1
|
Zhang YH, Zhao L, Zhang MY, Cao RD, Hou GM, Teng HJ, Zhang JX. Fatty acid metabolism decreased while sexual selection increased in brown rats spreading south. iScience 2023; 26:107742. [PMID: 37731619 PMCID: PMC10507208 DOI: 10.1016/j.isci.2023.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/27/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
For mammals that originate in the cold north, adapting to warmer environments is crucial for southwards invasion. The brown rat (Rattus norvegicus) originated in Northeast China and has become a global pest. R. n. humiliatus (RNH) spread from the northeast, where R. n. caraco (RNC) lives, to North China and diverged to form a subspecies. Genomic analyses revealed that subspecies differentiation was promoted by temperature but impeded by gene flow and that genes related to fatty acid metabolism were under the strongest selection. Transcriptome analyses revealed downregulated hepatic genes related to fatty acid metabolism and upregulated those related to pheromones in RNH vs. RNC. Similar patterns were observed in relation to cold/warm acclimation. RNH preferred mates with stronger pheromone signals intra-populationally and more genetic divergence inter-populationally. We concluded that RNH experienced reduced fat utilization and increased pheromone-mediated sexual selection during its invasion from the cold north to warm south.
Collapse
Affiliation(s)
- Yao-Hua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
| | - Lei Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Yu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-Dong Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guan-Mei Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Jing Teng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jian-Xu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Sun N, Yang L, Tian F, Zeng H, He Z, Zhao K, Wang C, Meng M, Feng C, Fang C, Lv W, Bo J, Tang Y, Gan X, Peng Z, Chen Y, He S. Sympatric or micro-allopatric speciation in a glacial lake? Genomic islands support neither. Natl Sci Rev 2022; 9:nwac291. [PMID: 36778108 PMCID: PMC9905650 DOI: 10.1093/nsr/nwac291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Apparent cases of sympatric speciation may actually be due to micro-allopatric or micro-parapatric speciation. One way to distinguish between these models is to examine the existence and nature of genomic islands of divergence, wherein divergent DNA segments are interspersed with low-divergence segments. Such islands should be rare or absent under micro-allopatric speciation but common in cases of speciation with gene flow. Sympatric divergence of endemic fishes is known from isolated saline, crater, postglacial, and ancient lakes. Two morphologically distinct cyprinid fishes, Gymnocypris eckloni scoliostomus (GS) and G. eckloni eckloni (GE), in a small glacial lake on the Qinghai-Tibet Plateau, Lake Sunmcuo, match the biogeographic criteria of sympatric speciation. In this study, we examined genome-wide variation in 46 individuals from these two groups. The divergence time between the GS and GE lineages was estimated to be 20-60 Kya. We identified 54 large genomic islands (≥100 kb) of speciation, which accounted for 89.4% of the total length of all genomic islands. These islands harboured divergent genes related to olfactory receptors and olfaction signals that may play important roles in food selection and assortative mating in fishes. Although the genomic islands clearly indicated speciation with gene flow and rejected micro-allopatric speciation, they were too large to support the hypothesis of sympatric speciation. Theoretical and recent empirical studies suggested that continual gene flow in sympatry should give rise to many small genomic islands (as small as a few kilobases in size). Thus, the observed pattern is consistent with the extensive evidence on parapatric speciation, in which adjacent habitats facilitate divergent selection but also permit gene flow during speciation. We suggest that many, if not most, of the reported cases of sympatric speciation are likely to be micro-parapatric speciation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Meng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenguang Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Chengchi Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wenqi Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Bo
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongtao Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400700, China
| | | | | |
Collapse
|
3
|
Alexander A, Robbins MB, Holmes J, Moyle RG, Peterson AT. Limited movement of an avian hybrid zone in relation to regional variation in magnitude of climate change. Mol Ecol 2022; 31:6634-6648. [PMID: 36210655 PMCID: PMC9729445 DOI: 10.1111/mec.16727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 01/13/2023]
Abstract
Studies of natural hybrid zones can provide documentation of range shifts in response to climate change and identify loci important to reproductive isolation. Using a temporal (36-38 years) comparison of the black-capped (Poecile atricapillus) and Carolina (P. carolinensis) chickadee hybrid zone, we investigated movement of the western portion of the zone (western Missouri) and assessed whether loci and pathways underpinning reproductive isolation were similar to those in the eastern portion of the hybrid zone. Using 92 birds sampled along the hybrid zone transect in 2016 and 68 birds sampled between 1978 and 1980, we generated 11,669 SNPs via ddRADseq. These SNPs were used to assess movement of the hybrid zone through time and to evaluate variation in introgression among loci. We demonstrate that the interface has moved ~5 km to the northwest over the last 36-38 years, that is, at only one-fifth the rate at which the eastern portion (e.g., Pennsylvania, Ohio) of the hybrid zone has moved. Temperature trends over the last 38 years reveal that eastern areas have warmed 50% more than western areas in terms of annual mean temperature, possibly providing an explanation for the slower movement of the hybrid zone in Missouri. Our results suggest hybrid zone movement in broadly distributed species, such as chickadees, will vary between areas in response to local differences in the impacts of climate change.
Collapse
Affiliation(s)
- Alana Alexander
- Biodiversity InstituteUniversity of KansasLawrenceKansasUSA
- Department of AnatomyUniversity of OtagoDunedinNew Zealand
| | | | - Jesse Holmes
- Biodiversity InstituteUniversity of KansasLawrenceKansasUSA
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - Robert G. Moyle
- Biodiversity InstituteUniversity of KansasLawrenceKansasUSA
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - A. Townsend Peterson
- Biodiversity InstituteUniversity of KansasLawrenceKansasUSA
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| |
Collapse
|
4
|
Stöck M, Dedukh D, Reifová R, Lamatsch DK, Starostová Z, Janko K. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200103. [PMID: 34304588 PMCID: PMC8310718 DOI: 10.1098/rstb.2020.0103] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies. Under increased divergence, most vertebrates reach complete intrinsic reproductive isolation. Slightly earlier, some hybrids (linked in 'the extended speciation continuum') exhibit aberrant gametogenesis, leading towards female clonality. This facilitates the evolution of various allodiploid and allopolyploid clonal ('asexual') hybrid vertebrates, where 'asexuality' might be a form of intrinsic reproductive isolation. A comprehensive list of 'asexual' hybrid vertebrates shows that they all evolved from parents with divergences that were greater than at the intraspecific level (K2P-distances of greater than 5-22% based on mtDNA). These 'asexual' taxa inherited genetic sex determination by mostly undifferentiated sex chromosomes. Among the few known sex-determining systems in hybrid 'asexuals', female heterogamety (ZW) occurred about twice as often as male heterogamety (XY). We hypothesize that pre-/meiotic aberrations in all-female ZW-hybrids present Haldane-effects promoting their evolution. Understanding the preconditions to produce various clonal or meiotic allopolyploids appears crucial for insights into the evolution of sex, 'asexuality' and polyploidy. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Dunja K. Lamatsch
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Zuzana Starostová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| |
Collapse
|
5
|
Manthey JD, Klicka J, Spellman GM. The Genomic Signature of Allopatric Speciation in a Songbird Is Shaped by Genome Architecture (Aves: Certhia americana). Genome Biol Evol 2021; 13:evab120. [PMID: 34042960 PMCID: PMC8364988 DOI: 10.1093/gbe/evab120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
The genomic signature of speciation with gene flow is often attributed to the strength of divergent selection and recombination rate in regions harboring targets for selection. In contrast, allopatric speciation provides a different geographic context and evolutionary scenario, whereby introgression is limited by isolation rather than selection against gene flow. Lacking shared divergent selection or selection against hybridization, we would predict the genomic signature of allopatric speciation would largely be shaped by genomic architecture-the nonrandom distribution of functional elements and chromosomal characteristics-through its role in affecting the processes of selection and drift. Here, we built and annotated a chromosome-scale genome assembly for a songbird (Passeriformes: Certhia americana). We show that the genomic signature of allopatric speciation between its two primary lineages is largely shaped by genomic architecture. Regionally, gene density and recombination rate variation explain a large proportion of variance in genomic diversity, differentiation, and divergence. We identified a heterogeneous landscape of selection and neutrality, with a large portion of the genome under the effects of indirect selection. We found higher proportions of small chromosomes under the effects of indirect selection, likely because they have relatively higher gene density. At the chromosome scale, differential genomic architecture of macro- and microchromosomes shapes the genomic signatures of speciation: chromosome size has: 1) a positive relationship with genetic differentiation, genetic divergence, rate of lineage sorting in the contact zone, and proportion neutral evolution and 2) a negative relationship with genetic diversity and recombination rate.
Collapse
Affiliation(s)
- Joseph D Manthey
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - John Klicka
- Burke Museum of Natural History, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Garth M Spellman
- Department of Zoology, Denver Museum of Nature & Science, Denver, Colorado, USA
| |
Collapse
|
6
|
Kraatz B, Belabbas R, Fostowicz-Frelik Ł, Ge DY, Kuznetsov AN, Lang MM, López-Torres S, Mohammadi Z, Racicot RA, Ravosa MJ, Sharp AC, Sherratt E, Silcox MT, Słowiak J, Winkler AJ, Ruf I. Lagomorpha as a Model Morphological System. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.636402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Due to their global distribution, invasive history, and unique characteristics, European rabbits are recognizable almost anywhere on our planet. Although they are members of a much larger group of living and extinct mammals [Mammalia, Lagomorpha (rabbits, hares, and pikas)], the group is often characterized by several well-known genera (e.g., Oryctolagus, Sylvilagus, Lepus, and Ochotona). This representation does not capture the extraordinary diversity of behavior and form found throughout the order. Model organisms are commonly used as exemplars for biological research, but there are a limited number of model clades or lineages that have been used to study evolutionary morphology in a more explicitly comparative way. We present this review paper to show that lagomorphs are a strong system in which to study macro- and micro-scale patterns of morphological change within a clade that offers underappreciated levels of diversity. To this end, we offer a summary of the status of relevant aspects of lagomorph biology.
