1
|
Zhou H, Zhang M, Lian J, Wang R, Yang Z, Wang J, Bi X. DSN1 Interaction With Centromere-Associated Proteins Promotes Chromosomal Instability in Hepatocellular Carcinoma. Mol Carcinog 2025; 64:329-343. [PMID: 39560395 DOI: 10.1002/mc.23845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/26/2024] [Indexed: 11/20/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer. Dosage suppressor of NNF1 (DSN1), a component of the MIS12 kinetochore complex, encodes a kinetochore protein crucial for proper mitotic assembly. The role of DSN1 in HCC remains to be elucidated. In this study, we utilized The Cancer Genome Atlas, the Hepatocellular carcinoma Cell Database, and other databases to analyze DSN1 expression and prognosis in samples from patients with HCC. We investigated the signaling pathways regulated by DSN1 and their implications in HCC. Additionally, we engineered siRNA/shRNA and overexpression vectors for DSN1 and assessed the specific mechanisms of regulatory pathways of DSN1 in hepatoma cell lines and subcutaneous tumor xenograft model. Our findings revealed that DSN1 expression was significantly upregulated in patients with HCC, correlating with decreased survival rates. Elevated DSN1 expression led to the overproduction of cell cycle-related proteins through direct interaction with Centromere Protein T. This interaction contributes to chromosomal instability in patients with HCC, resulting in an aberrant cell cycle and fostering the development and progression of HCC. Increased DSN1 expression is pivotal in HCC initiation and progression. Investigating DSN1 offers valuable insights into the pathogenesis, treatment, and prevention of HCC.
Collapse
Affiliation(s)
- Hongrui Zhou
- College of Life Science, Liaoning University, Shenyang, China
| | - Mengxue Zhang
- College of Life Science, Liaoning University, Shenyang, China
| | - Jiabing Lian
- College of Life Science, Liaoning University, Shenyang, China
| | - Ruichang Wang
- College of Life Science, Liaoning University, Shenyang, China
| | - Zhe Yang
- College of Life Science, Liaoning University, Shenyang, China
| | - Jin Wang
- College of Life Science, Liaoning University, Shenyang, China
| | - Xiuli Bi
- College of Life Science, Liaoning University, Shenyang, China
- Key Laboratory of Chronic Disease Occurrence and Nutrition Intervention, Liaoning University, Shenyang, China
| |
Collapse
|
2
|
Shukla PK, Sinha D, Leng AM, Bissell JE, Thatipamula S, Ganguly R, Radmall KS, Skalicky JJ, Shrieve DC, Chandrasekharan MB. Mutations of Rad6 E2 ubiquitin-conjugating enzymes at alanine-126 affect ubiquitination activity and decrease enzyme stability. J Biol Chem 2022; 298:102524. [PMID: 36162503 PMCID: PMC9630792 DOI: 10.1016/j.jbc.2022.102524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/28/2022] Open
Abstract
Rad6, an E2 ubiquitin-conjugating enzyme conserved from yeast to humans, functions in transcription, genome maintenance, and proteostasis. The contributions of many conserved secondary structures of Rad6 and its human homologs UBE2A and UBE2B to their biological functions are not understood. A mutant RAD6 allele with a missense substitution at alanine-126 (A126) of helix-3 that causes defects in telomeric gene silencing, DNA repair, and protein degradation was reported over 2 decades ago. Here, using a combination of genetics, biochemical, biophysical, and computational approaches, we discovered that helix-3 A126 mutations compromise the ability of Rad6 to ubiquitinate target proteins without disrupting interactions with partner E3 ubiquitin-ligases that are required for their various biological functions in vivo. Explaining the defective in vitro or in vivo ubiquitination activities, molecular dynamics simulations and NMR showed that helix-3 A126 mutations cause local disorder of the catalytic pocket of Rad6 in addition to disorganizing the global structure of the protein to decrease its stability in vivo. We also show that helix-3 A126 mutations deform the structures of UBE2A and UBE2B, the human Rad6 homologs, and compromise the in vitro ubiquitination activity and folding of UBE2B. Providing insights into their ubiquitination defects, we determined helix-3 A126 mutations impair the initial ubiquitin charging and the final discharging steps during substrate ubiquitination by Rad6. In summary, our studies reveal that the conserved helix-3 is a crucial structural constituent that controls the organization of catalytic pockets, enzymatic activities, and biological functions of the Rad6-family E2 ubiquitin-conjugating enzymes.
