene expression in F1 embryos generated from eight Drosophila crosses at three embryonic stages, yielding a comprehensive data set of 240 samples spanning multiple regulatory layers. Genetic variation (allelic imbalance) impacts gene expression more frequently than chromatin features, with metabolic and environmental response genes being most often affected. Allelic imbalance in cis-regulatory elements (enhancers) is common and highly heritable, yet its functional impact does not generally propagate to gene expression. When it does, genetic variation impacts RNA levels through two alternative mechanisms involving either H3K4me3 or chromatin accessibility and H3K27ac. Changes in RNA are more predictive of variation in H3K4me3 than vice versa, suggesting a role for H3K4me3 downstream from transcription. The impact of a substantial proportion of genetic variation is consistent across embryonic stages, with 50% of allelic imbalanced features at one stage being also imbalanced at subsequent developmental stages. Crucially, buffering, as well as the magnitude and evolutionary impact of genetic variants, is influenced by regulatory complexity (i.e., number of enhancers regulating a gene), with transcription factors being most robust to cis-acting, but most influenced by trans-acting, variation.
Collapse
Affiliation(s)
- Swann Floc'hlay
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Emily S Wong
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Bingqing Zhao
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Rebecca R Viales
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Morgane Thomas-Chollier
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Denis Thieffry
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - David A Garfield
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| |
Collapse
|
29
|
Stewart GL, Sage AP, Enfield KSS, Marshall EA, Cohn DE, Lam WL. Deregulation of a Cis-Acting lncRNA in Non-small Cell Lung Cancer May Control HMGA1 Expression. Front Genet 2021; 11:615378. [PMID: 33505435 PMCID: PMC7831742 DOI: 10.3389/fgene.2020.615378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have long been implicated in cancer-associated phenotypes. Recently, a class of lncRNAs, known as cis-acting, have been shown to regulate the expression of neighboring protein-coding genes and may represent undiscovered therapeutic action points. The chromatin architecture modification gene HMGA1 has recently been described to be aberrantly expressed in lung adenocarcinoma (LUAD). However, the mechanisms mediating the expression of HMGA1 in LUAD remain unknown. Here we investigate the deregulation of a putative cis-acting lncRNA in LUAD, and its effect on the oncogene HMGA1. Methods LncRNA expression was determined from RNA-sequencing data of tumor and matched non-malignant tissues from 36 LUAD patients. Transcripts with significantly deregulated expression were identified and validated in a secondary LUAD RNA-seq dataset (TCGA). SiRNA-mediated knockdown of a candidate cis-acting lncRNA was performed in BEAS-2B cells. Quantitative real-time PCR was used to observe the effects of lncRNA knockdown on the expression of HMGA1. Results We identified the lncRNA RP11.513I15.6, which we refer to as HMGA1-lnc, neighboring HMGA1 to be significantly downregulated in both LUAD cohorts. Conversely, we found HMGA1 significantly overexpressed in LUAD and anticorrelated with HMGA1-lnc. In vitro experiments demonstrated siRNA-mediated inhibition of HMGA1-lnc in immortalized non-malignant lung epithelial cells resulted in a significant increase in HMGA1 gene expression. Conclusion Our results suggest that HMGA1-lnc is a novel cis-acting lncRNA that negatively regulates HMGA1 gene expression in lung cells. Further characterization of this regulatory mechanism may advance our understanding of the maintenance of lung cancer phenotypes and uncover a novel therapeutic intervention point for tumors driven by HMGA1.
Collapse
Affiliation(s)
- Greg L Stewart
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Adam P Sage
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Katey S S Enfield
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Erin A Marshall
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - David E Cohn
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Wan L Lam
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
30
|
Formosa T, Winston F. The role of FACT in managing chromatin: disruption, assembly, or repair? Nucleic Acids Res 2020; 48:11929-11941. [PMID: 33104782 PMCID: PMC7708052 DOI: 10.1093/nar/gkaa912] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
FACT (FAcilitates Chromatin Transcription) has long been considered to be a transcription elongation factor whose ability to destabilize nucleosomes promotes RNAPII progression on chromatin templates. However, this is just one function of this histone chaperone, as FACT also functions in DNA replication. While broadly conserved among eukaryotes and essential for viability in many organisms, dependence on FACT varies widely, with some differentiated cells proliferating normally in its absence. It is therefore unclear what the core functions of FACT are, whether they differ in different circumstances, and what makes FACT essential in some situations but not others. Here, we review recent advances and propose a unifying model for FACT activity. By analogy to DNA repair, we propose that the ability of FACT to both destabilize and assemble nucleosomes allows it to monitor and restore nucleosome integrity as part of a system of chromatin repair, in which disruptions in the packaging of DNA are sensed and returned to their normal state. The requirement for FACT then depends on the level of chromatin disruption occurring in the cell, and the cell's ability to tolerate packaging defects. The role of FACT in transcription would then be just one facet of a broader system for maintaining chromatin integrity.