Collapse
|
7
|
Keeping an eye on the use of eye-lens weight as a universal indicator of age for European wild rabbits. Sci Rep 2021; 11:8711. [PMID: 33888785 PMCID: PMC8062486 DOI: 10.1038/s41598-021-88087-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/08/2021] [Indexed: 11/09/2022] Open
Abstract
Accurate methods for age determination are critical to the knowledge of wildlife populations' age structure and, therefore, to their successful management. The reliability of age estimation may have profound economic and ecological consequences on the management of the European wild rabbits, Oryctolagus cuniculus, in its native and introduced range, where it is a keystone species and a major pest, respectively. As in other mammal species, European rabbits' age is often estimated using the Gompertz relationship between age and lens' weight. The growth rate formula has been developed based on data collected from European rabbits introduced in Australia, where a single subspecies (O. cuniculus cuniculus, Occ) is present. However, this curve has never been validated in the species native range, the Iberian Peninsula, where two subspecies (Occ, and O. c. algirus, Oca) coexist naturally. In this study, we tested the relationship between age and lens' weight using 173 Occ and 112 Oca wild rabbits that were surveyed in two experimental facilities in Spain. Our findings show that, in the native range, the published growth curve formula fits well Occ but not Oca data. Therefore, we recommend using the formula reported in this study to estimate the age of Oca (Lens dry weight = 240 × 10(-64.9/(Age+32))). This study supports Oca rabbits' distinctiveness revealed by previous studies, which suggests that management interventions should be applied to protect this subspecies whose distribution range is very narrow and whose populations seem to be declining. More broadly, our findings point to the importance of testing the suitability of growth curves defined for other species with different genetic forms as occurs in the European wild rabbit case.
Collapse
|
8
|
Fan J, Wang Y, Chen YE. Genetically Modified Rabbits for Cardiovascular Research. Front Genet 2021; 12:614379. [PMID: 33603774 PMCID: PMC7885269 DOI: 10.3389/fgene.2021.614379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Rabbits are one of the most used experimental animals for investigating the mechanisms of human cardiovascular disease and lipid metabolism because they are phylogenetically closer to human than rodents (mice and rats). Cholesterol-fed wild-type rabbits were first used to study human atherosclerosis more than 100 years ago and are still playing an important role in cardiovascular research. Furthermore, transgenic rabbits generated by pronuclear microinjection provided another means to investigate many gene functions associated with human disease. Because of the lack of both rabbit embryonic stem cells and the genome information, for a long time, it has been a dream for scientists to obtain knockout rabbits generated by homologous recombination-based genomic manipulation as in mice. This obstacle has greatly hampered using genetically modified rabbits to disclose the molecular mechanisms of many human diseases. The advent of genome editing technologies has dramatically extended the applications of experimental animals including rabbits. In this review, we will update genetically modified rabbits, including transgenic, knock-out, and knock-in rabbits during the past decades regarding their use in cardiovascular research and point out the perspectives in future.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Pathology, Xi'an Medical University, Xi'an, China.,Department of Molecular Pathology, Faculty of Medicine, Graduate School of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yanli Wang
- Department of Pathology, Xi'an Medical University, Xi'an, China
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Garcia-Erill G, Kjaer MM, Albrechtsen A, Siegismund HR, Heller R. Vicariance followed by secondary gene flow in a young gazelle species complex. Mol Ecol 2020; 30:528-544. [PMID: 33226701 PMCID: PMC7898927 DOI: 10.1111/mec.15738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023]
Abstract
Grant's gazelles have recently been proposed to be a species complex comprising three highly divergent mtDNA lineages (Nanger granti, N. notata and N. petersii). The three lineages have nonoverlapping distributions in East Africa, but without any obvious geographical divisions, making them an interesting model for studying the early‐stage evolutionary dynamics of allopatric speciation in detail. Here, we use genomic data obtained by restriction site‐associated (RAD) sequencing of 106 gazelle individuals to shed light on the evolutionary processes underlying Grant's gazelle divergence, to characterize their genetic structure and to assess the presence of gene flow between the main lineages in the species complex. We date the species divergence to 134,000 years ago, which is recent in evolutionary terms. We find population subdivision within N. granti, which coincides with the previously suggested two subspecies, N. g. granti and N. g. robertsii. Moreover, these two lineages seem to have hybridized in Masai Mara. Perhaps more surprisingly given their extreme genetic differentiation, N. granti and N. petersii also show signs of prolonged admixture in Mkomazi, which we identified as a hybrid population most likely founded by allopatric lineages coming into secondary contact. Despite the admixed composition of this population, elevated X chromosomal differentiation suggests that selection may be shaping the outcome of hybridization in this population. Our results therefore provide detailed insights into the processes of allopatric speciation and secondary contact in a recently radiated species complex.
Collapse
Affiliation(s)
- Genís Garcia-Erill
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Michael Munkholm Kjaer
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen N, Denmark.,Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Anders Albrechtsen
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Hans Redlef Siegismund
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Rasmus Heller
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
10
|
Murphy WJ, Foley NM, Bredemeyer KR, Gatesy J, Springer MS. Phylogenomics and the Genetic Architecture of the Placental Mammal Radiation. Annu Rev Anim Biosci 2020; 9:29-53. [PMID: 33228377 DOI: 10.1146/annurev-animal-061220-023149] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of placental mammals are being sequenced at an unprecedented rate. Alignments of hundreds, and one day thousands, of genomes spanning the rich living and extinct diversity of species offer unparalleled power to resolve phylogenetic controversies, identify genomic innovations of adaptation, and dissect the genetic architecture of reproductive isolation. We highlight outstanding questions about the earliest phases of placental mammal diversification and the promise of newer methods, as well as remaining challenges, toward using whole genome data to resolve placental mammal phylogeny. The next phase of mammalian comparative genomics will see the completion and application of finished-quality, gapless genome assemblies from many ordinal lineages and closely related species. Interspecific comparisons between the most hypervariable genomic loci will likely reveal large, but heretofore mostly underappreciated, effects on population divergence, morphological innovation, and the origin of new species.
Collapse
Affiliation(s)
- William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Mark S Springer
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
11
|
Choi JY, Purugganan M, Stacy EA. Divergent Selection and Primary Gene Flow Shape Incipient Speciation of a Riparian Tree on Hawaii Island. Mol Biol Evol 2020; 37:695-710. [PMID: 31693149 PMCID: PMC7038655 DOI: 10.1093/molbev/msz259] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A long-standing goal of evolutionary biology is to understand the mechanisms underlying the formation of species. Of particular interest is whether or not speciation can occur in the presence of gene flow and without a period of physical isolation. Here, we investigated this process within Hawaiian Metrosideros, a hypervariable and highly dispersible woody species complex that dominates the Hawaiian Islands in continuous stands. Specifically, we investigated the origin of Metrosideros polymorpha var. newellii (newellii), a riparian ecotype endemic to Hawaii Island that is purportedly derived from the archipelago-wide M. polymorpha var. glaberrima (glaberrima). Disruptive selection across a sharp forest-riparian ecotone contributes to the isolation of these varieties and is a likely driver of newellii's origin. We examined genome-wide variation of 42 trees from Hawaii Island and older islands. Results revealed a split between glaberrima and newellii within the past 0.3-1.2 My. Admixture was extensive between lineages within Hawaii Island and between islands, but introgression from populations on older islands (i.e., secondary gene flow) did not appear to contribute to the emergence of newellii. In contrast, recurrent gene flow (i.e., primary gene flow) between glaberrima and newellii contributed to the formation of genomic islands of elevated absolute and relative divergence. These regions were enriched for genes with regulatory functions as well as for signals of positive selection, especially in newellii, consistent with divergent selection underlying their formation. In sum, our results support riparian newellii as a rare case of incipient ecological speciation with primary gene flow in trees.
Collapse
Affiliation(s)
- Jae Young Choi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY
| | - Michael Purugganan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY.,Center for Genomics and Systems Biology, NYU Abu Dhabi Research Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Elizabeth A Stacy
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV
| |
Collapse
|
12
|
Wang X, He Z, Shi S, Wu CI. Genes and speciation: is it time to abandon the biological species concept? Natl Sci Rev 2020; 7:1387-1397. [PMID: 34692166 PMCID: PMC8288927 DOI: 10.1093/nsr/nwz220] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 12/31/2019] [Indexed: 01/04/2023] Open
Abstract
The biological species concept (BSC) is the cornerstone of neo-Darwinian thinking. In BSC, species do not exchange genes either during or after speciation. However, as gene flow during speciation is increasingly being reported in a substantial literature, it seems time to reassess the revered, but often doubted, BSC. Contrary to the common perception, BSC should expect substantial gene flow at the onset of speciation, not least because geographical isolation develops gradually. Although BSC does not stipulate how speciation begins, it does require a sustained period of isolation for speciation to complete its course. Evidence against BSC must demonstrate that the observed gene flow does not merely occur at the onset of speciation but continues until its completion. Importantly, recent genomic analyses cannot reject this more realistic version of BSC, although future analyses may still prove it wrong. The ultimate acceptance or rejection of BSC is not merely about a historical debate; rather, it is about the fundamental nature of species - are species (and, hence, divergent adaptations) driven by a relatively small number of genes, or by thousands of them? Many levels of biology, ranging from taxonomy to biodiversity, depend on this resolution.
Collapse
Affiliation(s)
- Xinfeng Wang
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Department of Ecology and Evolution, University of Chicago, Illinois 60637, USA
| |
Collapse
|
13
|
Abstract
An experiment of divergent selection for intramuscular fat was carried out at Universitat Politècnica de València. The high response of selection in intramuscular fat content, after nine generations of selection, and a multidimensional scaling analysis showed a high degree of genomic differentiation between the two divergent populations. Therefore, local genomic differences could link genomic regions, encompassing selective sweeps, to the trait used as selection criterion. In this sense, the aim of this study was to identify genomic regions related to intramuscular fat through three methods for detection of selection signatures and to generate a list of candidate genes. The methods implemented in this study were Wright's fixation index, cross population composite likelihood ratio and cross population - extended haplotype homozygosity. Genomic data came from the 9th generation of the two populations divergently selected, 237 from Low line and 240 from High line. A high single nucleotide polymorphism (SNP) density array, Affymetrix Axiom OrcunSNP Array (around 200k SNPs), was used for genotyping samples. Several genomic regions distributed along rabbit chromosomes (OCU) were identified as signatures of selection (SNPs having a value above cut-off of 1%) within each method. In contrast, 8 genomic regions, harbouring 80 SNPs (OCU1, OCU3, OCU6, OCU7, OCU16 and OCU17), were identified by at least 2 methods and none by the 3 methods. In general, our results suggest that intramuscular fat selection influenced multiple genomic regions which can be a consequence of either only selection effect or the combined effect of selection and genetic drift. In addition, 73 genes were retrieved from the 8 selection signatures. After functional and enrichment analyses, the main genes into the selection signatures linked to energy, fatty acids, carbohydrates and lipid metabolic processes were ACER2, PLIN2, DENND4C, RPS6, RRAGA (OCU1), ST8SIA6, VIM (OCU16), RORA, GANC and PLA2G4B (OCU17). This genomic scan is the first study using rabbits from a divergent selection experiment. Our results pointed out a large polygenic component of the intramuscular fat content. Besides, promising positional candidate genes would be analysed in further studies in order to bear out their contributions to this trait and their feasible implications for rabbit breeding programmes.