Collapse
Affiliation(s)
- Prakash K Shukla
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dhiraj Sinha
- IHU, Aix Marseille University, Marseille, France
| | - Andrew M Leng
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jesse E Bissell
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Shravya Thatipamula
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Rajarshi Ganguly
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kaitlin S Radmall
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dennis C Shrieve
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
3
|
Chatfield-Reed K, Marno Jones K, Shah F, Chua G. Genetic-interaction screens uncover novel biological roles and regulators of transcription factors in fission yeast. G3 GENES|GENOMES|GENETICS 2022; 12:6655692. [PMID: 35924983 PMCID: PMC9434175 DOI: 10.1093/g3journal/jkac194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022]
Abstract
In Schizosaccharomyces pombe, systematic analyses of single transcription factor deletion or overexpression strains have made substantial advances in determining the biological roles and target genes of transcription factors, yet these characteristics are still relatively unknown for over a quarter of them. Moreover, the comprehensive list of proteins that regulate transcription factors remains incomplete. To further characterize Schizosaccharomyces pombe transcription factors, we performed synthetic sick/lethality and synthetic dosage lethality screens by synthetic genetic array. Examination of 2,672 transcription factor double deletion strains revealed a sick/lethality interaction frequency of 1.72%. Phenotypic analysis of these sick/lethality strains revealed potential cell cycle roles for several poorly characterized transcription factors, including SPBC56F2.05, SPCC320.03, and SPAC3C7.04. In addition, we examined synthetic dosage lethality interactions between 14 transcription factors and a miniarray of 279 deletion strains, observing a synthetic dosage lethality frequency of 4.99%, which consisted of known and novel transcription factor regulators. The miniarray contained deletions of genes that encode primarily posttranslational-modifying enzymes to identify putative upstream regulators of the transcription factor query strains. We discovered that ubiquitin ligase Ubr1 and its E2/E3-interacting protein, Mub1, degrade the glucose-responsive transcriptional repressor Scr1. Loss of ubr1+ or mub1+ increased Scr1 protein expression, which resulted in enhanced repression of flocculation through Scr1. The synthetic dosage lethality screen also captured interactions between Scr1 and 2 of its known repressors, Sds23 and Amk2, each affecting flocculation through Scr1 by influencing its nuclear localization. Our study demonstrates that sick/lethality and synthetic dosage lethality screens can be effective in uncovering novel functions and regulators of Schizosaccharomyces pombe transcription factors.
Collapse
Affiliation(s)
- Kate Chatfield-Reed
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | - Kurtis Marno Jones
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | - Farah Shah
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
4
|
Roy B, Sim J, Han SJY, Joglekar AP. Kre28-Spc105 interaction is essential for Spc105 loading at the kinetochore. Open Biol 2022; 12:210274. [PMID: 35042402 PMCID: PMC8767186 DOI: 10.1098/rsob.210274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022] Open
Abstract
Kinetochore (KTs) are macromolecular protein assemblies that attach sister chromatids to spindle microtubules (MTs) and mediate accurate chromosome segregation during mitosis. The outer KT consists of the KMN network, a protein super-complex comprising Knl1 (yeast Spc105), Mis12 (yeast Mtw1), and Ndc80 (yeast Ndc80), which harbours sites for MT binding. Within the KMN network, Spc105 acts as an interaction hub of components involved in spindle assembly checkpoint (SAC) signalling. It is known that Spc105 forms a complex with KT component Kre28. However, where Kre28 physically localizes in the budding yeast KT is not clear. The exact function of Kre28 at the KT is also unknown. Here, we investigate how Spc105 and Kre28 interact and how they are organized within bioriented yeast KTs using genetics and cell biological experiments. Our microscopy data show that Spc105 and Kre28 localize at the KT with a 1 : 1 stoichiometry. We also show that the Kre28-Spc105 interaction is important for Spc105 protein turn-over and essential for their mutual recruitment at the KTs. We created several truncation mutants of kre28 that affect Spc105 loading at the KTs. When over-expressed, these mutants sustain the cell viability, but SAC signalling and KT biorientation are impaired. Therefore, we conclude that Kre28 contributes to chromosome biorientation and high-fidelity segregation at least indirectly by regulating Spc105 localization at the KTs.