Collapse
Affiliation(s)
- Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
31
|
Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nat Genet 2020; 52:1271-1281. [PMID: 33257899 DOI: 10.1038/s41588-020-00736-4] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
Histone-modifying enzymes are implicated in the control of diverse DNA-templated processes including gene expression. Here, we outline historical and current thinking regarding the functions of histone modifications and their associated enzymes. One current viewpoint, based largely on correlative evidence, posits that histone modifications are instructive for transcriptional regulation and represent an epigenetic 'code'. Recent studies have challenged this model and suggest that histone marks previously associated with active genes do not directly cause transcriptional activation. Additionally, many histone-modifying proteins possess non-catalytic functions that overshadow their enzymatic activities. Given that much remains unknown regarding the functions of these proteins, the field should be cautious in interpreting loss-of-function phenotypes and must consider both cellular and developmental context. In this Perspective, we focus on recent progress relating to the catalytic and non-catalytic functions of the Trithorax-COMPASS complexes, Polycomb repressive complexes and Clr4/Suv39 histone-modifying machineries.
Collapse
|
32
|
Robert VJ, Knutson AK, Rechtsteiner A, Garvis S, Yvert G, Strome S, Palladino F. Caenorhabditis elegans SET1/COMPASS Maintains Germline Identity by Preventing Transcriptional Deregulation Across Generations. Front Cell Dev Biol 2020; 8:561791. [PMID: 33072747 PMCID: PMC7536326 DOI: 10.3389/fcell.2020.561791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Chromatin regulators contribute to the maintenance of the germline transcriptional program. In the absence of SET-2, the Caenorhabditis elegans homolog of the SET1/COMPASS H3 Lys4 (H3K4) methyltransferase, animals show transgenerational loss of germline identity, leading to sterility. To identify transcriptional signatures associated with progressive loss of fertility, we performed expression profiling of set-2 mutant germlines across generations. We identify a subset of genes whose misexpression is first observed in early generations, a step we refer to as priming; their misexpression then further progresses in late generations, as animals reach sterility. Analysis of misregulated genes shows that down-regulation of germline genes, expression of somatic transcriptional programs, and desilencing of the X-chromosome are concurrent events leading to loss of germline identity in both early and late generations. Upregulation of transcription factor LIN-15B, the C/EBP homolog CEBP-1, and TGF-β pathway components strongly contribute to loss of fertility, and RNAi inactivation of cebp-1 and TGF-β/Smad signaling delays the onset of sterility, showing they individually contribute to maintenance of germ cell identity. Our approach therefore identifies genes and pathways whose misexpression actively contributes to the loss of germ cell fate. More generally, our data shows how loss of a chromatin regulator in one generation leads to transcriptional changes that are amplified over subsequent generations, ultimately leading to loss of appropriate cell fate.
Collapse
Affiliation(s)
- Valérie J Robert
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard de Lyon, Université de Lyon, Lyon, France
| | - Andrew K Knutson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Andreas Rechtsteiner
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Steven Garvis
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard de Lyon, Université de Lyon, Lyon, France
| | - Gaël Yvert
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard de Lyon, Université de Lyon, Lyon, France
| | - Susan Strome
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard de Lyon, Université de Lyon, Lyon, France
| |
Collapse
|
33
|
Sauty SM, Shaban K, Yankulov K. Gene repression in S. cerevisiae-looking beyond Sir-dependent gene silencing. Curr Genet 2020; 67:3-17. [PMID: 33037902 DOI: 10.1007/s00294-020-01114-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 01/09/2023]
Abstract
Gene silencing by the SIR (Silent Information Region) family of proteins in S. cerevisiae has been extensively studied and has served as a founding paradigm for our general understanding of gene repression and its links to histone deacetylation and chromatin structure. In recent years, our understanding of other mechanisms of gene repression in S.cerevisiae was significantly advanced. In this review, we focus on such Sir-independent mechanisms of gene repression executed by various Histone Deacetylases (HDACs) and Histone Methyl Transferases (HMTs). We focus on the genes regulated by these enzymes and their known mechanisms of action. We describe the cooperation and redundancy between HDACs and HMTs, and their involvement in gene repression by non-coding RNAs or by their non-histone substrates. We also propose models of epigenetic transmission of the chromatin structures produced by these enzymes and discuss these in the context of gene repression phenomena in other organisms. These include the recycling of the epigenetic marks imposed by HMTs or the recycling of the complexes harboring HDACs.