Collapse
|
14
|
Mai D, Nalley MJ, Bachtrog D. Patterns of Genomic Differentiation in the Drosophila nasuta Species Complex. Mol Biol Evol 2020; 37:208-220. [PMID: 31556453 PMCID: PMC6984368 DOI: 10.1093/molbev/msz215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Drosophila nasuta species complex contains over a dozen recently diverged species that are distributed widely across South-East Asia, and which shows varying degrees of pre- and postzygotic isolation. Here, we assemble a high-quality genome for D. albomicans using single-molecule sequencing and chromatin conformation capture, and draft genomes for 11 additional species and 67 individuals across the clade, to infer the species phylogeny and patterns of genetic diversity in this group. Our assembly recovers entire chromosomes, and we date the origin of this radiation ∼2 Ma. Despite low levels of overall differentiation, most species or subspecies show clear clustering into their designated taxonomic groups using population genetics and phylogenetic methods. Local evolutionary history is heterogeneous across the genome, and differs between the autosomes and the X chromosome for species in the sulfurigaster subgroup, likely due to autosomal introgression. Our study establishes the nasuta species complex as a promising model system to further characterize the evolution of pre- and postzygotic isolation in this clade.
Collapse
Affiliation(s)
- Dat Mai
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| | - Matthew J Nalley
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA
| |
Collapse
|
15
|
Li G, Figueiró HV, Eizirik E, Murphy WJ. Recombination-Aware Phylogenomics Reveals the Structured Genomic Landscape of Hybridizing Cat Species. Mol Biol Evol 2020; 36:2111-2126. [PMID: 31198971 PMCID: PMC6759079 DOI: 10.1093/molbev/msz139] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Current phylogenomic approaches implicitly assume that the predominant phylogenetic signal within a genome reflects the true evolutionary history of organisms, without assessing the confounding effects of postspeciation gene flow that can produce a mosaic of phylogenetic signals that interact with recombinational variation. Here, we tested the validity of this assumption with a phylogenomic analysis of 27 species of the cat family, assessing local effects of recombination rate on species tree inference and divergence time estimation across their genomes. We found that the prevailing phylogenetic signal within the autosomes is not always representative of the most probable speciation history, due to ancient hybridization throughout felid evolution. Instead, phylogenetic signal was concentrated within regions of low recombination, and notably enriched within large X chromosome recombination cold spots that exhibited recurrent patterns of strong genetic differentiation and selective sweeps across mammalian orders. By contrast, regions of high recombination were enriched for signatures of ancient gene flow, and these sequences inflated crown-lineage divergence times by ∼40%. We conclude that existing phylogenomic approaches to infer the Tree of Life may be highly misleading without considering the genomic architecture of phylogenetic signal relative to recombination rate and its interplay with historical hybridization.
Collapse
Affiliation(s)
- Gang Li
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Henrique V Figueiró
- PUCRS, Escola de Ciências, Laboratory of Genomics and Molecular Biology, Porto Alegre, Brazil.,INCT-EECBio, Brazil
| | - Eduardo Eizirik
- PUCRS, Escola de Ciências, Laboratory of Genomics and Molecular Biology, Porto Alegre, Brazil.,INCT-EECBio, Brazil
| | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| |
Collapse
|
16
|
Matute DR, Comeault AA, Earley E, Serrato-Capuchina A, Peede D, Monroy-Eklund A, Huang W, Jones CD, Mackay TFC, Coyne JA. Rapid and Predictable Evolution of Admixed Populations Between Two Drosophila Species Pairs. Genetics 2020; 214:211-230. [PMID: 31767631 PMCID: PMC6944414 DOI: 10.1534/genetics.119.302685] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
The consequences of hybridization are varied, ranging from the origin of new lineages, introgression of some genes between species, to the extinction of one of the hybridizing species. We generated replicate admixed populations between two pairs of sister species of Drosophila: D. simulans and D. mauritiana; and D. yakuba and D. santomea Each pair consisted of a continental species and an island endemic. The admixed populations were maintained by random mating in discrete generations for over 20 generations. We assessed morphological, behavioral, and fitness-related traits from each replicate population periodically, and sequenced genomic DNA from the populations at generation 20. For both pairs of species, species-specific traits and their genomes regressed to those of the continental species. A few alleles from the island species persisted, but they tended to be proportionally rare among all sites in the genome and were rarely fixed within the populations. This paucity of alleles from the island species was particularly pronounced on the X-chromosome. These results indicate that nearly all foreign genes were quickly eliminated after hybridization and that selection against the minor species genome might be similar across experimental replicates.
Collapse
Affiliation(s)
- Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Aaron A Comeault
- School of Natural Sciences, Bangor University, Wales, UK LL57 2EN
| | - Eric Earley
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | | | - David Peede
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Anaïs Monroy-Eklund
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Wen Huang
- Program in Genetics and Department of Biological Science, North Carolina State University, Raleigh, North Carolina 27695
| | - Corbin D Jones
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Trudy F C Mackay
- Program in Genetics and Department of Biological Science, North Carolina State University, Raleigh, North Carolina 27695
| | - Jerry A Coyne
- Ecology and Evolution, University of Chicago, Illinois 60637
| |
Collapse
|
17
|
Genetic Diversity of IGHM and IGHE in the Leporids Revealed Different Patterns of Diversity in the Two European Rabbit Subspecies ( O. cuniculus algirus and O. c. cuniculus). Animals (Basel) 2019; 9:ani9110955. [PMID: 31718112 PMCID: PMC6912466 DOI: 10.3390/ani9110955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 11/19/2022] Open
Abstract
Simple Summary The study of European rabbit immunoglobulin genes has contributed decisively to the current knowledge on antibody structure and diversification. The European rabbit has also been increasingly used as an animal model for the study of many human diseases, such as syphilis, tuberculosis, and AIDS. As such, the study of its immune system genes is of crucial relevance, but the study of rabbit immunoglobulins has focused only on the IgG and IgA antibodies. In this study, we added to the knowledge of the rabbit immune system by investigating the genetic diversity of two antibodies, IgM and IgE, in wild and domestic rabbits as well as other rabbit close species. With the data obtained in this study, we showed a high similarity between the different rabbit close species studied and we pointed out important genetic differences in the wild and domestic rabbits. Our findings are a valuable tool for the management of rabbit wild populations and domestic breeds and may contribute to the identification of immunoglobulins genetic variants with greater efficiency against pathogens. Abstract The European rabbit (Oryctolagus cuniculus) has been an important model for immunological studies but the study of its immunoglobulins (Ig) has been restricted to its unique IgA and IgG. Here, we studied the genetic diversity of IgM and IgE in several species of leporids and performed population genetics studies on European rabbit wild populations and domestic breeds. The leporids sequencing showed that these Ig are well conserved (98% sequence similarity among leporids), For IgM the Cµ1 and Cµ4 were the most diverse and most conserved domains, respectively, while for IgE the Cε1 was the most diverse domain and Cε2 and Cε3 the most conserved domains. The differences in the pattern of most conserved and most diverse domain between the Ig isotypes are most likely related to each isotype function. The genetic population data showed contrasting results for IgM and IgE. For both Ig, as expected, a greater diversity was observed in the original species range, the Iberian Peninsula. However, unexpectedly the genetic diversity found for IgE in the domestic animals is higher than that for the French wild populations. These results will increase knowledge of the genetic diversity of leporids and wild and domestic rabbit populations and are important tools for the management of wild populations and rabbitries.
Collapse
|
18
|
Haines ML, Luikart G, Amish SJ, Smith S, Latch EK. Evidence for adaptive introgression of exons across a hybrid swarm in deer. BMC Evol Biol 2019; 19:199. [PMID: 31684869 PMCID: PMC6827202 DOI: 10.1186/s12862-019-1497-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background Secondary contact between closely related lineages can result in a variety of outcomes, including hybridization, depending upon the strength of reproductive barriers. By examining the extent to which different parts of the genome introgress, it is possible to infer the strength of selection and gain insight into the evolutionary trajectory of lineages. Following secondary contact approximately 8000 years ago in the Pacific Northwest, mule deer (Odocoileus hemionus hemionus) and black-tailed deer (O. h. columbianus) formed a hybrid swarm along the Cascade mountain range despite substantial differences in body size (up to two times) and habitat preference. In this study, we examined genetic population structure, extent of introgression, and selection pressures in freely interbreeding populations of mule deer and black-tailed deer using mitochondrial DNA sequences, 9 microsatellite loci, and 95 SNPs from protein-coding genes. Results We observed bi-directional hybridization and classified approximately one third of the 172 individuals as hybrids, almost all of which were beyond the F1 generation. High genetic differentiation between black-tailed deer and mule deer at protein-coding genes suggests that there is positive divergent selection, though selection on these loci is relatively weak. Contrary to predictions, there was not greater selection on protein-coding genes thought to be associated with immune function and mate choice. Geographic cline analyses were consistent across genetic markers, suggesting long-term stability (over hundreds of generations), and indicated that the center of the hybrid swarm is 20-30 km to the east of the Cascades ridgeline, where there is a steep ecological transition from wet, forested habitat to dry, scrub habitat. Conclusions Our data are consistent with a genetic boundary between mule deer and black-tailed deer that is porous but maintained by many loci under weak selection having a substantial cumulative effect. The absence of clear reproductive barriers and the consistent centering of geographic clines at a sharp ecotone suggests that ecology is a driver of hybrid swarm dynamics. Adaptive introgression in this study (and others) promotes gene flow and provides valuable insight into selection strength on specific genes and the evolutionary trajectory of hybridizing taxa. Electronic supplementary material The online version of this article (10.1186/s12862-019-1497-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Margaret L Haines
- Behavioral and Molecular Ecology Research Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Gordon Luikart
- Montana Conservation Genomics Laboratory, Division of Biological Sciences, The University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA.,Montana Conservation Genomics Laboratory, Flathead Lake Biological Station, Division of Biological Sciences, The University of Montana, 32125 Bio Station Lane, Polson, MT, 59860, USA
| | - Stephen J Amish
- Montana Conservation Genomics Laboratory, Division of Biological Sciences, The University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Seth Smith
- Montana Conservation Genomics Laboratory, Division of Biological Sciences, The University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Emily K Latch
- Behavioral and Molecular Ecology Research Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA.
| |
Collapse
|
19
|
Fungal species boundaries in the genomics era. Fungal Genet Biol 2019; 131:103249. [PMID: 31279976 DOI: 10.1016/j.fgb.2019.103249] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/21/2019] [Accepted: 06/28/2019] [Indexed: 12/30/2022]
Abstract
Genomic data has opened new possibilities to understand how organisms change over time, and could enable the discovery of previously undescribed species. Although taxonomy used to be based on phenotypes, molecular data has frequently revealed that morphological traits are insufficient to describe biodiversity. Genomics holds the promise of revealing even more genetic discontinuities, but the parameters on how to describe species from genomic data remain unclear. Fungi have been a successful case in which the use of molecular markers has uncovered the existence of genetic boundaries where no crosses are possible. In this minireview, we highlight recent advances, propose a set of standards to use genomic sequences to uncover species boundaries, point out potential pitfalls, and present possible future research directions.