Collapse
Affiliation(s)
- Babhrubahan Roy
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Janice Sim
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Simon J. Y. Han
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ajit P. Joglekar
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Böhm M, Killinger K, Dudziak A, Pant P, Jänen K, Hohoff S, Mechtler K, Örd M, Loog M, Sanchez-Garcia E, Westermann S. Cdc4 phospho-degrons allow differential regulation of Ame1 CENP-U protein stability across the cell cycle. eLife 2021; 10:67390. [PMID: 34308839 PMCID: PMC8341979 DOI: 10.7554/elife.67390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/24/2021] [Indexed: 02/05/2023] Open
Abstract
Kinetochores are multi-subunit protein assemblies that link chromosomes to microtubules of the mitotic and meiotic spindle. It is still poorly understood how efficient, centromere-dependent kinetochore assembly is accomplished from hundreds of individual protein building blocks in a cell cycle-dependent manner. Here, by combining comprehensive phosphorylation analysis of native Ctf19CCAN subunits with biochemical and functional assays in the model system budding yeast, we demonstrate that Cdk1 phosphorylation activates phospho-degrons on the essential subunit Ame1CENP-U, which are recognized by the E3 ubiquitin ligase complex SCF-Cdc4. Gradual phosphorylation of degron motifs culminates in M-phase and targets the protein for degradation. Binding of the Mtw1Mis12 complex shields the proximal phospho-degron, protecting kinetochore-bound Ame1 from the degradation machinery. Artificially increasing degron strength partially suppresses the temperature sensitivity of a cdc4 mutant, while overexpression of Ame1-Okp1 is toxic in SCF mutants, demonstrating the physiological importance of this mechanism. We propose that phospho-regulated clearance of excess CCAN subunits facilitates efficient centromere-dependent kinetochore assembly. Our results suggest a novel strategy for how phospho-degrons can be used to regulate the assembly of multi-subunit complexes.
Collapse
Affiliation(s)
- Miriam Böhm
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Kerstin Killinger
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Alexander Dudziak
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Pradeep Pant
- Department of Computational Biochemistry, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Karolin Jänen
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Simone Hohoff
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Karl Mechtler
- IMP - Research Institute of Molecular Pathology, Vienna, Austria.,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria.,Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Mihkel Örd
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Loog
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Elsa Sanchez-Garcia
- Department of Computational Biochemistry, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Stefan Westermann
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Cell-cycle phospho-regulation of the kinetochore. Curr Genet 2021; 67:177-193. [PMID: 33221975 DOI: 10.1007/s00294-020-01127-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
The kinetochore is a mega-dalton protein assembly that forms within centromeric regions of chromosomes and directs their segregation during cell division. Here we review cell cycle-mediated phosphorylation events at the kinetochore, with a focus on the budding yeast Saccharomyces cerevisiae and the insight gained from forced associations of kinases and phosphatases. The point centromeres found in the budding yeast S. cerevisiae are one of the simplest such structures found in eukaryotes. The S. cerevisiae kinetochore comprises a single nucleosome, containing a centromere-specific H3 variant Cse4CENP-A, bound to a set of kinetochore proteins that connect to a single microtubule. Despite the simplicity of the budding yeast kinetochore, the proteins are mostly homologous with their mammalian counterparts. In some cases, human proteins can complement their yeast orthologs. Like its mammalian equivalent, the regulation of the budding yeast kinetochore is complex: integrating signals from the cell cycle, checkpoints, error correction, and stress pathways. The regulatory signals from these diverse pathways are integrated at the kinetochore by post-translational modifications, notably phosphorylation and dephosphorylation, to control chromosome segregation. Here we highlight the complex interplay between the activity of the different cell-cycle kinases and phosphatases at the kinetochore, emphasizing how much more we have to understand this essential structure.