Collapse
Affiliation(s)
- Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.
| |
Collapse
|
34
|
Gong X, Yu Q, Duan K, Tong Y, Zhang X, Mei Q, Lu L, Yu X, Li S. Histone acetyltransferase Gcn5 regulates gene expression by promoting the transcription of histone methyltransferase SET1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194603. [PMID: 32663628 DOI: 10.1016/j.bbagrm.2020.194603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/20/2020] [Accepted: 07/08/2020] [Indexed: 01/26/2023]
Abstract
Many chromatin modifying factors regulate gene expression in an as-yet-unknown indirect manner. Revealing the molecular basis for this indirect gene regulation will help understand their precise roles in gene regulation and associated biological processes. Here, we studied histone modifying enzymes that indirectly regulate gene expression by modulating the expression of histone methyltransferase, Set1. Through unbiased screening of the histone H3/H4 mutant library, we identified 13 histone substitution mutations with reduced levels of Set1 and H3K4 trimethylation (H3K4me3) and 2 mutations with increased levels of Set1 and H3K4me3, which concentrate at 3 structure clusters. Among these substitutions, the H3K14A mutant substantially reduces SET1 transcription and H3K4me3. H3K14 is acetylated by histone acetyltransferase Gcn5 at SET1 promoter, which then promotes SET1 transcription to maintain normal H3K4me3 levels. In contrast, the histone deacetylase Rpd3 deacetylates H3K14 to repress SET1 transcription and hence reduce H3K4me3 levels, establishing a dynamic crosstalk between H3K14ac and H3K4me3. By promoting the transcription of SET1 and maintaining H3K4me3 levels, Gcn5 regulates the transcription of a subset gene in an indirect manner. Collectively, we propose a model wherein Gcn5 promotes the expression of chromatin modifiers to regulate histone crosstalk and gene transcription.
Collapse
Affiliation(s)
- Xuanyunjing Gong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Kai Duan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yue Tong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xinyu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Qianyun Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Li Lu
- Institute of TCM and Natural Products, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
35
|
Serrano-Quílez J, Roig-Soucase S, Rodríguez-Navarro S. Sharing Marks: H3K4 Methylation and H2B Ubiquitination as Features of Meiotic Recombination and Transcription. Int J Mol Sci 2020; 21:ijms21124510. [PMID: 32630409 PMCID: PMC7350030 DOI: 10.3390/ijms21124510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Meiosis is a specialized cell division that gives raise to four haploid gametes from a single diploid cell. During meiosis, homologous recombination is crucial to ensure genetic diversity and guarantee accurate chromosome segregation. Both the formation of programmed meiotic DNA double-strand breaks (DSBs) and their repair using homologous chromosomes are essential and highly regulated pathways. Similar to other processes that take place in the context of chromatin, histone posttranslational modifications (PTMs) constitute one of the major mechanisms to regulate meiotic recombination. In this review, we focus on specific PTMs occurring in histone tails as driving forces of different molecular events, including meiotic recombination and transcription. In particular, we concentrate on the influence of H3K4me3, H2BK123ub, and their corresponding molecular machineries that write, read, and erase these histone marks. The Spp1 subunit within the Complex of Proteins Associated with Set1 (COMPASS) is a critical regulator of H3K4me3-dependent meiotic DSB formation. On the other hand, the PAF1c (RNA polymerase II associated factor 1 complex) drives the ubiquitination of H2BK123 by Rad6-Bre1. We also discuss emerging evidence obtained by cryo-electron microscopy (EM) structure determination that has provided new insights into how the "cross-talk" between these two marks is accomplished.
Collapse
|
36
|
Uncoupling histone H3K4 trimethylation from developmental gene expression via an equilibrium of COMPASS, Polycomb and DNA methylation. Nat Genet 2020; 52:615-625. [PMID: 32393859 DOI: 10.1038/s41588-020-0618-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/26/2020] [Indexed: 12/20/2022]
Abstract
The COMPASS protein family catalyzes histone H3 Lys 4 (H3K4) methylation and its members are essential for regulating gene expression. MLL2/COMPASS methylates H3K4 on many developmental genes and bivalent clusters. To understand MLL2-dependent transcriptional regulation, we performed a CRISPR-based screen with an MLL2-dependent gene as a reporter in mouse embryonic stem cells. We found that MLL2 functions in gene expression by protecting developmental genes from repression via repelling PRC2 and DNA methylation machineries. Accordingly, repression in the absence of MLL2 is relieved by inhibition of PRC2 and DNA methyltransferases. Furthermore, DNA demethylation on such loci leads to reactivation of MLL2-dependent genes not only by removing DNA methylation but also by opening up previously CpG methylated regions for PRC2 recruitment, diluting PRC2 at Polycomb-repressed genes. These findings reveal how the context and function of these three epigenetic modifiers of chromatin can orchestrate transcriptional decisions and demonstrate that prevention of active repression by the context of the enzyme and not H3K4 trimethylation underlies transcriptional regulation on MLL2/COMPASS targets.