Collapse
|
20
|
Dixon G, Kitano J, Kirkpatrick M. The Origin of a New Sex Chromosome by Introgression between Two Stickleback Fishes. Mol Biol Evol 2019; 36:28-38. [PMID: 30272243 PMCID: PMC6340465 DOI: 10.1093/molbev/msy181] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introgression is increasingly recognized as a source of genetic diversity that fuels adaptation. Its role in the evolution of sex chromosomes, however, is not well known. Here, we confirm the hypothesis that the Y chromosome in the ninespine stickleback, Pungitius pungitius, was established by introgression from the Amur stickleback, P. sinensis. Using whole genome resequencing, we identified a large region of Chr 12 in P. pungitius that is diverged between males and females. Within but not outside of this region, several lines of evidence show that the Y chromosome of P. pungitius shares a most recent common ancestor not with the X chromosome, but with the homologous chromosome in P. sinensis. Accumulation of repetitive elements and gene expression changes on the new Y are consistent with a young sex chromosome in early stages of degeneration, but other hallmarks of Y chromosomes have not yet appeared. Our findings indicate that porous species boundaries can trigger rapid sex chromosome evolution.
Collapse
Affiliation(s)
- Groves Dixon
- Department of Integrative Biology, University of Texas, Austin, TX
| | - Jun Kitano
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas, Austin, TX
| |
Collapse
|
21
|
Larsen PA, Matocq MD. Emerging genomic applications in mammalian ecology, evolution, and conservation. J Mammal 2019. [DOI: 10.1093/jmammal/gyy184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Peter A Larsen
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Marjorie D Matocq
- Department of Natural Resources and Environmental Science; Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
22
|
Pértille F, Da Silva VH, Johansson AM, Lindström T, Wright D, Coutinho LL, Jensen P, Guerrero-Bosagna C. Mutation dynamics of CpG dinucleotides during a recent event of vertebrate diversification. Epigenetics 2019; 14:685-707. [PMID: 31070073 PMCID: PMC6557589 DOI: 10.1080/15592294.2019.1609868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
DNA methylation in CpGs dinucleotides is associated with high mutability and disappearance of CpG sites during evolution. Although the high mutability of CpGs is thought to be relevant for vertebrate evolution, very little is known on the role of CpG-related mutations in the genomic diversification of vertebrates. Our study analysed genetic differences in chickens, between Red Junglefowl (RJF; the living closest relative to the ancestor of domesticated chickens) and domesticated breeds, to identify genomic dynamics that have occurred during the process of their domestication, focusing particularly on CpG-related mutations. Single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) between RJF and these domesticated breeds were assessed in a reduced fraction of their genome. Additionally, DNA methylation in the same fraction of the genome was measured in the sperm of RJF individuals to identify possible correlations with the mutations found between RJF and the domesticated breeds. Our study shows that although the vast majority of CpG-related mutations found relate to CNVs, CpGs disproportionally associate to SNPs in comparison to CNVs, where they are indeed substantially under-represented. Moreover, CpGs seem to be hotspots of mutations related to speciation. We suggest that, on the one hand, CpG-related mutations in CNV regions would promote genomic ‘flexibility’ in evolution, i.e., the ability of the genome to expand its functional possibilities; on the other hand, CpG-related mutations in SNPs would relate to genomic ‘specificity’ in evolution, thus, representing mutations that would associate with phenotypic traits relevant for speciation.
Collapse
Affiliation(s)
- Fábio Pértille
- a Avian Behavioral Genomics and Physiology Group, IFM Biology , Linköping University , Linköping , Sweden.,b Animal Biotechnology Laboratory, Animal Science Department , University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ) , Piracicaba , São Paulo , Brazil
| | - Vinicius H Da Silva
- c Animal Breeding and Genomics Centre , Wageningen University & Research , Wageningen , The Netherlands.,d Department of Animal Ecology (AnE) , Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , The Netherlands.,e Department of Animal Breeding and Genetics , Swedish University of Agricultural Sciences , Uppsala , Sweden
| | - Anna M Johansson
- e Department of Animal Breeding and Genetics , Swedish University of Agricultural Sciences , Uppsala , Sweden
| | - Tom Lindström
- f Division of Theoretical Biology, IFM , Linköping University , Linköping , Sweden
| | - Dominic Wright
- a Avian Behavioral Genomics and Physiology Group, IFM Biology , Linköping University , Linköping , Sweden
| | - Luiz L Coutinho
- b Animal Biotechnology Laboratory, Animal Science Department , University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ) , Piracicaba , São Paulo , Brazil
| | - Per Jensen
- a Avian Behavioral Genomics and Physiology Group, IFM Biology , Linköping University , Linköping , Sweden
| | - Carlos Guerrero-Bosagna
- a Avian Behavioral Genomics and Physiology Group, IFM Biology , Linköping University , Linköping , Sweden
| |
Collapse
|
23
|
Rifkin JL, Castillo AS, Liao IT, Rausher MD. Gene flow, divergent selection and resistance to introgression in two species of morning glories (Ipomoea). Mol Ecol 2019; 28:1709-1729. [PMID: 30451335 DOI: 10.1111/mec.14945] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 09/03/2018] [Accepted: 11/01/2018] [Indexed: 02/03/2023]
Abstract
Gene flow is thought to impede genetic divergence and speciation by homogenizing genomes. Recent theory and research suggest that sufficiently strong divergent selection can overpower gene flow, leading to loci that are highly differentiated compared to others. However, there are also alternative explanations for this pattern. Independent evidence that loci in highly differentiated regions are under divergent selection would allow these explanations to be distinguished, but such evidence is scarce. Here, we present multiple lines of evidence that many of the highly divergent SNPs in a pair of sister morning glory species, Ipomoea cordatotriloba and I. lacunosa, are the result of divergent selection in the face of gene flow. We analysed a SNP data set across the genome to assess the amount of gene flow, resistance to introgression and patterns of selection on loci resistant to introgression. We show that differentiation between the two species is much lower in sympatry than in allopatry, consistent with interspecific gene flow in sympatry. Gene flow appears to be substantially greater from I. lacunosa to I. cordatotriloba than in the reverse direction, resulting in sympatric and allopatric I. cordatotriloba being substantially more different than sympatric and allopatric I. lacunosa. Many SNPs highly differentiated in allopatry have experienced divergent selection, and, despite gene flow in sympatry, resist homogenization in sympatry. Finally, five out of eight floral and inflorescence characteristics measured exhibit asymmetric convergence in sympatry. Consistent with the pattern of gene flow, I. cordatotriloba traits become much more like those of I. lacunosa than the reverse. Our investigation reveals the complex interplay between selection and gene flow that can occur during the early stages of speciation.
Collapse
Affiliation(s)
- Joanna L Rifkin
- Department of Biology, Duke University, Durham, North Carolina
| | | | - Irene T Liao
- Department of Biology, Duke University, Durham, North Carolina
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, North Carolina
| |
Collapse
|
24
|
Fan J, Chen Y, Yan H, Liu B, Wang Y, Zhang J, Chen YE, Liu E, Liang J. Genomic and Transcriptomic Analysis of Hypercholesterolemic Rabbits: Progress and Perspectives. Int J Mol Sci 2018; 19:E3512. [PMID: 30413026 PMCID: PMC6274909 DOI: 10.3390/ijms19113512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
Rabbits (Oryctolagus cuniculus) are one of the most widely used animal models for the study of human lipid metabolism and atherosclerosis because they are more sensitive to a cholesterol diet than other experimental animals such as rodents. Currently, two hypercholesterolemic rabbit models are frequently used for atherosclerosis studies. One is a cholesterol-fed wild-type rabbit and the other is the Watanabe heritable hyperlipidemic (WHHL) rabbit, which is genetically deficient in low density lipoprotein (LDL) receptor function. Wild-type rabbits can be easily induced to develop severe hypercholesterolemia with a cholesterol-rich diet due to the marked increase in hepatically and intestinally derived remnant lipoproteins, called β-very low density lipoproteins (VLDL), which are rich in cholesteryl esters. WHHL rabbits are characterized by elevated plasma LDL levels on a standard chow diet, which resembles human familial hypercholesterolemia. Therefore, both rabbit models develop aortic and coronary atherosclerosis, but the elevated plasma cholesterol levels are caused by completely different mechanisms. In addition, cholesterol-fed rabbits but not WHHL rabbits exhibit different degrees of hepatosteatosis. Recently, we along with others have shown that there are many differentially expressed genes in the atherosclerotic lesions and livers of cholesterol-fed rabbits that are either significantly up- or down-regulated, compared with those in normal rabbits, including genes involved in the regulation of inflammation and lipid metabolism. Therefore, dietary cholesterol plays an important role not only in hypercholesterolemia and atherosclerosis but also in hepatosteatosis. In this review, we make an overview of the recent progress in genomic and transcriptomic analyses of hypercholesterolemic rabbits. These transcriptomic profiling data should provide novel insight into the relationship between hypercholesterolemia and atherosclerosis or hepatic dysfunction caused by dietary cholesterol.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi 409-3898, Japan.
- Department of Pathology, Xi'an Medical University, Xi'an 710021, China.
| | - Yajie Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi 409-3898, Japan.
| | - Haizhao Yan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi 409-3898, Japan.
| | - Baoning Liu
- Research Institute of Atherosclerotic Disease and Laboratory Animal Center, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Yanli Wang
- Department of Pathology, Xi'an Medical University, Xi'an 710021, China.