Collapse
|
7
|
The Proteomic Landscape of Centromeric Chromatin Reveals an Essential Role for the Ctf19 CCAN Complex in Meiotic Kinetochore Assembly. Curr Biol 2021; 31:283-296.e7. [PMID: 33157029 PMCID: PMC7846277 DOI: 10.1016/j.cub.2020.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/10/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022]
Abstract
Kinetochores direct chromosome segregation in mitosis and meiosis. Faithful gamete formation through meiosis requires that kinetochores take on new functions that impact homolog pairing, recombination, and the orientation of kinetochore attachment to microtubules in meiosis I. Using an unbiased proteomics pipeline, we determined the composition of centromeric chromatin and kinetochores at distinct cell-cycle stages, revealing extensive reorganization of kinetochores during meiosis. The data uncover a network of meiotic chromosome axis and recombination proteins that bind to centromeres in the absence of the microtubule-binding outer kinetochore sub-complexes during meiotic prophase. We show that the Ctf19cCCAN inner kinetochore complex is essential for kinetochore organization in meiosis. Our functional analyses identify a Ctf19cCCAN-dependent kinetochore assembly pathway that is dispensable for mitotic growth but becomes critical upon meiotic entry. Therefore, changes in kinetochore composition and a distinct assembly pathway specialize meiotic kinetochores for successful gametogenesis. The composition of meiotic centromeres and kinetochores is revealed Kinetochores undergo extensive changes between meiotic prophase I and metaphase I The Ctf19CCAN orchestrates meiotic kinetochore specialization A Ctf19CCAN-directed kinetochore assembly pathway is uniquely critical in meiosis
Collapse
|
8
|
Chen J, Liao A, Powers EN, Liao H, Kohlstaedt LA, Evans R, Holly RM, Kim JK, Jovanovic M, Ünal E. Aurora B-dependent Ndc80 degradation regulates kinetochore composition in meiosis. Genes Dev 2020; 34:209-225. [PMID: 31919192 PMCID: PMC7000919 DOI: 10.1101/gad.333997.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022]
Abstract
The kinetochore complex is a conserved machinery that connects chromosomes to spindle microtubules. During meiosis, the kinetochore is restructured to accommodate a specialized chromosome segregation pattern. In budding yeast, meiotic kinetochore remodeling is mediated by the temporal changes in the abundance of a single subunit called Ndc80. We previously described the regulatory events that control the timely synthesis of Ndc80. Here, we report that Ndc80 turnover is also tightly regulated in meiosis: Ndc80 degradation is active in meiotic prophase, but not in metaphase I. Ndc80 degradation depends on the ubiquitin ligase APCAma1 and is mediated by the proteasome. Importantly, Aurora B-dependent Ndc80 phosphorylation, a mark that has been previously implicated in correcting erroneous microtubule-kinetochore attachments, is essential for Ndc80 degradation in a microtubule-independent manner. The N terminus of Ndc80, including a 27-residue sequence and Aurora B phosphorylation sites, is both necessary and sufficient for kinetochore protein degradation. Finally, defects in Ndc80 turnover predispose meiotic cells to chromosome mis-segregation. Our study elucidates the mechanism by which meiotic cells modulate their kinetochore composition through regulated Ndc80 degradation, and demonstrates that Aurora B-dependent regulation of kinetochores extends beyond altering microtubule attachments.
Collapse
Affiliation(s)
- Jingxun Chen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Andrew Liao
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Emily N Powers
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Hanna Liao
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Lori A Kohlstaedt
- UC Berkeley QB3 Proteomics Facility, University of California at Berkeley, Berkeley, California 94720, USA
| | - Rena Evans
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Ryan M Holly
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Jenny Kim Kim
- Department of Biology, Columbia University, New York City, New York 10027, USA
| | - Marko Jovanovic
- Department of Biology, Columbia University, New York City, New York 10027, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
9
|
Glucose Signaling Is Connected to Chromosome Segregation Through Protein Kinase A Phosphorylation of the Dam1 Kinetochore Subunit in Saccharomyces cerevisiae. Genetics 2018; 211:531-547. [PMID: 30546002 DOI: 10.1534/genetics.118.301727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022] Open
Abstract
The Dam1 complex is an essential component of the outer kinetochore that mediates attachments between spindle microtubules and chromosomes. Dam1p, a subunit of the Dam1 complex, binds to microtubules and is regulated by Aurora B/Ipl1p phosphorylation. We find that overexpression of cAMP-dependent protein kinase (PKA) catalytic subunits (i.e., TPK1, TPK2, TPK3) is lethal in DAM1 mutants and increases the rate of chromosome loss in wild-type cells. Replacing an evolutionarily conserved PKA site (S31) in Dam1p with a nonphosphorylatable alanine suppressed the high-copy PKA dosage lethality in dam1-1 Consistent with Dam1p as a target of PKA, we find that in vitro PKA can directly phosphorylate S31 in Dam1p and we observed phosphorylation of S31 in Dam1p purified from asynchronously growing yeast cells. Cells carrying high-copy TPK2 or a Dam1p phospho-mimetic S31D mutant displayed a reduction in Dam1p localization at the kinetochore, suggesting that PKA phosphorylation plays a role in assembly and/or stability of the Dam1 complex. Furthermore, we observed spindle defects associated with S31 phosphorylation. Finally, we find that phosphorylation of Dam1p on S31 is reduced when glucose is limiting as well as during α-factor arrest, conditions that inhibit PKA activity. These observations suggest that the PKA site of Dam1p participates in regulating kinetochore activity. While PKA is a well-established effector of glucose signaling, our work shows for the first time that glucose-dependent PKA activity has an important function in chromosome segregation.