Collapse
|
37
|
Kranz A, Anastassiadis K. The role of SETD1A and SETD1B in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194578. [PMID: 32389824 DOI: 10.1016/j.bbagrm.2020.194578] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 12/13/2022]
Abstract
The Trithorax-related Set1 H3K4 methyltransferases are conserved from yeast to human. In yeast loss of Set1 causes pleiotropic effects but is compatible with life. In contrast, both mammalian Set1 orthologs: SETD1A and SETD1B are essential for embryonic development, however they have distinct functions. SETD1A is required shortly after epiblast formation whereas SETD1B becomes indispensible during early organogenesis. In adult mice both SETD1A and SETD1B regulate hematopoiesis differently: SETD1A is required for the establishment of definitive hematopoiesis whereas SETD1B is important for the maintenance of long-term hematopoietic stem cells. Both are implicated in different diseases with accumulating evidence for the association of SETD1A variants in neurological disorders and SETD1B variants with cancer. Why the two paralogs cannot or only partially compensate for the loss of each other is part of the puzzle that we try to sort out in this review.
Collapse
Affiliation(s)
- Andrea Kranz
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany.
| |
Collapse
|
38
|
Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194567. [PMID: 32360393 PMCID: PMC7294231 DOI: 10.1016/j.bbagrm.2020.194567] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/24/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
The precise regulation of gene transcription is required to establish and maintain cell type-specific gene expression programs during multicellular development. In addition to transcription factors, chromatin, and its chemical modification, play a central role in regulating gene expression. In vertebrates, DNA is pervasively methylated at CG dinucleotides, a modification that is repressive to transcription. However, approximately 70% of vertebrate gene promoters are associated with DNA elements called CpG islands (CGIs) that are refractory to DNA methylation. CGIs integrate the activity of a range of chromatin-regulating factors that can post-translationally modify histones and modulate gene expression. This is exemplified by the trimethylation of histone H3 at lysine 4 (H3K4me3), which is enriched at CGI-associated gene promoters and correlates with transcriptional activity. Through studying H3K4me3 at CGIs it has become clear that CGIs shape the distribution of H3K4me3 and, in turn, H3K4me3 influences the chromatin landscape at CGIs. Here we will discuss our understanding of the emerging relationship between CGIs, H3K4me3, and gene expression.
Collapse
|
39
|
Foroozani M, Zahraeifard S, Oh DH, Wang G, Dassanayake M, Smith AP. Low-Phosphate Chromatin Dynamics Predict a Cell Wall Remodeling Network in Rice Shoots. PLANT PHYSIOLOGY 2020; 182:1494-1509. [PMID: 31857425 PMCID: PMC7054884 DOI: 10.1104/pp.19.01153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/06/2019] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) is an essential plant macronutrient vital to fundamental metabolic processes. Plant-available P is low in most soils, making it a frequent limiter of growth. Declining P reserves for fertilizer production exacerbates this agricultural challenge. Plants modulate complex responses to fluctuating P levels via global transcriptional regulatory networks. Although chromatin structure plays a substantial role in controlling gene expression, the chromatin dynamics involved in regulating P homeostasis have not been determined. Here we define distinct chromatin states across the rice (Oryza sativa) genome by integrating multiple chromatin marks, including the H2A.Z histone variant, H3K4me3 modification, and nucleosome positioning. In response to P starvation, 40% of all protein-coding genes exhibit a transition from one chromatin state to another at their transcription start site. Several of these transitions are enriched in subsets of genes differentially expressed under P deficiency. The most prominent subset supports the presence of a coordinated signaling network that targets cell wall structure and is regulated in part via a decrease of H3K4me3 at transcription start sites. The P starvation-induced chromatin dynamics and correlated genes identified here will aid in enhancing P use efficiency in crop plants, benefitting global agriculture.
Collapse
Affiliation(s)
- Maryam Foroozani
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Sara Zahraeifard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Guannan Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Aaron P Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|
40
|
Chong SY, Cutler S, Lin JJ, Tsai CH, Tsai HK, Biggins S, Tsukiyama T, Lo YC, Kao CF. H3K4 methylation at active genes mitigates transcription-replication conflicts during replication stress. Nat Commun 2020; 11:809. [PMID: 32041946 PMCID: PMC7010754 DOI: 10.1038/s41467-020-14595-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Transcription-replication conflicts (TRCs) occur when intensive transcriptional activity compromises replication fork stability, potentially leading to gene mutations. Transcription-deposited H3K4 methylation (H3K4me) is associated with regions that are susceptible to TRCs; however, the interplay between H3K4me and TRCs is unknown. Here we show that H3K4me aggravates TRC-induced replication failure in checkpoint-defective cells, and the presence of methylated H3K4 slows down ongoing replication. Both S-phase checkpoint activity and H3K4me are crucial for faithful DNA synthesis under replication stress, especially in highly transcribed regions where the presence of H3K4me is highest and TRCs most often occur. H3K4me mitigates TRCs by decelerating ongoing replication, analogous to how speed bumps slow down cars. These findings establish the concept that H3K4me defines the transcriptional status of a genomic region and defends the genome from TRC-mediated replication stress and instability. Transcription-replication conflicts (TRC) can contribute to genome instability. Here the authors reveal that under replication stress H3K4 methylation can play a role in TRC prevention.
