1
|
Ren Y, Sun X, Chen X, Shao S, Tang J, Xu Z, Xu Y, Kang H, Wang L. The transcription factor ZNF248 promotes colorectal cancer metastasis by binding to ZEB1. J Cancer 2024; 15:5440-5450. [PMID: 39247604 PMCID: PMC11375549 DOI: 10.7150/jca.92886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/05/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors globally, with metastasis emerging as the leading cause of mortality in CRC patients. Transcription factors play pivotal roles in the metastatic process. Using bioinformatics tools, we analyzed the TCGA-COAD and GES146587 datasets and identified ZNF248 participating in tumor progression. By analyzing 100 CRC patient tissues, it is found that ZNF248 is highly expressed in cancer tissue as well as in CRC cell lines identified by qRT-PCR. Our study discovered that ZNF248 enhances CRC cell migratory and invasive capabilities. A positive correlation was found between ZNF248 and epithelial-mesenchymal transition (EMT)-related markers (ZEB1, snail1), while E-cadherin exhibited a negative correlation with ZNF248. In addition, the analysis of the TCGA dataset demonstrated a strong correlation between the mRNA level of ZNF248 and ZEB1 expressions. Furthermore, it is found that the overexpression of ZEB1 could reverse CRC cell invasion and migration, along with the inhibition on EMT marker expressions induced by the RNA interference with ZNF248. Immunohistochemical analysis indicated a substantial association of ZNF248 expression with the lymph node metastasis, and with the liver metastasis (P =0.01, P =0.01), and a positive correlation between ZNF248 and ZEB1 expression (P =0.021) was also identified. Using Chip-PCR assay, it is found that ZNF248 bound to the ZEB1 promoter region. These findings showed that ZNF248 promotes CRC metastasis in vivo, revealed its role as an oncogene in CRC by targeting ZEB1 and activating the EMT pathway, which provided novel and promising biomarkers for CRC therapy through targeting ZEB1.
Collapse
Affiliation(s)
- Yanying Ren
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiaoxu Sun
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Xin Chen
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shuai Shao
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - JingTong Tang
- Department of Gastrointestinal Surgery, the first Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhaohui Xu
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yang Xu
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Haonan Kang
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Medical University, Dalian, Liaoning Province, China
| | - Liming Wang
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
2
|
Zhang L, Zhou Q, Zhang J, Cao K, Fan C, Chen S, Jiang H, Wu F. Liver transcriptomic and proteomic analyses provide new insight into the pathogenesis of liver fibrosis in mice. Genomics 2023; 115:110738. [PMID: 37918454 DOI: 10.1016/j.ygeno.2023.110738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/25/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Liver fibrosis (LF) is a kind of progressive liver injury reaction. The goal of this study was to achieve a more detailed understanding of the molecular changes in response to CCl4-induced LF through the identification of a differentially expressed liver transcriptomic and proteomic. RESULTS A total of 1224 differentially expressed genes (DEGs) and 302 differentially expressed proteins (DEPs) were significantly identified at the transcriptomic and proteomic level, respectively, and 69 genes (hereafter "cor-DEGs-DEPs" genes) were detected at both levels. Pathway enrichment analysis showed that these cor-DEGs-DEPs genes were significantly enriched in 133 pathways. Importantly, among the cor-DEGs-DEPs genes, Gstm1, Gstm3, Ephx1 and Gstp1 were shown to be associated with metabolic pathways, and confirmed by RT-qPCR and parallel reaction monitoring (PRM) verification. CONCLUSIONS Through the combined analysis of transcriptomic and proteomic data, this study provides valuable insights into the potential mechanism of the pathogenesis of LF, and lays a theoretical foundation for the further development of targeted therapy for LF.
Collapse
Affiliation(s)
- Lili Zhang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Qiumei Zhou
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| | - Jiafu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| | - Kefeng Cao
- Departments of Laboratory Medicine, Traditional Chinese Medical Hospital of Taihe County, Fuyang, China.