Collapse
|
10
|
Lang J, Barber A, Biggins S. An assay for de novo kinetochore assembly reveals a key role for the CENP-T pathway in budding yeast. eLife 2018; 7:37819. [PMID: 30117803 PMCID: PMC6097842 DOI: 10.7554/elife.37819] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/06/2018] [Indexed: 01/25/2023] Open
Abstract
Chromosome segregation depends on the kinetochore, the machine that establishes force-bearing attachments between DNA and spindle microtubules. Kinetochores are formed every cell cycle via a highly regulated process that requires coordinated assembly of multiple subcomplexes on specialized chromatin. To elucidate the underlying mechanisms, we developed an assay to assemble kinetochores de novo using centromeric DNA and budding yeast extracts. Assembly is enhanced by mitotic phosphorylation of the Dsn1 kinetochore protein and generates kinetochores capable of binding microtubules. We used this assay to investigate why kinetochores recruit the microtubule-binding Ndc80 complex via two receptors: the Mis12 complex and CENP-T. Although the CENP-T pathway is non-essential in yeast, we demonstrate that it becomes essential for viability and Ndc80c recruitment when the Mis12 pathway is crippled by defects in Dsn1 phosphorylation. Assembling kinetochores de novo in yeast extracts provides a powerful and genetically tractable method to elucidate critical regulatory events in the future.
Collapse
Affiliation(s)
- Jackie Lang
- Division of Basic Sciences, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology Program, University of Washington, Seattle, United States
| | - Adrienne Barber
- Division of Basic Sciences, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Sue Biggins
- Division of Basic Sciences, Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
11
|
Samel A, Nguyen TKL, Ehrenhofer-Murray AE. Defects in methylation of arginine 37 on CENP-A/Cse4 are compensated by the ubiquitin ligase complex Ubr2/Mub1. FEMS Yeast Res 2018; 17:2966861. [PMID: 28158539 DOI: 10.1093/femsyr/fox009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/01/2017] [Indexed: 12/11/2022] Open
Abstract
The kinetochore, a supramolecular protein complex, provides the physical connection between chromatin and the microtubule and ensures correct chromosome segregation during mitosis. Centromeric regions are marked by the presence of the histone H3 variant CENP-A. Cse4, the CENP-A homologue from Saccharomyces cerevisiae, is methylated on arginine 37 in its N-terminus (R37), and the absence of methylation (cse4-R37A) causes synthetic genetic defects in combination with mutations or deletions in genes encoding components of the Ctf19/CCAN complex and with the CDEI binding protein Cbf1. Here, we report that the absence of the E3 ubiquitin ligase Ubr2 as well as its adaptor protein Mub1 suppresses the defects caused by the absence of Cse4-R37 methylation. Ubr2 is known to regulate the levels of the MIND complex component Dsn1 via ubiquitination and proteasome-mediated degradation. Accordingly, we found that overexpression of DSN1 also led to suppression of Cse4 methylation defects. Altogether, our data indicate that the absence of R37 methylation reduces the recruitment of kinetochore proteins to centromeric chromatin, and that this can be compensated for by stabilising the outer kinetochore protein Dsn1.
Collapse
|
12
|
Abstract
Chromosome segregation relies on forces generated by spindle microtubules that are translated into chromosome movement through interactions with kinetochores, highly conserved macromolecular machines that assemble on a specialized centromeric chromatin structure. Kinetochores not only have to stably attach to growing and shrinking microtubules, but they also need to recruit spindle assembly checkpoint proteins to halt cell cycle progression when there are attachment defects. Even the simplest kinetochore in budding yeast contains more than 50 unique components that are present in multiple copies, totaling more than 250 proteins in a single kinetochore. The complex nature of kinetochores makes it challenging to elucidate the contributions of individual components to its various functions. In addition, it is difficult to manipulate forces in vivo to understand how they regulate kinetochore-microtubule attachments and the checkpoint. To address these issues, we developed a technique to purify kinetochores from budding yeast that can be used to analyze kinetochore functions and composition as well as to reconstitute kinetochore-microtubule attachments in vitro.