Collapse
Affiliation(s)
- Shin Yen Chong
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan.,Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Sam Cutler
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Jing-Jer Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Cheng-Hung Tsai
- Institute of Information Science, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Sue Biggins
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Yi-Chen Lo
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
41
|
Beurton F, Stempor P, Caron M, Appert A, Dong Y, Chen RAJ, Cluet D, Couté Y, Herbette M, Huang N, Polveche H, Spichty M, Bedet C, Ahringer J, Palladino F. Physical and functional interaction between SET1/COMPASS complex component CFP-1 and a Sin3S HDAC complex in C. elegans. Nucleic Acids Res 2019; 47:11164-11180. [PMID: 31602465 PMCID: PMC6868398 DOI: 10.1093/nar/gkz880] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/13/2019] [Accepted: 10/07/2019] [Indexed: 12/23/2022] Open
Abstract
The CFP1 CXXC zinc finger protein targets the SET1/COMPASS complex to non-methylated CpG rich promoters to implement tri-methylation of histone H3 Lys4 (H3K4me3). Although H3K4me3 is widely associated with gene expression, the effects of CFP1 loss vary, suggesting additional chromatin factors contribute to context dependent effects. Using a proteomics approach, we identified CFP1 associated proteins and an unexpected direct link between Caenorhabditis elegans CFP-1 and an Rpd3/Sin3 small (SIN3S) histone deacetylase complex. Supporting a functional connection, we find that mutants of COMPASS and SIN3 complex components genetically interact and have similar phenotypic defects including misregulation of common genes. CFP-1 directly binds SIN-3 through a region including the conserved PAH1 domain and recruits SIN-3 and the HDA-1/HDAC subunit to H3K4me3 enriched promoters. Our results reveal a novel role for CFP-1 in mediating interaction between SET1/COMPASS and a Sin3S HDAC complex at promoters.
Collapse
Affiliation(s)
- Flore Beurton
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Przemyslaw Stempor
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Matthieu Caron
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Alex Appert
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Yan Dong
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Ron A-j Chen
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - David Cluet
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Yohann Couté
- Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Marion Herbette
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Ni Huang
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Hélène Polveche
- INSERM UMR 861, I-STEM, 28, Rue Henri Desbruères, 91100 Corbeil-Essonnes, France
| | - Martin Spichty
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Cécile Bedet
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Julie Ahringer
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge, UK
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| |
Collapse
|
42
|
Rothman J, Jarriault S. Developmental Plasticity and Cellular Reprogramming in Caenorhabditis elegans. Genetics 2019; 213:723-757. [PMID: 31685551 PMCID: PMC6827377 DOI: 10.1534/genetics.119.302333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022] Open
Abstract
While Caenorhabditis elegans was originally regarded as a model for investigating determinate developmental programs, landmark studies have subsequently shown that the largely invariant pattern of development in the animal does not reflect irreversibility in rigidly fixed cell fates. Rather, cells at all stages of development, in both the soma and germline, have been shown to be capable of changing their fates through mutation or forced expression of fate-determining factors, as well as during the normal course of development. In this chapter, we review the basis for natural and induced cellular plasticity in C. elegans We describe the events that progressively restrict cellular differentiation during embryogenesis, starting with the multipotency-to-commitment transition (MCT) and subsequently through postembryonic development of the animal, and consider the range of molecular processes, including transcriptional and translational control systems, that contribute to cellular plasticity. These findings in the worm are discussed in the context of both classical and recent studies of cellular plasticity in vertebrate systems.