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Sen Chen
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Furong Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Miyazaki S, Yamano H, Motooka D, Tashiro F, Matsuura T, Miyazaki T, Miyazaki JI. Zfp296 knockout enhances chromatin accessibility and induces a unique state of pluripotency in embryonic stem cells. Commun Biol 2023; 6:771. [PMID: 37488353 PMCID: PMC10366109 DOI: 10.1038/s42003-023-05148-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
The Zfp296 gene encodes a zinc finger-type protein. Its expression is high in mouse embryonic stem cells (ESCs) but rapidly decreases following differentiation. Zfp296-knockout (KO) ESCs grew as flat colonies, which were reverted to rounded colonies by exogenous expression of Zfp296. KO ESCs could not form teratomas when transplanted into mice but could efficiently contribute to germline-competent chimeric mice following blastocyst injection. Transcriptome analysis revealed that Zfp296 deficiency up- and down-regulates a distinct group of genes, among which Dppa3, Otx2, and Pou3f1 were markedly downregulated. Chromatin immunoprecipitation sequencing demonstrated that ZFP296 binding is predominantly seen in the vicinity of the transcription start sites (TSSs) of a number of genes, and ZFP296 was suggested to negatively regulate transcription. Consistently, chromatin accessibility assay clearly showed that ZFP296 binding reduces the accessibility of the TSS regions of target genes. Zfp296-KO ESCs showed increased histone H3K9 di- and trimethylation. Co-immunoprecipitation analyses revealed interaction of ZFP296 with G9a and GLP. These results show that ZFP296 plays essential roles in maintaining the global epigenetic state of ESCs through multiple mechanisms including activation of Dppa3, attenuation of chromatin accessibility, and repression of H3K9 methylation, but that Zfp296-KO ESCs retain a unique state of pluripotency while lacking the teratoma-forming ability.
Collapse
Affiliation(s)
- Satsuki Miyazaki
- Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Yamano
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumi Tashiro
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Takumi Matsuura
- Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Toray Industries, Inc., Tokyo, Japan
| | - Tatsushi Miyazaki
- Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun-Ichi Miyazaki
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
4
|
Zhang L, Wu F, Fan C, Huang S, Ma Y, Chen S, Zhang J, Jiang H. Quantitative phosphoproteomic analysis of mice with liver fibrosis by DIA mass spectrometry analysis with PRM verification. J Proteomics 2023; 271:104768. [PMID: 36336261 DOI: 10.1016/j.jprot.2022.104768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Liver fibrosis (LF), commonly associated with chronic liver diseases, is a major public health problem worldwide. Protein phosphorylation is not only an important form of protein modification in organisms but also the most important mechanism to regulate and control the activity and function of proteins, affecting the occurrence and development of many diseases. However, comprehensive phosphoproteomic profiling in LF has not been fully elucidated. In this study, data-independent acquisition (DIA) was used to analyse the phosphoproteomics of mice with LF. A total of 553 phosphopeptides (representing 440 phosphoproteins) had significant phosphorylation levels. Among these phosphoproteins, 49 were upregulated and 401 were downregulated, and 5 phosphoserine (P-Ser) motifs and 2 phosphothreonine (P-Thr) motifs were conserved in LF. GO and KEGG pathway enrichment analyses identified 769 significant GO terms and 49 significant KEGG pathways. Four phosphorylated proteins were selected for parallel reaction monitoring (PRM) verification, and the results were consistent with DIA data. Together, there were significantly different phosphoproteomic profiles in LF, suggesting that protein phosphorylation was related to the occurrence and progression of LF, which could pave the way for further investigation into the related regulatory mechanisms. SIGNIFICANCE: LF is a necessary stage in the development of chronic liver disease to liver cirrhosis and has attracted wide attention. To the best of our knowledge, there are few reports on the phosphorylated proteomics of LF. In this study, DIA and PRM techniques were used to study the liver tissue of mice induced by CCl4. The results showed that phosphorylation had a significant effect on the activity and function of proteins, and the PRM results were consistent with the trend observed in DIA analysis. This study will help to better reveal the relationship of phosphorylated proteins in LF and lay a foundation for further study of related regulatory mechanisms.