Collapse
|
13
|
Dhatchinamoorthy K, Mattingly M, Gerton JL. Regulation of kinetochore configuration during mitosis. Curr Genet 2018; 64:1197-1203. [DOI: 10.1007/s00294-018-0841-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
|
14
|
Cuijpers SAG, Vertegaal ACO. Guiding Mitotic Progression by Crosstalk between Post-translational Modifications. Trends Biochem Sci 2018; 43:251-268. [PMID: 29486978 DOI: 10.1016/j.tibs.2018.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022]
Abstract
Cell division is tightly regulated to disentangle copied chromosomes in an orderly manner and prevent loss of genome integrity. During mitosis, transcriptional activity is limited and post-translational modifications (PTMs) are responsible for functional protein regulation. Essential mitotic regulators, including polo-like kinase 1 (PLK1) and cyclin-dependent kinases (CDK), as well as the anaphase-promoting complex/cyclosome (APC/C), are members of the enzymatic machinery responsible for protein modification. Interestingly, communication between PTMs ensures the essential tight and timely control during all consecutive phases of mitosis. Here, we present an overview of current concepts and understanding of crosstalk between PTMs regulating mitotic progression.
Collapse
Affiliation(s)
- Sabine A G Cuijpers
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
15
|
Abstract
The genetic material, contained on chromosomes, is often described as the "blueprint for life." During nuclear division, the chromosomes are pulled into each of the two daughter nuclei by the coordination of spindle microtubules, kinetochores, centromeres, and chromatin. These four functional units must link the chromosomes to the microtubules, signal to the cell when the attachment is made so that division can proceed, and withstand the force generated by pulling the chromosomes to either daughter cell. To perform each of these functions, kinetochores are large protein complexes, approximately 5MDa in size, and they contain at least 45 unique proteins. Many of the central components in the kinetochore are well conserved, yielding a common core of proteins forming consistent structures. However, many of the peripheral subcomplexes vary between different taxonomic groups, including changes in primary sequence and gain or loss of whole proteins. It is still unclear how significant these changes are, and answers to this question may provide insights into adaptation to specific lifestyles or progression of disease that involve chromosome instability.
Collapse
|
16
|
Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae. Metab Eng 2016; 36:68-79. [DOI: 10.1016/j.ymben.2016.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/12/2016] [Accepted: 03/10/2016] [Indexed: 11/21/2022]
|
17
|
Herrero E, Thorpe PH. Synergistic Control of Kinetochore Protein Levels by Psh1 and Ubr2. PLoS Genet 2016; 12:e1005855. [PMID: 26891228 PMCID: PMC4758618 DOI: 10.1371/journal.pgen.1005855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/19/2016] [Indexed: 12/02/2022] Open
Abstract
The accurate segregation of chromosomes during cell division is achieved by attachment of chromosomes to the mitotic spindle via the kinetochore, a large multi-protein complex that assembles on centromeres. The budding yeast kinetochore comprises more than 60 different proteins. Although the structure and function of many of these proteins has been investigated, we have little understanding of the steady state regulation of kinetochores. The primary model of kinetochore homeostasis suggests that kinetochores assemble hierarchically from the centromeric DNA via the inclusion of a centromere-specific histone into chromatin. We tested this model by trying to perturb kinetochore protein levels by overexpressing an outer kinetochore gene, MTW1. This increase in protein failed to change protein recruitment, consistent with the hierarchical assembly model. However, we find that deletion of Psh1, a key ubiquitin ligase that is known to restrict inner kinetochore protein loading, does not increase levels of outer kinetochore proteins, thus breaking the normal kinetochore stoichiometry. This perturbation leads to chromosome segregation defects, which can be partially suppressed by mutation of Ubr2, a second ubiquitin ligase that normally restricts protein levels at the outer kinetochore. Together these data show that Psh1 and Ubr2 synergistically control the amount of proteins at the kinetochore.
Collapse
Affiliation(s)
- Eva Herrero
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Peter H. Thorpe
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| |
Collapse
|
18
|
Synthetic physical interactions map kinetochore regulators and regions sensitive to constitutive Cdc14 localization. Proc Natl Acad Sci U S A 2015; 112:10413-8. [PMID: 26240346 DOI: 10.1073/pnas.1506101112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The location of proteins within eukaryotic cells is often critical for their function and relocation of proteins forms the mainstay of regulatory pathways. To assess the importance of protein location to cellular homeostasis, we have developed a methodology to systematically create binary physical interactions between a query protein and most other members of the proteome. This method allows us to rapidly assess which of the thousands of possible protein interactions modify a phenotype. As proof of principle we studied the kinetochore, a multiprotein assembly that links centromeres to the microtubules of the spindle during cell division. In budding yeast, the kinetochores from the 16 chromosomes cluster together to a single location within the nucleus. The many proteins that make up the kinetochore are regulated through ubiquitylation and phosphorylation. By systematically associating members of the proteome to the kinetochore, we determine which fusions affect its normal function. We identify a number of candidate kinetochore regulators, including the phosphatase Cdc14. We examine where within the kinetochore Cdc14 can act and show that the effect is limited to regions that correlate with known phosphorylation sites, demonstrating the importance of serine phospho-regulation for normal kinetochore homeostasis.