Collapse
Affiliation(s)
- Joel Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93111, and
| | - Sophie Jarriault
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Department of Development and Stem Cells, CNRS UMR7104, Inserm U1258, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| |
Collapse
|
43
|
Mei Q, Xu C, Gogol M, Tang J, Chen W, Yu X, Workman JL, Li S. Set1-catalyzed H3K4 trimethylation antagonizes the HIR/Asf1/Rtt106 repressor complex to promote histone gene expression and chronological life span. Nucleic Acids Res 2019; 47:3434-3449. [PMID: 30759223 PMCID: PMC6468302 DOI: 10.1093/nar/gkz101] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 01/07/2023] Open
Abstract
Aging is the main risk factor for many prevalent diseases. However, the molecular mechanisms regulating aging at the cellular level are largely unknown. Using single cell yeast as a model organism, we found that reducing yeast histone proteins accelerates chronological aging and increasing histone supply extends chronological life span. We sought to identify pathways that regulate chronological life span by controlling intracellular histone levels. Thus, we screened the histone H3/H4 mutant library to uncover histone residues and posttranslational modifications that regulate histone gene expression. We discovered 15 substitution mutations with reduced histone proteins and 5 mutations with increased histone proteins. Among these mutations, we found Set1 complex-catalyzed H3K4me3 promotes histone gene transcription and maintains normal chronological life span. Unlike the canonical functions of H3K4me3 in gene expression, H3K4me3 facilitates histone gene transcription by acting as a boundary to restrict the spread of the repressive HIR/Asf1/Rtt106 complex from histone gene promoters. Collectively, our study identified a novel mechanism by which H3K4me3 antagonizes the HIR/Asf1/Rtt106 repressor complex to promote histone gene expression and extend chronological life span.
Collapse
Affiliation(s)
- Qianyun Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Chen Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Jie Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
44
|
Crump NT, Milne TA. Why are so many MLL lysine methyltransferases required for normal mammalian development? Cell Mol Life Sci 2019; 76:2885-2898. [PMID: 31098676 PMCID: PMC6647185 DOI: 10.1007/s00018-019-03143-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
Abstract
The mixed lineage leukemia (MLL) family of proteins became known initially for the leukemia link of its founding member. Over the decades, the MLL family has been recognized as an important class of histone H3 lysine 4 (H3K4) methyltransferases that control key aspects of normal cell physiology and development. Here, we provide a brief history of the discovery and study of this family of proteins. We address two main questions: why are there so many H3K4 methyltransferases in mammals; and is H3K4 methylation their key function?
Collapse
Affiliation(s)
- Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
45
|
Chromatin Profiling of the Repetitive and Nonrepetitive Genomes of the Human Fungal Pathogen Candida albicans. mBio 2019; 10:mBio.01376-19. [PMID: 31337722 PMCID: PMC6650553 DOI: 10.1128/mbio.01376-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The fungus Candida albicans is an opportunistic pathogen that normally lives on the human body without causing any harm. However, C. albicans is also a dangerous pathogen responsible for millions of infections annually. C. albicans is such a successful pathogen because it can adapt to and thrive in different environments. Chemical modifications of chromatin, the structure that packages DNA into cells, can allow environmental adaptation by regulating gene expression and genome organization. Surprisingly, the contribution of chromatin modification to C. albicans biology is still largely unknown. For the first time, we analyzed C. albicans chromatin modifications on a genome-wide basis. We demonstrate that specific chromatin states are associated with distinct regions of the C. albicans genome and identify the roles of the chromatin modifiers Sir2 and Set1 in shaping C. albicans chromatin and gene expression. Eukaryotic genomes are packaged into chromatin structures that play pivotal roles in regulating all DNA-associated processes. Histone posttranslational modifications modulate chromatin structure and function, leading to rapid regulation of gene expression and genome stability, key steps in environmental adaptation. Candida albicans, a prevalent fungal pathogen in humans, can rapidly adapt and thrive in diverse host niches. The contribution of chromatin to C. albicans biology is largely unexplored. Here, we generated the first comprehensive chromatin profile of histone modifications (histone H3 trimethylated on lysine 4 [H3K4me3], histone H3 acetylated on lysine 9 [H3K9Ac], acetylated lysine 16 on histone H4 [H4K16Ac], and γH2A) across the C. albicans genome and investigated its relationship to gene expression by harnessing genome-wide sequencing approaches. We demonstrated that gene-rich nonrepetitive regions are packaged into canonical euchromatin in association with histone modifications that mirror their transcriptional activity. In contrast, repetitive regions are assembled into distinct chromatin states; subtelomeric regions and the ribosomal DNA (rDNA) locus are assembled into heterochromatin, while major repeat sequences and transposons are packaged in chromatin that bears features of euchromatin and heterochromatin. Genome-wide mapping of γH2A, a marker of genome instability, identified potential recombination-prone genomic loci. Finally, we present the first quantitative chromatin profiling in C. albicans to delineate the role of the chromatin modifiers Sir2 and Set1 in controlling chromatin structure and gene expression. This report presents the first genome-wide chromatin profiling of histone modifications associated with the C. albicans genome. These epigenomic maps provide an invaluable resource to understand the contribution of chromatin to C. albicans biology and identify aspects of C. albicans chromatin organization that differ from that of other yeasts.