Collapse
Affiliation(s)
- Lili Zhang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Furong Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Shaopeng Huang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Yanzhen Ma
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Sen Chen
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Jiafu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
5
|
Ji G, Xiao X, Huang M, Wu Q. Jmjd6 regulates ES cell homeostasis and enhances reprogramming efficiency. Heliyon 2022; 8:e09105. [PMID: 35846449 PMCID: PMC9280369 DOI: 10.1016/j.heliyon.2022.e09105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Jmjd6 is a conserved nuclear protein which possesses histone arginine demethylation and lysyl hydroxylase activity. Previous studies have revealed that Jmjd6 is essential for cell differentiation and embryo development. However, the role of Jmjd6 in mammalian ES cell identity and reprogramming has been unclear. Here we report that depletion of Jmjd6 not only results in downregulation of pluripotency genes but also is implicated in apoptosis, glycolysis, cell cycle and protein hydroxylation. We also revealed the reduction of BrdU incorporation in Jmjd6 depleted cells. Reprogramming efficiency of MEFs can be enhanced with Jmjd6 overexpression while the efficiency was reduced upon Jmjd6 depletion. Together, these results suggest that Jmjd6 can regulate ES cell homeostasis and enhance somatic cell reprogramming.
Collapse
|
6
|
Zhao J, Jia Y, Zhao W, Chen H, Zhang X, Ngo FY, Luo D, Song Y, Lao L, Rong J. Botanical Drug Puerarin Ameliorates Liposaccharide-Induced Depressive Behaviors in Mice via Inhibiting RagA/mTOR/p70S6K Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7716201. [PMID: 34707778 PMCID: PMC8545548 DOI: 10.1155/2021/7716201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND The depressive symptom hallmarks the progression of the neurodegenerative diseases, especially Alzheimer's disease. Bacterial infection is related to inflammation and depression. The present project thereby examined whether botanical drug puerarin could attenuate liposaccharide- (LPS-) induced depressive behaviors in mice. METHODS Adult male C57BL/6N mice were sequentially treated with LPS and puerarin and evaluated for the depressive behaviors by tail suspension test and forced swim test. The brain tissues were profiled for the molecular targets of puerarin by next-generation RNA sequencing technique. Candidate targets were further verified in LPS-treated mice, neural stem cells, and highly differentiated PC12 cell line. RESULTS Puerarin ameliorated LPS-induced depression in the mice. RNA sequencing profiles revealed that puerarin altered the expression of 16 genes while markedly downregulated Ras-related GTP-binding protein A (RagA) in LPS-treated mice. The effect of puerarin on RagA expression was confirmed by immunostaining, Western blot, and quantitative real-time PCR (qRT-PCR). Biochemical studies showed that puerarin inhibited RagA/mTOR/p70S6K pathway, attenuated the accumulation of mTORC1 in close proximity to lysosome, and reduced the production of proinflammatory cytokines. CONCLUSIONS Botanical drug puerarin attenuated inflammation and depressive behaviors in LPS-challenged mice by inhibiting RagA/mTOR/p70S6K pathways. Puerarin may be a lead compound for the new antidepressant drugs.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
- Zhu Nansun's Workstation, School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
- Yu Jin's Workstation, School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yizhen Jia
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Wei Zhao
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Huixin Chen
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Xiuying Zhang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Fung Yin Ngo
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Dan Luo
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Youqiang Song
- School of Biomedical Science, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Lixing Lao
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jianhui Rong
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
- The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
7
|
Yu S, Li J, Ji G, Ng ZL, Siew J, Lo WN, Ye Y, Chew YY, Long YC, Zhang W, Guccione E, Loh YH, Jiang ZH, Yang H, Wu Q. Npac Is a Co-factor of Histone H3K36me3 and Regulates Transcriptional Elongation in Mouse Embryonic Stem Cells. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 20:110-128. [PMID: 33676077 PMCID: PMC9510873 DOI: 10.1016/j.gpb.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 07/16/2020] [Accepted: 08/15/2020] [Indexed: 12/31/2022]
Abstract
Chromatin modification contributes to pluripotency maintenance in embryonic stem cells (ESCs). However, the related mechanisms remain obscure. Here, we show that Npac, a “reader” of histone H3 lysine 36 trimethylation (H3K36me3), is required to maintain mouse ESC (mESC) pluripotency since knockdown of Npac causes mESC differentiation. Depletion of Npac in mouse embryonic fibroblasts (MEFs) inhibits reprogramming efficiency. Furthermore, our chromatin immunoprecipitation followed by sequencing (ChIP-seq) results of Npac reveal that Npac co-localizes with histone H3K36me3 in gene bodies of actively transcribed genes in mESCs. Interestingly, we find that Npac interacts with positive transcription elongation factor b (p-TEFb), Ser2-phosphorylated RNA Pol II (RNA Pol II Ser2P), and Ser5-phosphorylated RNA Pol II (RNA Pol II Ser5P). Furthermore, depletion of Npac disrupts transcriptional elongation of the pluripotency genes Nanog and Rif1. Taken together, we propose that Npac is essential for the transcriptional elongation of pluripotency genes by recruiting p-TEFb and interacting with RNA Pol II Ser2P and Ser5P.