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease and Laboratory Animal Center, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225001, China.
| |
Collapse
|
25
|
Zhou L, Xiao Q, Bi J, Wang Z, Li Y. RabGTD: a comprehensive database of rabbit genome and transcriptome. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:5053987. [PMID: 30010730 PMCID: PMC6047408 DOI: 10.1093/database/bay075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/22/2018] [Indexed: 12/28/2022]
Abstract
The rabbit is a very important species for both biomedical research and agriculture animal breeding. They are not only the most-used experimental animals for the production of antibodies, but also widely used for studying a variety of human diseases. Here we developed RabGTD, the first comprehensive rabbit database containing both genome and transcriptome data generated by next-generation sequencing. Genomic variations coming from 79 samples were identified and annotated, including 33 samples of wild rabbits and 46 samples of domestic rabbits with diverse populations. Gene expression profiles of 86 tissue samples were complied, including those from the most commonly used models for hyperlipidemia and atherosclerosis. RabGTD is a web-based and open-access resource, which also provides convenient functions and friendly interfaces of searching, browsing and downloading for users to explore the big data. Database URL: http://www.picb.ac.cn/RabGTD/
Collapse
Affiliation(s)
- Lu Zhou
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Xuhui District, Shanghai 200031, China.,University of Chinese Academy of Sciences, 52 Sanlihe Rd., Xicheng District, Beijing 100049, China
| | - Qingyu Xiao
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Xuhui District, Shanghai 200031, China.,University of Chinese Academy of Sciences, 52 Sanlihe Rd., Xicheng District, Beijing 100049, China
| | - Jie Bi
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Xuhui District, Shanghai 200031, China.,University of Chinese Academy of Sciences, 52 Sanlihe Rd., Xicheng District, Beijing 100049, China
| | - Zhen Wang
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Xuhui District, Shanghai 200031, China
| | - Yixue Li
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Rd., Xuhui District, Shanghai 200031, China.,Shanghai Center for Bioinformation Technology, Shanghai Industrial Technology Institute, 1278 Keyuan Rd., Pudong District, Shanghai 201203, China.,Collaborative Innovation Center for Genetics and Development, Fudan University, 2005 Songhu Rd., Yangpu District, Shanghai 200433, China
| |
Collapse
|
26
|
Whole-genome comparison of endogenous retrovirus segregation across wild and domestic host species populations. Proc Natl Acad Sci U S A 2018; 115:11012-11017. [PMID: 30297425 PMCID: PMC6205466 DOI: 10.1073/pnas.1815056115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Although recent advances in sequencing and computational analyses have facilitated use of endogenous retroviruses (ERVs) for deciphering coevolution among retroviruses and their hosts, sampling effects from different host populations present major challenges. Here we utilize available whole-genome data from wild and domesticated European rabbit (Oryctolagus cuniculus sp.) populations, sequenced as DNA pools by paired-end Illumina technology, for identifying segregating reference as well as nonreference ERV loci, to reveal their variation along the host phylogeny and domestication history. To produce new viruses, retroviruses must insert a proviral DNA copy into the host nuclear DNA. Occasional proviral insertions into the host germline have been passed down through generations as inherited ERVs during millions of years. These ERVs represent retroviruses that were active at the time of infection and thus present a remarkable record of historical virus-host associations. To examine segregating ERVs in host populations, we apply a reference library search strategy for anchoring ERV-associated short-sequence read pairs from pooled whole-genome sequences to reference genome assembly positions. We show that most ERVs segregate along host phylogeny but also uncover radiation of some ERVs, identified as segregating loci among wild and domestic rabbits. The study targets pertinent issues regarding genome sampling when examining virus-host evolution from the genomic ERV record and offers improved scope regarding common strategies for single-nucleotide variant analyses in host population comparative genomics.
Collapse
|
27
|
Seixas FA, Boursot P, Melo-Ferreira J. The genomic impact of historical hybridization with massive mitochondrial DNA introgression. Genome Biol 2018; 19:91. [PMID: 30056805 PMCID: PMC6065068 DOI: 10.1186/s13059-018-1471-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The extent to which selection determines interspecific patterns of genetic exchange enlightens the role of adaptation in evolution and speciation. Often reported extensive interspecific introgression could be selection-driven, but also result from demographic processes, especially in cases of invasive species replacements, which can promote introgression at their invasion front. Because invasion and selective sweeps similarly mold variation, population genetics evidence for selection can only be gathered in an explicit demographic framework. The Iberian hare, Lepus granatensis, displays in its northern range extensive mitochondrial DNA introgression from L. timidus, an arctic/boreal species that it replaced locally after the last glacial maximum. We use whole-genome sequencing to infer geographic and genomic patterns of nuclear introgression and fit a neutral model of species replacement with hybridization, allowing us to evaluate how selection influenced introgression genome-wide, including for mtDNA. RESULTS Although the average nuclear and mtDNA introgression patterns contrast strongly, they fit a single demographic model of post-glacial invasive replacement of timidus by granatensis. Outliers of elevated introgression include several genes related to immunity, spermatogenesis, and mitochondrial metabolism. Introgression is reduced on the X chromosome and in low recombining regions. CONCLUSIONS General nuclear and mtDNA patterns of introgression can be explained by purely demographic processes. Hybrid incompatibilities and interplay between selection and recombination locally modulate levels of nuclear introgression. Selection promoted introgression of some genes involved in conflicts, either interspecific (parasites) or possibly cytonuclear. In the latter case, nuclear introgression could mitigate the potential negative effects of alien mtDNA on mitochondrial metabolism and male-specific traits.
Collapse
Affiliation(s)
- Fernando A Seixas
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095, Montpellier, France
| | - Pierre Boursot
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095, Montpellier, France.
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
28
|
Maxwell CS, Sepulveda VE, Turissini DA, Goldman WE, Matute DR. Recent admixture between species of the fungal pathogen Histoplasma. Evol Lett 2018; 2:210-220. [PMID: 30283677 PMCID: PMC6121842 DOI: 10.1002/evl3.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022] Open
Abstract
Hybridization between species of pathogens has the potential to speed evolution of virulence by providing the raw material for adaptation through introgression or by assembling new combinations of virulence traits. Fungal diseases are a source high morbidity, and remain difficult to treat. Yet the frequency of hybridization between fungal species has rarely been explored, and the functional role of introgressed alleles remains largely unknown. Histoplasma mississippiense and H. ohiense are sympatric throughout their range in North America and have distinct virulence strategies, making them an ideal system to examine the role introgression may play in fungal pathogens. We identified introgressed tracts in the genomes of a sample of H. mississippiense and H. ohiense isolates. We found strong evidence in each species for recent admixture, but introgressed alleles were present at low frequencies, suggesting that they were deleterious. Consistent with this, coding and regulatory sequences were strongly depleted within introgressed regions, whereas intergenic regions were enriched, indicating that functional introgressed alleles were frequently deleterious in their new genomic context. Surprisingly, we found only two isolates with substantial admixture: the H. mississippiense and H. ohiense genomic reference strains, WU24 and G217B, respectively. Our results show that recent admixture has occurred, that it is frequently deleterious and that conclusions based on studies of the H. mississippiense and H. ohiense type strains should be revisited with more representative samples from the genus.
Collapse
Affiliation(s)
- Colin S Maxwell
- Biology Department University of North Carolina Chapel Hill North Carolina 27599
| | - Victoria E Sepulveda
- Department of Microbiology and Immunology, School of Medicine University of North Carolina Chapel Hill North Carolina 27599
| | - David A Turissini
- Biology Department University of North Carolina Chapel Hill North Carolina 27599
| | - William E Goldman
- Department of Microbiology and Immunology, School of Medicine University of North Carolina Chapel Hill North Carolina 27599
| | - Daniel R Matute
- Biology Department University of North Carolina Chapel Hill North Carolina 27599
| |
Collapse
|
29
|
Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0455. [PMID: 29109219 PMCID: PMC5698618 DOI: 10.1098/rstb.2016.0455] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 01/04/2023] Open
Abstract
Recombination, the exchange of DNA between maternal and paternal chromosomes during meiosis, is an essential feature of sexual reproduction in nearly all multicellular organisms. While the role of recombination in the evolution of sex has received theoretical and empirical attention, less is known about how recombination rate itself evolves and what influence this has on evolutionary processes within sexually reproducing organisms. Here, we explore the patterns of, and processes governing recombination in eukaryotes. We summarize patterns of variation, integrating current knowledge with an analysis of linkage map data in 353 organisms. We then discuss proximate and ultimate processes governing recombination rate variation and consider how these influence evolutionary processes. Genome-wide recombination rates (cM/Mb) can vary more than tenfold across eukaryotes, and there is large variation in the distribution of recombination events across closely related taxa, populations and individuals. We discuss how variation in rate and distribution relates to genome architecture, genetic and epigenetic mechanisms, sex, environmental perturbations and variable selective pressures. There has been great progress in determining the molecular mechanisms governing recombination, and with the continued development of new modelling and empirical approaches, there is now also great opportunity to further our understanding of how and why recombination rate varies.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Jessica Stapley
- Centre for Adaptation to a Changing Environment, IBZ, ETH Zürich, 8092 Zürich, Switzerland
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Susan E Johnston
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JY, UK
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Carole M Smadja
- Institut des Sciences de l'Evolution UMR 5554, CNRS, IRD, EPHE, Université de Montpellier, 3095 Montpellier cedex 05, France
| |
Collapse
|
30
|
Wang GD, Zhang BL, Zhou WW, Li YX, Jin JQ, Shao Y, Yang HC, Liu YH, Yan F, Chen HM, Jin L, Gao F, Zhang Y, Li H, Mao B, Murphy RW, Wake DB, Zhang YP, Che J. Selection and environmental adaptation along a path to speciation in the Tibetan frog Nanorana parkeri. Proc Natl Acad Sci U S A 2018; 115:E5056-E5065. [PMID: 29760079 PMCID: PMC5984489 DOI: 10.1073/pnas.1716257115] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tibetan frogs, Nanorana parkeri, are differentiated genetically but not morphologically along geographical and elevational gradients in a challenging environment, presenting a unique opportunity to investigate processes leading to speciation. Analyses of whole genomes of 63 frogs reveal population structuring and historical demography, characterized by highly restricted gene flow in a narrow geographic zone lying between matrilines West (W) and East (E). A population found only along a single tributary of the Yalu Zangbu River has the mitogenome only of E, whereas nuclear genes of W comprise 89-95% of the nuclear genome. Selection accounts for 579 broadly scattered, highly divergent regions (HDRs) of the genome, which involve 365 genes. These genes fall into 51 gene ontology (GO) functional classes, 14 of which are likely to be important in driving reproductive isolation. GO enrichment analyses of E reveal many overrepresented functional categories associated with adaptation to high elevations, including blood circulation, response to hypoxia, and UV radiation. Four genes, including DNAJC8 in the brain, TNNC1 and ADORA1 in the heart, and LAMB3 in the lung, differ in levels of expression between low- and high-elevation populations. High-altitude adaptation plays an important role in maintaining and driving continuing divergence and reproductive isolation. Use of total genomes enabled recognition of selection and adaptation in and between populations, as well as documentation of evolution along a stepped cline toward speciation.