Collapse
|
19
|
Ng CKY, Martelotto LG, Gauthier A, Wen HC, Piscuoglio S, Lim RS, Cowell CF, Wilkerson PM, Wai P, Rodrigues DN, Arnould L, Geyer FC, Bromberg SE, Lacroix-Triki M, Penault-Llorca F, Giard S, Sastre-Garau X, Natrajan R, Norton L, Cottu PH, Weigelt B, Vincent-Salomon A, Reis-Filho JS. Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification. Genome Biol 2015; 16:107. [PMID: 25994018 PMCID: PMC4440518 DOI: 10.1186/s13059-015-0657-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/20/2015] [Indexed: 01/08/2023] Open
Abstract
Background HER2 is overexpressed and amplified in approximately 15% of invasive breast cancers, and is the molecular target and predictive marker of response to anti-HER2 agents. In a subset of these cases, heterogeneous distribution of HER2 gene amplification can be found, which creates clinically challenging scenarios. Currently, breast cancers with HER2 amplification/overexpression in just over 10% of cancer cells are considered HER2-positive for clinical purposes; however, it is unclear as to whether the HER2-negative components of such tumors would be driven by distinct genetic alterations. Here we sought to characterize the pathologic and genetic features of the HER2-positive and HER2-negative components of breast cancers with heterogeneous HER2 gene amplification and to define the repertoire of potential driver genetic alterations in the HER2-negative components of these cases. Results We separately analyzed the HER2-negative and HER2-positive components of 12 HER2 heterogeneous breast cancers using gene copy number profiling and massively parallel sequencing, and identified potential driver genetic alterations restricted to the HER2-negative cells in each case. In vitro experiments provided functional evidence to suggest that BRF2 and DSN1 overexpression/amplification, and the HER2 I767M mutation may be alterations that compensate for the lack of HER2 amplification in the HER2-negative components of HER2 heterogeneous breast cancers. Conclusions Our results indicate that even driver genetic alterations, such as HER2 gene amplification, can be heterogeneously distributed within a cancer, and that the HER2-negative components are likely driven by genetic alterations not present in the HER2-positive components, including BRF2 and DSN1 amplification and HER2 somatic mutations. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0657-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Luciano G Martelotto
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Arnaud Gauthier
- Department of Tumor Biology, Institut Curie, 75248, Paris, France.
| | - Huei-Chi Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Raymond S Lim
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Catherine F Cowell
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Paul M Wilkerson
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
| | - Patty Wai
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
| | - Daniel N Rodrigues
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
| | - Laurent Arnould
- Department of Pathology and CRB Ferdinand Cabanne, Centre Georges Francois Leclerc, 21000, Dijon, France.
| | - Felipe C Geyer
- Departments of Anatomic Pathology and Oncology, Hospital Israelita Albert Einstein, São Paulo, 05652-900, Brazil.
| | - Silvio E Bromberg
- Departments of Anatomic Pathology and Oncology, Hospital Israelita Albert Einstein, São Paulo, 05652-900, Brazil.
| | - Magali Lacroix-Triki
- Department of Pathology, Institut Claudius Regaud, IUCT-Oncopole, 31059, Toulouse, France.
| | - Frederique Penault-Llorca
- Department of Pathology, Centre Jean Perrin, and University of Auvergne, 63000, Clermont Ferrand, France.
| | - Sylvia Giard
- Department of Pathology, Centre Oscar Lambret, 59000, Lille, France.
| | | | - Rachael Natrajan
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Paul H Cottu
- Department of Medical Oncology, Institut Curie, 75248, Paris, France.