Collapse
Affiliation(s)
- Sue Yu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jia Li
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
| | - Guanxu Ji
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region 999078, China
| | - Zhen Long Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jiamin Siew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wan Ning Lo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ying Ye
- Cam-Su Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Yuan Yuan Chew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yun Chau Long
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Yuin Han Loh
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Zhi-Hong Jiang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region 999078, China
| | - Henry Yang
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore.
| | - Qiang Wu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region 999078, China.
| |
Collapse
|
8
|
Ng ZL, Siew J, Li J, Ji G, Huang M, Liao X, Yu S, Chew Y, Png CW, Zhang Y, Wen S, Yang H, Zhou Y, Long YC, Jiang ZH, Wu Q. PATZ1 (MAZR) Co-occupies Genomic Sites With p53 and Inhibits Liver Cancer Cell Proliferation via Regulating p27. Front Cell Dev Biol 2021; 9:586150. [PMID: 33598459 PMCID: PMC7882738 DOI: 10.3389/fcell.2021.586150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/13/2021] [Indexed: 01/05/2023] Open
Abstract
Liver cancer is the third most common cause of cancer death in the world. POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1/MAZR) is a transcription factor associated with various cancers. However, the role of PATZ1 in cancer progression remains controversial largely due to lack of genome-wide studies. Here we report that PATZ1 regulates cell proliferation by directly regulating CDKN1B (p27) in hepatocellular carcinoma cells. Our PATZ1 ChIP-seq and gene expression microarray analyses revealed that PATZ1 is strongly related to cancer signatures and cellular proliferation. We further discovered that PATZ1 depletion led to an increased rate of colony formation, elevated Ki-67 expression and greater S phase entry. Importantly, the increased cancer cell proliferation was accompanied with suppressed expression of the cyclin-dependent kinase inhibitor CDKN1B. Consistently, we found that PATZ1 binds to the genomic loci flanking the transcriptional start site of CDKN1B and positively regulates its transcription. Notably, we demonstrated that PATZ1 is a p53 partner and p53 is essential for CDKN1B regulation. In conclusion, our study provides novel mechanistic insights into the inhibitory role of PATZ1 in liver cancer progression, thereby yielding a promising therapeutic intervention to alleviate tumor burden.