Collapse
Affiliation(s)
- Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Wei-Wei Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, 05282 Nay Pyi Taw, Myanmar
| | - Yong-Xin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Jie-Qiong Jin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - He-Chuan Yang
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Yan-Hu Liu
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
| | - Fang Yan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hong-Man Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development of the Ministry of Education and Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Feng Gao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yaoguang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development of the Ministry of Education and Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Haipeng Li
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, Canada M5S 2C6
| | - David B Wake
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720-3160
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, 05282 Nay Pyi Taw, Myanmar
| |
Collapse
|
31
|
Haenel Q, Laurentino TG, Roesti M, Berner D. Meta-analysis of chromosome-scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Mol Ecol 2018; 27:2477-2497. [PMID: 29676042 DOI: 10.1111/mec.14699] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023]
Abstract
Understanding the distribution of crossovers along chromosomes is crucial to evolutionary genomics because the crossover rate determines how strongly a genome region is influenced by natural selection on linked sites. Nevertheless, generalities in the chromosome-scale distribution of crossovers have not been investigated formally. We fill this gap by synthesizing joint information on genetic and physical maps across 62 animal, plant and fungal species. Our quantitative analysis reveals a strong and taxonomically widespread reduction of the crossover rate in the centre of chromosomes relative to their peripheries. We demonstrate that this pattern is poorly explained by the position of the centromere, but find that the magnitude of the relative reduction in the crossover rate in chromosome centres increases with chromosome length. That is, long chromosomes often display a dramatically low crossover rate in their centre, whereas short chromosomes exhibit a relatively homogeneous crossover rate. This observation is compatible with a model in which crossover is initiated from the chromosome tips, an idea with preliminary support from mechanistic investigations of meiotic recombination. Consequently, we show that organisms achieve a higher genome-wide crossover rate by evolving smaller chromosomes. Summarizing theory and providing empirical examples, we finally highlight that taxonomically widespread and systematic heterogeneity in crossover rate along chromosomes generates predictable broad-scale trends in genetic diversity and population differentiation by modifying the impact of natural selection among regions within a genome. We conclude by emphasizing that chromosome-scale heterogeneity in crossover rate should urgently be incorporated into analytical tools in evolutionary genomics, and in the interpretation of resulting patterns.
Collapse
Affiliation(s)
- Quiterie Haenel
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | - Marius Roesti
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Berner
- Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
32
|
Pervasive introgression facilitated domestication and adaptation in the Bos species complex. Nat Ecol Evol 2018; 2:1139-1145. [DOI: 10.1038/s41559-018-0562-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/20/2018] [Indexed: 12/23/2022]
|
33
|
Ravinet M, Yoshida K, Shigenobu S, Toyoda A, Fujiyama A, Kitano J. The genomic landscape at a late stage of stickleback speciation: High genomic divergence interspersed by small localized regions of introgression. PLoS Genet 2018; 14:e1007358. [PMID: 29791436 PMCID: PMC5988309 DOI: 10.1371/journal.pgen.1007358] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 06/05/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022] Open
Abstract
Speciation is a continuous process and analysis of species pairs at different stages of divergence provides insight into how it unfolds. Previous genomic studies on young species pairs have revealed peaks of divergence and heterogeneous genomic differentiation. Yet less known is how localised peaks of differentiation progress to genome-wide divergence during the later stages of speciation in the presence of persistent gene flow. Spanning the speciation continuum, stickleback species pairs are ideal for investigating how genomic divergence builds up during speciation. However, attention has largely focused on young postglacial species pairs, with little knowledge of the genomic signatures of divergence and introgression in older stickleback systems. The Japanese stickleback species pair, composed of the Pacific Ocean three-spined stickleback (Gasterosteus aculeatus) and the Japan Sea stickleback (G. nipponicus), which co-occur in the Japanese islands, is at a late stage of speciation. Divergence likely started well before the end of the last glacial period and crosses between Japan Sea females and Pacific Ocean males result in hybrid male sterility. Here we use coalescent analyses and Approximate Bayesian Computation to show that the two species split approximately 0.68-1 million years ago but that they have continued to exchange genes at a low rate throughout divergence. Population genomic data revealed that, despite gene flow, a high level of genomic differentiation is maintained across the majority of the genome. However, we identified multiple, small regions of introgression, occurring mainly in areas of low recombination rate. Our results demonstrate that a high level of genome-wide divergence can establish in the face of persistent introgression and that gene flow can be localized to small genomic regions at the later stages of speciation with gene flow.
Collapse
Affiliation(s)
- Mark Ravinet
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Kohta Yoshida
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Jun Kitano
- Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| |
Collapse
|
34
|
Schrider DR, Ayroles J, Matute DR, Kern AD. Supervised machine learning reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia. PLoS Genet 2018; 14:e1007341. [PMID: 29684059 PMCID: PMC5933812 DOI: 10.1371/journal.pgen.1007341] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 05/03/2018] [Accepted: 03/28/2018] [Indexed: 12/30/2022] Open
Abstract
Hybridization and gene flow between species appears to be common. Even though it is clear that hybridization is widespread across all surveyed taxonomic groups, the magnitude and consequences of introgression are still largely unknown. Thus it is crucial to develop the statistical machinery required to uncover which genomic regions have recently acquired haplotypes via introgression from a sister population. We developed a novel machine learning framework, called FILET (Finding Introgressed Loci via Extra-Trees) capable of revealing genomic introgression with far greater power than competing methods. FILET works by combining information from a number of population genetic summary statistics, including several new statistics that we introduce, that capture patterns of variation across two populations. We show that FILET is able to identify loci that have experienced gene flow between related species with high accuracy, and in most situations can correctly infer which population was the donor and which was the recipient. Here we describe a data set of outbred diploid Drosophila sechellia genomes, and combine them with data from D. simulans to examine recent introgression between these species using FILET. Although we find that these populations may have split more recently than previously appreciated, FILET confirms that there has indeed been appreciable recent introgression (some of which might have been adaptive) between these species, and reveals that this gene flow is primarily in the direction of D. simulans to D. sechellia. Understanding the extent to which species or diverged populations hybridize in nature is crucially important if we are to understand the speciation process. Accordingly numerous research groups have developed methodology for finding the genetic evidence of such introgression. In this report we develop a supervised machine learning approach for uncovering loci which have introgressed across species boundaries. We show that our method, FILET, has greater accuracy and power than competing methods in discovering introgression, and in addition can detect the directionality associated with the gene flow between species. Using whole genome sequences from Drosophila simulans and Drosophila sechellia we show that FILET discovers quite extensive introgression between these species that has occurred mostly from D. simulans to D. sechellia. Our work highlights the complex process of speciation even within a well-studied system and points to the growing importance of supervised machine learning in population genetics.
Collapse
Affiliation(s)
- Daniel R. Schrider
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail:
| | - Julien Ayroles
- Ecology and Evolutionary Biology Department, Princeton University, Princeton, New Jersey, United States of America
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Daniel R. Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Andrew D. Kern
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
35
|
Sung C, Bell KL, Nice CC, Martin NH. Integrating Bayesian genomic cline analyses and association mapping of morphological and ecological traits to dissect reproductive isolation and introgression in a Louisiana Iris hybrid zone. Mol Ecol 2018; 27:959-978. [DOI: 10.1111/mec.14481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Cheng‐Jung Sung
- Population and Conservation Biology Program Department of Biology Texas State University San Marcos TX USA
| | - Katherine L. Bell
- Population and Conservation Biology Program Department of Biology Texas State University San Marcos TX USA
| | - Chris C. Nice
- Population and Conservation Biology Program Department of Biology Texas State University San Marcos TX USA
| | - Noland H. Martin
- Population and Conservation Biology Program Department of Biology Texas State University San Marcos TX USA
| |
Collapse
|
36
|
Rafati N, Blanco-Aguiar JA, Rubin CJ, Sayyab S, Sabatino SJ, Afonso S, Feng C, Alves PC, Villafuerte R, Ferrand N, Andersson L, Carneiro M. A genomic map of clinal variation across the European rabbit hybrid zone. Mol Ecol 2018; 27:1457-1478. [PMID: 29359877 DOI: 10.1111/mec.14494] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 01/02/2023]
Abstract
Speciation is a process proceeding from weak to complete reproductive isolation. In this continuum, naturally hybridizing taxa provide a promising avenue for revealing the genetic changes associated with the incipient stages of speciation. To identify such changes between two subspecies of rabbits that display partial reproductive isolation, we studied patterns of allele frequency change across their hybrid zone using whole-genome sequencing. To connect levels and patterns of genetic differentiation with phenotypic manifestations of subfertility in hybrid rabbits, we further investigated patterns of gene expression in testis. Geographic cline analysis revealed 253 regions characterized by steep changes in allele frequency across their natural region of contact. This catalog of regions is likely to be enriched for loci implicated in reproductive barriers and yielded several insights into the evolution of hybrid dysfunction in rabbits: (i) incomplete reproductive isolation is likely governed by the effects of many loci, (ii) protein-protein interaction analysis suggest that genes within these loci interact more than expected by chance, (iii) regulatory variation is likely the primary driver of incompatibilities, and (iv) large chromosomal rearrangements appear not to be a major mechanism underlying incompatibilities or promoting isolation in the face of gene flow. We detected extensive misregulation of gene expression in testis of hybrid males, but not a statistical overrepresentation of differentially expressed genes in candidate regions. Our results also did not support an X chromosome-wide disruption of expression as observed in mice and cats, suggesting variation in the mechanistic basis of hybrid male reduced fertility among mammals.