Collapse
|
46
|
Pokhrel B, Chen Y, Biro JJ. CFP-1 interacts with HDAC1/2 complexes in C. elegans development. FEBS J 2019; 286:2490-2504. [PMID: 30941832 DOI: 10.1111/febs.14833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/31/2019] [Accepted: 04/01/2019] [Indexed: 01/27/2023]
Abstract
CXXC finger binding protein 1 (CFP-1) is an evolutionarily conserved protein that binds to non-methylated CpG-rich promoters in mammals and Caenorhabditis elegans. This conserved epigenetic regulator is part of the COMPASS complex that contains the H3K4me3 methyltransferase SET1 in mammals and SET-2 in C. elegans. Previous studies have indicated the importance of CFP1 in embryonic stem cell differentiation and cell fate specification. However, neither the function nor the mechanism of action of CFP1 is well understood at the organismal level. Here, we have used cfp-1(tm6369) and set-2(bn129) C. elegans mutants to investigate the function of CFP-1 in gene induction and development. We have characterised C. elegansCOMPASS mutants cfp-1(tm6369) and set-2(bn129) and found that both cfp-1 and set-2 play an important role in the regulation of fertility and development of the organism. Furthermore, we found that both cfp-1 and set-2 are required for H3K4 trimethylation and play a repressive role in the expression of heat shock and salt-inducible genes. Interestingly, we found that cfp-1 but not set-2 genetically interacts with histone deacetylase (HDAC1/2) complexes to regulate fertility, suggesting a function of CFP-1 outside of the COMPASS complex. Additionally, we found that cfp-1 and set-2 independently regulate fertility and development of the organism. Our results suggest that CFP-1 genetically interacts with HDAC1/2 complexes to regulate fertility, independent of its function within the COMPASS complex. We propose that CFP-1 could cooperate with the COMPASS complex and/or HDAC1/2 in a context-dependent manner.
Collapse
Affiliation(s)
- Bharat Pokhrel
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Yannic Chen
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - Jonathan Joseph Biro
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| |
Collapse
|
47
|
Choudhury R, Singh S, Arumugam S, Roguev A, Stewart AF. The Set1 complex is dimeric and acts with Jhd2 demethylation to convey symmetrical H3K4 trimethylation. Genes Dev 2019; 33:550-564. [PMID: 30842216 PMCID: PMC6499330 DOI: 10.1101/gad.322222.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022]
Abstract
In this study, Choudhury et al. report that yeast Set1C/COMPASS is dimeric and, consequently, symmetrically trimethylates histone 3 Lys4 (H3K4me3) on promoter nucleosomes. This presents a new paradigm for the establishment of epigenetic detail, in which dimeric methyltransferase and monomeric demethylase cooperate to eliminate asymmetry and focus symmetrical H3K4me3 onto selected nucleosomes. Epigenetic modifications can maintain or alter the inherent symmetry of the nucleosome. However, the mechanisms that deposit and/or propagate symmetry or asymmetry are not understood. Here we report that yeast Set1C/COMPASS (complex of proteins associated with Set1) is dimeric and, consequently, symmetrically trimethylates histone 3 Lys4 (H3K4me3) on promoter nucleosomes. Mutation of the dimer interface to make Set1C monomeric abolished H3K4me3 on most promoters. The most active promoters, particularly those involved in the oxidative phase of the yeast metabolic cycle, displayed H3K4me2, which is normally excluded from active promoters, and a subset of these also displayed H3K4me3. In wild-type yeast, deletion of the sole H3K4 demethylase, Jhd2, has no effect. However, in monomeric Set1C yeast, Jhd2 deletion increased H3K4me3 levels on the H3K4me2 promoters. Notably, the association of Set1C with the elongating polymerase was not perturbed by monomerization. These results imply that symmetrical H3K4 methylation is an embedded consequence of Set1C dimerism and that Jhd2 demethylates asymmetric H3K4me3. Consequently, rather than methylation and demethylation acting in opposition as logic would suggest, a dimeric methyltransferase and monomeric demethylase cooperate to eliminate asymmetry and focus symmetrical H3K4me3 onto selected nucleosomes. This presents a new paradigm for the establishment of epigenetic detail.