Collapse
Affiliation(s)
- Zhen Long Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiamin Siew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jia Li
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Guanxu Ji
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Min Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Xiaohua Liao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Sue Yu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuanyuan Chew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chin Wen Png
- Department of Microbiology, Immunology Programme, Life Sciences Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yongliang Zhang
- Department of Microbiology, Immunology Programme, Life Sciences Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shijun Wen
- Medicinal Chemistry and Molecular Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Henry Yang
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Yiting Zhou
- The Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Chau Long
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Qiang Wu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| |
Collapse
|
9
|
Wang HF, Warrier T, Farran CA, Zheng ZH, Xing QR, Fullwood MJ, Zhang LF, Li H, Xu J, Lim TM, Loh YH. Defining Essential Enhancers for Pluripotent Stem Cells Using a Features-Oriented CRISPR-Cas9 Screen. Cell Rep 2020; 33:108309. [PMID: 33113365 DOI: 10.1016/j.celrep.2020.108309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/23/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022] Open
Abstract
cis-regulatory elements (CREs) regulate the expression of genes in their genomic neighborhoods and influence cellular processes such as cell-fate maintenance and differentiation. To date, there remain major gaps in the functional characterization of CREs and the identification of their target genes in the cellular native environment. In this study, we perform a features-oriented CRISPR-utilized systematic (FOCUS) screen of OCT4-bound CREs using CRISPR-Cas9 to identify functional enhancers important for pluripotency maintenance in mESCs. From the initial 235 candidates tested, 16 CREs are identified to be essential stem cell enhancers. Using RNA-seq and genomic 4C-seq, we further uncover a complex network of candidate CREs and their downstream target genes, which supports the growth and self-renewal of mESCs. Notably, an essential enhancer, CRE111, and its target, Lrrc31, form the important switch to modulate the LIF-JAK1-STAT3 signaling pathway.
Collapse
Affiliation(s)
- Hao Fei Wang
- Laboratory for Epigenetics, Stem Cells and Cell Therapy, Programme in Stem Cell, Regenerative Medicine and Aging, A(∗)STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Tushar Warrier
- Laboratory for Epigenetics, Stem Cells and Cell Therapy, Programme in Stem Cell, Regenerative Medicine and Aging, A(∗)STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Chadi A Farran
- Laboratory for Epigenetics, Stem Cells and Cell Therapy, Programme in Stem Cell, Regenerative Medicine and Aging, A(∗)STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Zi Hao Zheng
- Laboratory for Epigenetics, Stem Cells and Cell Therapy, Programme in Stem Cell, Regenerative Medicine and Aging, A(∗)STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Qiao Rui Xing
- Laboratory for Epigenetics, Stem Cells and Cell Therapy, Programme in Stem Cell, Regenerative Medicine and Aging, A(∗)STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Melissa J Fullwood
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Li-Feng Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian Xu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore; Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | - Tit-Meng Lim
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Yuin-Han Loh
- Laboratory for Epigenetics, Stem Cells and Cell Therapy, Programme in Stem Cell, Regenerative Medicine and Aging, A(∗)STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; Department of Physiology, NUS Yong Loo Lin School of Medicine, 2 Medical Drive, MD9, Singapore 117593, Singapore.
| |
Collapse
|
10
|
Marión RM, Montero JJ, López de Silanes I, Graña-Castro O, Martínez P, Schoeftner S, Palacios-Fábrega JA, Blasco MA. TERRA regulate the transcriptional landscape of pluripotent cells through TRF1-dependent recruitment of PRC2. eLife 2019; 8:44656. [PMID: 31426913 PMCID: PMC6701927 DOI: 10.7554/elife.44656] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that regulate pluripotency are still largely unknown. Here, we show that Telomere Repeat Binding Factor 1 (TRF1), a component of the shelterin complex, regulates the genome-wide binding of polycomb and polycomb H3K27me3 repressive marks to pluripotency genes, thereby exerting vast epigenetic changes that contribute to the maintenance of mouse ES cells in a naïve state. We further show that TRF1 mediates these effects by regulating TERRA, the lncRNAs transcribed from telomeres. We find that TERRAs are enriched at polycomb and stem cell genes in pluripotent cells and that TRF1 abrogation results in increased TERRA levels and in higher TERRA binding to those genes, coincidental with the induction of cell-fate programs and the loss of the naïve state. These results are consistent with a model in which TRF1-dependent changes in TERRA levels modulate polycomb recruitment to pluripotency and differentiation genes. These unprecedented findings explain why TRF1 is essential for the induction and maintenance of pluripotency.