Collapse
Affiliation(s)
- Nima Rafati
- Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory Uppsala, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - José A Blanco-Aguiar
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Instituto de Investigacion en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Carl J Rubin
- Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Shumaila Sayyab
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Stephen J Sabatino
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Sandra Afonso
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Chungang Feng
- Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Paulo C Alves
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | | | - Nuno Ferrand
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,Department of Zoology, Faculty of Sciences, University of Johannesburg, Auckland, South Africa
| | - Leif Andersson
- Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Miguel Carneiro
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
37
|
Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA. Population Genomics: Advancing Understanding of Nature. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_60] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Nadeau NJ, Kawakami T. Population Genomics of Speciation and Admixture. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Ancient polymorphisms and divergence hitchhiking contribute to genomic islands of divergence within a poplar species complex. Proc Natl Acad Sci U S A 2017; 115:E236-E243. [PMID: 29279400 PMCID: PMC5777044 DOI: 10.1073/pnas.1713288114] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
One of the outstanding questions in understanding how new species form is how reproductive isolation arises. In particular, the relative roles of gene flow and natural selection in creating two separate species remains open for debate. Here we show within the four continuously speciating lineages of a poplar that local genomic differentiation of populations is not associated with either rate of recent gene flow or time of species divergence. By contrast, we found that these genomic islands of divergence most likely came about by selective processes—sorting of ancient genetic polymorphisms and the incidental hitchhiking of linked variations. These findings substantially enhance our understanding of genomic changes in speciation. How genome divergence eventually leads to speciation is a topic of prime evolutionary interest. Genomic islands of elevated divergence are frequently reported between diverging lineages, and their size is expected to increase with time and gene flow under the speciation-with-gene-flow model. However, such islands can also result from divergent sorting of ancient polymorphisms, recent ecological selection regardless of gene flow, and/or recurrent background selection and selective sweeps in low-recombination regions. It is challenging to disentangle these nonexclusive alternatives, but here we attempt to do this in an analysis of what drove genomic divergence between four lineages comprising a species complex of desert poplar trees. Within this complex we found that two morphologically delimited species, Populus euphratica and Populus pruinosa, were paraphyletic while the four lineages exhibited contrasting levels of gene flow and divergence times, providing a good system for testing hypotheses on the origin of divergence islands. We show that the size and number of genomic islands that distinguish lineages are not associated with either rate of recent gene flow or time of divergence. Instead, they are most likely derived from divergent sorting of ancient polymorphisms and divergence hitchhiking. We found that highly diverged genes under lineage-specific selection and putatively involved in ecological and morphological divergence occur both within and outside these islands. Our results highlight the need to incorporate demography, absolute divergence measurement, and gene flow rate to explain the formation of genomic islands and to identify potential genomic regions involved in speciation.
Collapse
|
40
|
Berner D, Roesti M. Genomics of adaptive divergence with chromosome-scale heterogeneity in crossover rate. Mol Ecol 2017; 26:6351-6369. [PMID: 28994152 DOI: 10.1111/mec.14373] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
Abstract
Genetic differentiation between divergent populations is often greater in chromosome centres than peripheries. Commonly overlooked, this broadscale differentiation pattern is sometimes ascribed to heterogeneity in crossover rate and hence linked selection within chromosomes, but the underlying mechanisms remain incompletely understood. A literature survey across 46 organisms reveals that most eukaryotes indeed exhibit a reduced crossover rate in chromosome centres relative to the peripheries. Using simulations of populations diverging into ecologically different habitats through sorting of standing genetic variation, we demonstrate that such chromosome-scale heterogeneity in crossover rate, combined with polygenic divergent selection, causes stronger hitchhiking and especially barriers to gene flow across chromosome centres. Without requiring selection on new mutations, this rapidly leads to elevated population differentiation in the low-crossover centres relative to the high-crossover peripheries of chromosomes ("Chromosome Centre-Biased Differentiation", CCBD). Using simulated and empirical data, we then show that strong CCBD between populations can provide evidence of polygenic adaptive divergence with a phase of gene flow. We further demonstrate that chromosome-scale heterogeneity in crossover rate impacts analyses beyond that of population differentiation, including the inference of phylogenies and parallel adaptive evolution among populations, the detection of genetic loci under selection, and the interpretation of the strength of selection on genomic regions. Overall, our results call for a greater appreciation of chromosome-scale heterogeneity in crossover rate in evolutionary genomics.
Collapse
Affiliation(s)
- Daniel Berner
- Zoological Institute, University of Basel, Basel, Switzerland
| | - Marius Roesti
- Zoological Institute, University of Basel, Basel, Switzerland.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Zhang D, Song G, Gao B, Cheng Y, Qu Y, Wu S, Shao S, Wu Y, Alström P, Lei F. Genomic differentiation and patterns of gene flow between two long-tailed tit species (Aegithalos). Mol Ecol 2017; 26:6654-6665. [PMID: 29055167 DOI: 10.1111/mec.14383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 09/26/2017] [Accepted: 10/01/2017] [Indexed: 11/29/2022]
Abstract
Patterns of heterogeneous genomic differentiation have been well documented between closely related species, with some highly differentiated genomic regions ("genomic differentiation islands") spread throughout the genome. Differential levels of gene flow are proposed to account for this pattern, as genomic differentiation islands are suggested to be resistant to gene flow. Recent studies have also suggested that genomic differentiation islands could be explained by linked selection acting on genomic regions with low recombination rates. Here, we investigate genomic differentiation and gene-flow patterns for autosomes using RAD-seq data between two closely related species of long-tailed tits (Aegithalos bonvaloti and A. fuliginosus) in both allopatric and contact zone populations. The results confirm recent or ongoing gene flow between these two species. However, there is little evidence that the genomic regions that were found to be highly differentiated between the contact zone populations are resistant to gene flow, suggesting that differential levels of gene flow is not the cause of the heterogeneous genomic differentiation. Linked selection may be the cause of genomic differentiation islands between the allopatric populations with no or very limited gene flow, but this could not account for the heterogeneous genomic differentiation between the contact zone populations, which show evidence of recent or ongoing gene flow.
Collapse
Affiliation(s)
- Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bin Gao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shaoyuan Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Shimiao Shao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yongjie Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Bio-resources and Eco-environment of Ministry of education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Per Alström
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Fouet C, Kamdem C, Gamez S, White BJ. Genomic insights into adaptive divergence and speciation among malaria vectors of the Anopheles nili group. Evol Appl 2017; 10:897-906. [PMID: 29151881 PMCID: PMC5680430 DOI: 10.1111/eva.12492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/27/2017] [Indexed: 01/16/2023] Open
Abstract
Ongoing speciation in the most important African malaria vectors gives rise to cryptic populations, which differ remarkably in their behavior, ecology, and capacity to vector malaria parasites. Understanding the population structure and the drivers of genetic differentiation among mosquitoes is crucial for effective disease control because heterogeneity within vector species contributes to variability in malaria cases and allow fractions of populations to escape control efforts. To examine population structure and the potential impacts of recent large-scale control interventions, we have investigated the genomic patterns of differentiation in mosquitoes belonging to the Anopheles nili group-a large taxonomic group that diverged ~3 Myr ago. Using 4,343 single nucleotide polymorphisms (SNPs), we detected strong population structure characterized by high-FST values between multiple divergent populations adapted to different habitats within the Central African rainforest. Delineating the cryptic species within the Anopheles nili group is challenging due to incongruence between morphology, ribosomal DNA, and SNP markers consistent with incomplete lineage sorting and/or interspecific gene flow. A very high proportion of loci are fixed (FST = 1) within the genome of putative species, which suggests that ecological and/or reproductive barriers are maintained by strong selection on a substantial number of genes.
Collapse
Affiliation(s)
- Caroline Fouet
- Department of EntomologyUniversity of CaliforniaRiversideCAUSA
| | - Colince Kamdem
- Department of EntomologyUniversity of CaliforniaRiversideCAUSA
| | - Stephanie Gamez
- Department of EntomologyUniversity of CaliforniaRiversideCAUSA
| | - Bradley J. White
- Department of EntomologyUniversity of CaliforniaRiversideCAUSA
- Center for Disease Vector ResearchInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| |
Collapse
|
43
|
Turissini DA, Matute DR. Fine scale mapping of genomic introgressions within the Drosophila yakuba clade. PLoS Genet 2017; 13:e1006971. [PMID: 28873409 PMCID: PMC5600410 DOI: 10.1371/journal.pgen.1006971] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/15/2017] [Accepted: 08/09/2017] [Indexed: 12/15/2022] Open
Abstract
The process of speciation involves populations diverging over time until they are genetically and reproductively isolated. Hybridization between nascent species was long thought to directly oppose speciation. However, the amount of interspecific genetic exchange (introgression) mediated by hybridization remains largely unknown, although recent progress in genome sequencing has made measuring introgression more tractable. A natural place to look for individuals with admixed ancestry (indicative of introgression) is in regions where species co-occur. In west Africa, D. santomea and D. yakuba hybridize on the island of São Tomé, while D. yakuba and D. teissieri hybridize on the nearby island of Bioko. In this report, we quantify the genomic extent of introgression between the three species of the Drosophila yakuba clade (D. yakuba, D. santomea), D. teissieri). We sequenced the genomes of 86 individuals from all three species. We also developed and applied a new statistical framework, using a hidden Markov approach, to identify introgression. We found that introgression has occurred between both species pairs but most introgressed segments are small (on the order of a few kilobases). After ruling out the retention of ancestral polymorphism as an explanation for these similar regions, we find that the sizes of introgressed haplotypes indicate that genetic exchange is not recent (>1,000 generations ago). We additionally show that in both cases, introgression was rarer on X chromosomes than on autosomes which is consistent with sex chromosomes playing a large role in reproductive isolation. Even though the two species pairs have stable contemporary hybrid zones, providing the opportunity for ongoing gene flow, our results indicate that genetic exchange between these species is currently rare.