Collapse
Affiliation(s)
- Rupam Choudhury
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, University of Technology Dresden, 01307 Dresden, Germany
| | - Sukhdeep Singh
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, University of Technology Dresden, 01307 Dresden, Germany
| | - Senthil Arumugam
- European Molecular Biology Laboratory Australia Node for Single Molecule Science, ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Assen Roguev
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, University of Technology Dresden, 01307 Dresden, Germany.,Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94518, USA
| | - A Francis Stewart
- Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, University of Technology Dresden, 01307 Dresden, Germany
| |
Collapse
|
48
|
Jezek M, Green EM. Histone Modifications and the Maintenance of Telomere Integrity. Cells 2019; 8:E199. [PMID: 30823596 PMCID: PMC6407025 DOI: 10.3390/cells8020199] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/09/2019] [Accepted: 02/20/2019] [Indexed: 12/20/2022] Open
Abstract
Telomeres, the nucleoprotein structures at the ends of eukaryotic chromosomes, play an integral role in protecting linear DNA from degradation. Dysregulation of telomeres can result in genomic instability and has been implicated in increased rates of cellular senescence and many diseases, including cancer. The integrity of telomeres is maintained by a coordinated network of proteins and RNAs, such as the telomerase holoenzyme and protective proteins that prevent the recognition of the telomere ends as a DNA double-strand breaks. The structure of chromatin at telomeres and within adjacent subtelomeres has been implicated in telomere maintenance pathways in model systems and humans. Specific post-translational modifications of histones, including methylation, acetylation, and ubiquitination, have been shown to be necessary for maintaining a chromatin environment that promotes telomere integrity. Here we review the current knowledge regarding the role of histone modifications in maintaining telomeric and subtelomeric chromatin, discuss the implications of histone modification marks as they relate to human disease, and highlight key areas for future research.
Collapse
Affiliation(s)
- Meagan Jezek
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | - Erin M Green
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
49
|
Cruz C, Della Rosa M, Krueger C, Gao Q, Horkai D, King M, Field L, Houseley J. Tri-methylation of histone H3 lysine 4 facilitates gene expression in ageing cells. eLife 2018; 7:34081. [PMID: 30274593 PMCID: PMC6168286 DOI: 10.7554/elife.34081] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
Transcription of protein coding genes is accompanied by recruitment of COMPASS to promoter-proximal chromatin, which methylates histone H3 lysine 4 (H3K4) to form H3K4me1, H3K4me2 and H3K4me3. Here, we determine the importance of COMPASS in maintaining gene expression across lifespan in budding yeast. We find that COMPASS mutations reduce replicative lifespan and cause expression defects in almost 500 genes. Although H3K4 methylation is reported to act primarily in gene repression, particularly in yeast, repressive functions are progressively lost with age while hundreds of genes become dependent on H3K4me3 for full expression. Basal and inducible expression of these genes is also impaired in young cells lacking COMPASS components Swd1 or Spp1. Gene induction during ageing is associated with increasing promoter H3K4me3, but H3K4me3 also accumulates in non-promoter regions and the ribosomal DNA. Our results provide clear evidence that H3K4me3 is required to maintain normal expression of many genes across organismal lifespan.
Collapse
Affiliation(s)
- Cristina Cruz
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Monica Della Rosa
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Christel Krueger
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Qian Gao
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Dorottya Horkai
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Michelle King
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Lucy Field
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
50
|
Hanna CW, Demond H, Kelsey G. Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update 2018; 24:556-576. [PMID: 29992283 PMCID: PMC6093373 DOI: 10.1093/humupd/dmy021] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/20/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Over the past few years, advances in molecular technologies have allowed unprecedented mapping of epigenetic modifications in gametes and during early embryonic development. This work is allowing a detailed genomic analysis, which for the first time can answer long-standing questions about epigenetic regulation and reprogramming, and highlights differences between mouse and human, the implications of which are only beginning to be explored. OBJECTIVE AND RATIONALE In this review, we summarise new low-cell molecular methods enabling the interrogation of epigenetic information in gametes and early embryos, the mechanistic insights these have provided, and contrast the findings in mouse and human. SEARCH METHODS Relevant studies were identified by PubMed search. OUTCOMES We discuss the levels of epigenetic regulation, from DNA modifications to chromatin organisation, during mouse gametogenesis, fertilisation and pre- and post-implantation development. The recently characterised features of the oocyte epigenome highlight its exceptionally unique regulatory landscape. The chromatin organisation and epigenetic landscape of both gametic genomes are rapidly reprogrammed after fertilisation. This extensive epigenetic remodelling is necessary for zygotic genome activation, but the mechanistic link remains unclear. While the vast majority of epigenetic information from the gametes is erased in pre-implantation development, new insights suggest that repressive histone modifications from the oocyte may mediate a novel mechanism of imprinting. To date, the characterisation of epigenetics in human development has been almost exclusively limited to DNA methylation profiling; these data reinforce that the global dynamics are conserved between mouse and human. However, as we look closer, it is becoming apparent that the mechanisms regulating these dynamics are distinct. These early findings emphasise the importance of investigations of fundamental epigenetic mechanisms in both mouse and humans. WIDER IMPLICATIONS Failures in epigenetic regulation have been implicated in human disease and infertility. With increasing maternal age and use of reproductive technologies in countries all over the world, it is becoming ever more important to understand the necessary processes required to establish a developmentally competent embryo. Furthermore, it is essential to evaluate the extent to which these epigenetic patterns are sensitive to such technologies and other adverse environmental exposures.
Collapse
Affiliation(s)
- Courtney W Hanna
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Hannah Demond
- Epigenetics programme, Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|