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | | | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Affiliate Member, Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Affiliate Member, Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
20
|
Ohkuni K, Takahashi Y, Basrai MA. Protein purification technique that allows detection of sumoylation and ubiquitination of budding yeast kinetochore proteins Ndc10 and Ndc80. J Vis Exp 2015:e52482. [PMID: 25992961 DOI: 10.3791/52482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Post-translational Modifications (PTMs), such as phosphorylation, methylation, acetylation, ubiquitination, and sumoylation, regulate the cellular function of many proteins. PTMs of kinetochore proteins that associate with centromeric DNA mediate faithful chromosome segregation to maintain genome stability. Biochemical approaches such as mass spectrometry and western blot analysis are most commonly used for identification of PTMs. Here, a protein purification method is described that allows the detection of both sumoylation and ubiquitination of the kinetochore proteins, Ndc10 and Ndc80, in Saccharomyces cerevisiae. A strain that expresses polyhistidine-Flag-tagged Smt3 (HF-Smt3) and Myc-tagged Ndc10 or Ndc80 was constructed and used for our studies. For detection of sumoylation, we devised a protocol to affinity purify His-tagged sumoylated proteins by using nickel beads and used western blot analysis with anti-Myc antibody to detect sumoylated Ndc10 and Ndc80. For detection of ubiquitination, we devised a protocol for immunoprecipitation of Myc-tagged proteins and used western blot analysis with anti-Ub antibody to show that Ndc10 and Ndc80 are ubiquitinated. Our results show that epitope tagged-protein of interest in the His-Flag tagged Smt3 strain facilitates the detection of multiple PTMs. Future studies should allow exploitation of this technique to identify and characterize protein interactions that are dependent on a specific PTM.
Collapse
Affiliation(s)
- Kentaro Ohkuni
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health
| | - Yoshimitsu Takahashi
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health;
| |
Collapse
|
21
|
Kriegenburg F, Jakopec V, Poulsen EG, Nielsen SV, Roguev A, Krogan N, Gordon C, Fleig U, Hartmann-Petersen R. A chaperone-assisted degradation pathway targets kinetochore proteins to ensure genome stability. PLoS Genet 2014; 10:e1004140. [PMID: 24497846 PMCID: PMC3907333 DOI: 10.1371/journal.pgen.1004140] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/06/2013] [Indexed: 11/19/2022] Open
Abstract
Cells are regularly exposed to stress conditions that may lead to protein misfolding. To cope with this challenge, molecular chaperones selectively target structurally perturbed proteins for degradation via the ubiquitin-proteasome pathway. In mammals the co-chaperone BAG-1 plays an important role in this system. BAG-1 has two orthologues, Bag101 and Bag102, in the fission yeast Schizosaccharomyces pombe. We show that both Bag101 and Bag102 interact with 26S proteasomes and Hsp70. By epistasis mapping we identify a mutant in the conserved kinetochore component Spc7 (Spc105/Blinkin) as a target for a quality control system that also involves, Hsp70, Bag102, the 26S proteasome, Ubc4 and the ubiquitin-ligases Ubr11 and San1. Accordingly, chromosome missegregation of spc7 mutant strains is alleviated by mutation of components in this pathway. In addition, we isolated a dominant negative version of the deubiquitylating enzyme, Ubp3, as a suppressor of the spc7-23 phenotype, suggesting that the proteasome-associated Ubp3 is required for this degradation system. Finally, our data suggest that the identified pathway is also involved in quality control of other kinetochore components and therefore likely to be a common degradation mechanism to ensure nuclear protein homeostasis and genome integrity. The accumulation of misfolded proteins represents a considerable threat to the health of individual cells and has been linked to severe diseases, including cancer and neurodegenerative disorders. To cope with this threat, especially under stress conditions, cells have evolved efficient quality control mechanisms. In general, these rely on molecular chaperones to either seize and refold misfolded proteins, or target them for degradation via the ubiquitin-proteasome system. At present, our understanding of what determines whether a chaperone commits to a folding or a degradation mode is limited. However, studies suggest that association with certain regulatory co-chaperones contributes to this process. Here, we show that certain BAG-1-type co-chaperones function in quality control by targeting misfolded kinetochore components for proteolysis. The presented genetic and biochemical data show that specific ubiquitin conjugating enzymes and ubiquitin-protein ligases maintain nuclear protein homeostasis and are required for upholding genome integrity.
Collapse
Affiliation(s)
| | - Visnja Jakopec
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, Düsseldorf, Germany
| | - Esben G. Poulsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Assen Roguev
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Colin Gordon
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Ursula Fleig
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine Universität, Düsseldorf, Germany
| | | |
Collapse
|
22
|
Abstract
The kinetochore is the macromolecular protein complex that mediates chromosome segregation. The Dsn1 component is crucial for kinetochore assembly and is phosphorylated by the Aurora B kinase. We found that Aurora B phosphorylation of Dsn1 promotes the interaction between outer and inner kinetochore proteins in budding yeast.
Collapse
|