Collapse
Affiliation(s)
- David A. Turissini
- Biology Department, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel R. Matute
- Biology Department, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
44
|
Ravinet M, Faria R, Butlin RK, Galindo J, Bierne N, Rafajlović M, Noor MAF, Mehlig B, Westram AM. Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. J Evol Biol 2017; 30:1450-1477. [DOI: 10.1111/jeb.13047] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 12/14/2022]
Affiliation(s)
- M. Ravinet
- Centre for Ecological and Evolutionary Synthesis; University of Oslo; Oslo Norway
- National Institute of Genetics; Mishima Shizuoka Japan
| | - R. Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO, Laboratório Associado; Universidade do Porto; Vairão Portugal
- Department of Experimental and Health Sciences; IBE, Institute of Evolutionary Biology (CSIC-UPF); Pompeu Fabra University; Barcelona Spain
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| | - R. K. Butlin
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
- Department of Marine Sciences; Centre for Marine Evolutionary Biology; University of Gothenburg; Gothenburg Sweden
| | - J. Galindo
- Department of Biochemistry, Genetics and Immunology; University of Vigo; Vigo Spain
| | - N. Bierne
- CNRS; Université Montpellier; ISEM; Station Marine Sète France
| | - M. Rafajlović
- Department of Physics; University of Gothenburg; Gothenburg Sweden
| | | | - B. Mehlig
- Department of Physics; University of Gothenburg; Gothenburg Sweden
| | - A. M. Westram
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| |
Collapse
|
45
|
Vijay N, Weissensteiner M, Burri R, Kawakami T, Ellegren H, Wolf JBW. Genomewide patterns of variation in genetic diversity are shared among populations, species and higher-order taxa. Mol Ecol 2017; 26:4284-4295. [PMID: 28570015 DOI: 10.1111/mec.14195] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/10/2017] [Accepted: 05/17/2017] [Indexed: 12/15/2022]
Abstract
Genomewide screens of genetic variation within and between populations can reveal signatures of selection implicated in adaptation and speciation. Genomic regions with low genetic diversity and elevated differentiation reflective of locally reduced effective population sizes (Ne ) are candidates for barrier loci contributing to population divergence. Yet, such candidate genomic regions need not arise as a result of selection promoting adaptation or advancing reproductive isolation. Linked selection unrelated to lineage-specific adaptation or population divergence can generate comparable signatures. It is challenging to distinguish between these processes, particularly when diverging populations share ancestral genetic variation. In this study, we took a comparative approach using population assemblages from distant clades assessing genomic parallelism of variation in Ne . Utilizing population-level polymorphism data from 444 resequenced genomes of three avian clades spanning 50 million years of evolution, we tested whether population genetic summary statistics reflecting genomewide variation in Ne would covary among populations within clades, and importantly, also among clades where lineage sorting has been completed. All statistics including population-scaled recombination rate (ρ), nucleotide diversity (π) and measures of genetic differentiation between populations (FST , PBS, dxy ) were significantly correlated across all phylogenetic distances. Moreover, genomic regions with elevated levels of genetic differentiation were associated with inferred pericentromeric and subtelomeric regions. The phylogenetic stability of diversity landscapes and stable association with genomic features support a role of linked selection not necessarily associated with adaptation and speciation in shaping patterns of genomewide heterogeneity in genetic diversity.
Collapse
Affiliation(s)
- Nagarjun Vijay
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Lab of Molecular and Genomic Evolution, Department of Ecology and Evolutionary Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Weissensteiner
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Reto Burri
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Department of Population Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Takeshi Kawakami
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Hans Ellegren
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Jochen B W Wolf
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
46
|
Han F, Lamichhaney S, Grant BR, Grant PR, Andersson L, Webster MT. Gene flow, ancient polymorphism, and ecological adaptation shape the genomic landscape of divergence among Darwin's finches. Genome Res 2017; 27:1004-1015. [PMID: 28442558 PMCID: PMC5453315 DOI: 10.1101/gr.212522.116] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022]
Abstract
Genomic comparisons of closely related species have identified “islands” of locally elevated sequence divergence. Genomic islands may contain functional variants involved in local adaptation or reproductive isolation and may therefore play an important role in the speciation process. However, genomic islands can also arise through evolutionary processes unrelated to speciation, and examination of their properties can illuminate how new species evolve. Here, we performed scans for regions of high relative divergence (FST) in 12 species pairs of Darwin's finches at different genetic distances. In each pair, we identify genomic islands that are, on average, elevated in both relative divergence (FST) and absolute divergence (dXY). This signal indicates that haplotypes within these genomic regions became isolated from each other earlier than the rest of the genome. Interestingly, similar numbers of genomic islands of elevated dXY are observed in sympatric and allopatric species pairs, suggesting that recent gene flow is not a major factor in their formation. We find that two of the most pronounced genomic islands contain the ALX1 and HMGA2 loci, which are associated with variation in beak shape and size, respectively, suggesting that they are involved in ecological adaptation. A subset of genomic island regions, including these loci, appears to represent anciently diverged haplotypes that evolved early during the radiation of Darwin's finches. Comparative genomics data indicate that these loci, and genomic islands in general, have exceptionally low recombination rates, which may play a role in their establishment.
Collapse
Affiliation(s)
- Fan Han
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden
| | - Sangeet Lamichhaney
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden
| | - B Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544-2016, USA
| | - Peter R Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544-2016, USA
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4461, USA
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
47
|
Yang M, He Z, Shi S, Wu CI. Can genomic data alone tell us whether speciation happened with gene flow? Mol Ecol 2017; 26:2845-2849. [PMID: 28345182 DOI: 10.1111/mec.14117] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 01/02/2023]
Abstract
The allopatric model, which requires a period of geographical isolation for speciation to complete, has been the standard model in the modern era. Recently, "speciation with gene flow" has been widely discussed in relation to the model of "strict allopatry" and the level of DNA divergence across genomic regions. We wish to caution that genomic data by themselves may only permit the rejection of the simplest form of allopatry. Even a slightly more complex and realistic model that starts with subdivided populations would be impossible to reject by the genomic data alone. To resolve this central issue of speciation, other forms of observations such as the sequencing of reproductive isolation genes or the identification of geographical barrier(s) will be necessary.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
48
|
McGirr JA, Martin CH. Novel Candidate Genes Underlying Extreme Trophic Specialization in Caribbean Pupfishes. Mol Biol Evol 2017; 34:873-888. [PMID: 28028132 PMCID: PMC5850223 DOI: 10.1093/molbev/msw286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The genetic changes responsible for evolutionary transitions from generalist to specialist phenotypes are poorly understood. Here we examine the genetic basis of craniofacial traits enabling novel trophic specialization in a sympatric radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas. This recent radiation consists of a generalist species and two novel specialists: a small-jawed "snail-eater" and a large-jawed "scale-eater." We genotyped 12 million single nucleotide polymorphisms (SNPs) by whole-genome resequencing of 37 individuals of all three species from nine populations and integrated genome-wide divergence scans with association mapping to identify divergent regions containing putatively causal SNPs affecting jaw size-the most rapidly diversifying trait in this radiation. A mere 22 fixed variants accompanied extreme ecological divergence between generalist and scale-eater species. We identified 31 regions (20 kb) containing variants fixed between specialists that were significantly associated with variation in jaw size which contained 11 genes annotated for skeletal system effects and 18 novel candidate genes never previously associated with craniofacial phenotypes. Six of these 31 regions showed robust signs of hard selective sweeps after accounting for demographic history. Our data are consistent with predictions based on quantitative genetic models of adaptation, suggesting that the effect sizes of regions influencing jaw phenotypes are positively correlated with distance between fitness peaks on a complex adaptive landscape.
Collapse
Affiliation(s)
- Joseph A. McGirr
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | |
Collapse
|
49
|
LO VALVO M, RUSSO R, MANCUSO FP, PALLA F. mtDNA diversity in a rabbit population from Sicily (Italy). TURK J ZOOL 2017. [DOI: 10.3906/zoo-1511-53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Stanley CE, Kulathinal RJ. Neurogenomics and the role of a large mutational target on rapid behavioral change. Biol Direct 2016; 11:60. [PMID: 27825385 PMCID: PMC5101817 DOI: 10.1186/s13062-016-0162-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/24/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Behavior, while complex and dynamic, is among the most diverse, derived, and rapidly evolving traits in animals. The highly labile nature of heritable behavioral change is observed in such evolutionary phenomena as the emergence of converged behaviors in domesticated animals, the rapid evolution of preferences, and the routine development of ethological isolation between diverging populations and species. In fact, it is believed that nervous system development and its potential to evolve a seemingly infinite array of behavioral innovations played a major role in the successful diversification of metazoans, including our own human lineage. However, unlike other rapidly evolving functional systems such as sperm-egg interactions and immune defense, the genetic basis of rapid behavioral change remains elusive. PRESENTATION OF THE HYPOTHESIS Here we propose that the rapid divergence and widespread novelty of innate and adaptive behavior is primarily a function of its genomic architecture. Specifically, we hypothesize that the broad diversity of behavioral phenotypes present at micro- and macroevolutionary scales is promoted by a disproportionately large mutational target of neurogenic genes. We present evidence that these large neuro-behavioral targets are significant and ubiquitous in animal genomes and suggest that behavior's novelty and rapid emergence are driven by a number of factors including more selection on a larger pool of variants, a greater role of phenotypic plasticity, and/or unique molecular features present in large genes. We briefly discuss the origins of these large neurogenic genes, as they relate to the remarkable diversity of metazoan behaviors, and highlight key consequences on both behavioral traits and neurogenic disease across, respectively, evolutionary and ontogenetic time scales. TESTING THE HYPOTHESIS Current approaches to studying the genetic mechanisms underlying rapid phenotypic change primarily focus on identifying signatures of Darwinian selection in protein-coding regions. In contrast, the large mutational target hypothesis places genomic architecture and a larger allelic pool at the forefront of rapid evolutionary change, particularly in genetic systems that are polygenic and regulatory in nature. Genomic data from brain and neural tissues in mammals as well as a preliminary survey of neurogenic genes from comparative genomic data support this hypothesis while rejecting both positive and relaxed selection on proteins or higher mutation rates. In mammals and invertebrates, neurogenic genes harbor larger protein-coding regions and possess a richer regulatory repertoire of miRNA targets and transcription factor binding sites. Overall, neurogenic genes cover a disproportionately large genomic fraction, providing a sizeable substrate for evolutionary, genetic, and molecular mechanisms to act upon. Readily available comparative and functional genomic data provide unexplored opportunities to test whether a distinct neurogenomic architecture can promote rapid behavioral change via several mechanisms unique to large genes, and which components of this large footprint are uniquely metazoan. IMPLICATIONS OF THE HYPOTHESIS The large mutational target hypothesis highlights the eminent roles of mutation and functional genomic architecture in generating rapid developmental and evolutionary change. It has broad implications on our understanding of the genetics of complex adaptive traits such as behavior by focusing on the importance of mutational input, from SNPs to alternative transcripts to transposable elements, on driving evolutionary rates of functional systems. Such functional divergence has important implications in promoting behavioral isolation across short- and long-term timescales. Due to genome-scaled polygenic adaptation, the large target effect also contributes to our inability to identify adapted behavioral candidate genes. The presence of large neurogenic genes, particularly in the mammalian brain and other neural tissues, further offers emerging insight into the etiology of neurodevelopmental and neurodegenerative diseases. The well-known correlation between neurological spectrum disorders in children and paternal age may simply be a direct result of aging fathers accumulating mutations across these large neurodevelopmental genes. The large mutational target hypothesis can also explain the rapid evolution of other functional systems covering a large genomic fraction such as male fertility and its preferential association with hybrid male sterility among closely related taxa. Overall, a focus on mutational potential may increase our power in understanding the genetic basis of complex phenotypes such as behavior while filling a general gap in understanding their evolution.
Collapse
Affiliation(s)
- Craig E. Stanley
- Department of Biology, Temple University, Philadelphia, PA 19122 USA
- Institute of Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122 USA
| | - Rob J. Kulathinal
- Department of Biology, Temple University, Philadelphia, PA 19122 USA
- Institute of Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|