Collapse
Affiliation(s)
- Rosa María Marión
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Juan J Montero
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Isabel López de Silanes
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Stefan Schoeftner
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | | | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| |
Collapse
|
11
|
Jen J, Liu CY, Chen YT, Wu LT, Shieh YC, Lai WW, Wang YC. Oncogenic zinc finger protein ZNF322A promotes stem cell-like properties in lung cancer through transcriptional suppression of c-Myc expression. Cell Death Differ 2019; 26:1283-1298. [PMID: 30258097 PMCID: PMC6748145 DOI: 10.1038/s41418-018-0204-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/06/2018] [Accepted: 09/10/2018] [Indexed: 11/09/2022] Open
Abstract
ZNF322A, a C2H2 zinc finger transcription factor, is an oncoprotein in lung cancer. However, the transcription mechanisms of ZNF322A in lung cancer stem cell-like reprogramming remain elusive. By integrating our chromatin immunoprecipitation-sequencing and RNA-sequencing datasets, we identified and validated the transcriptional targets of ZNF322A, which were significantly enriched in tumorigenic functions and developmental processes. Indeed, overexpression of ZNF322A promoted self-renewal ability and increased stemness-related gene expressions in vitro and in vivo. Importantly, ZNF322A bound directly to c-Myc promoter and recruited histone deacetylase 3 to transcriptionally suppress c-Myc expression, which in turn increased mitochondrial oxidative phosphorylation and promoted cell motility, thus maintaining stem cell-like properties of lung cancer. Clinically, ZNF322AHigh/c-MycLow expression profile was revealed as an independent indicator of poor prognosis in lung cancer patients. Our study provides the first evidence that ZNF322A-centered transcriptome promotes lung tumorigenesis and ZNF322A acts as a transcription suppressor of c-Myc to maintain lung cancer stem cell-like properties by shifting metabolism towards oxidative phosphorylation.
Collapse
Affiliation(s)
- Jayu Jen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Chun-Yen Liu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Ting Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Li-Ting Wu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yang-Chih Shieh
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wu-Wei Lai
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
12
|
Vogel Ciernia A, Laufer BI, Dunaway KW, Mordaunt CE, Coulson RL, Totah TS, Stolzenberg DS, Frahm JC, Singh-Taylor A, Baram TZ, LaSalle JM, Yasui DH. Experience-dependent neuroplasticity of the developing hypothalamus: integrative epigenomic approaches. Epigenetics 2018; 13:318-330. [PMID: 29613827 DOI: 10.1080/15592294.2018.1451720] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Augmented maternal care during the first postnatal week promotes life-long stress resilience and improved memory compared with the outcome of routine rearing conditions. Recent evidence suggests that this programming commences with altered synaptic connectivity of stress sensitive hypothalamic neurons. However, the epigenomic basis of the long-lived consequences is not well understood. Here, we employed whole-genome bisulfite sequencing (WGBS), RNA-sequencing (RNA-seq), and a multiplex microRNA (miRNA) assay to examine the effects of augmented maternal care on DNA cytosine methylation, gene expression, and miRNA expression. A total of 9,439 differentially methylated regions (DMRs) associated with augmented maternal care were identified in male offspring hypothalamus, as well as a modest but significant decrease in global DNA methylation. Differentially methylated and expressed genes were enriched for functions in neurotransmission, neurodevelopment, protein synthesis, and oxidative phosphorylation, as well as known stress response genes. Twenty prioritized genes were identified as highly relevant to the stress resiliency phenotype. This combined unbiased approach enabled the discovery of novel genes and gene pathways that advance our understanding of the epigenomic mechanisms underlying the effects of maternal care on the developing brain.
Collapse
Affiliation(s)
- Annie Vogel Ciernia
- a Department of Medical Microbiology and Immunology , University of California , Davis , CA , USA
| | - Benjamin I Laufer
- a Department of Medical Microbiology and Immunology , University of California , Davis , CA , USA
| | - Keith W Dunaway
- a Department of Medical Microbiology and Immunology , University of California , Davis , CA , USA
| | - Charles E Mordaunt
- a Department of Medical Microbiology and Immunology , University of California , Davis , CA , USA
| | - Rochelle L Coulson
- a Department of Medical Microbiology and Immunology , University of California , Davis , CA , USA
| | - Theresa S Totah
- a Department of Medical Microbiology and Immunology , University of California , Davis , CA , USA
| | | | - Jaime C Frahm
- c Center for Comparative Medicine , University of California , Davis , CA , USA
| | - Akanksha Singh-Taylor
- d Department of Pediatrics and Anatomy/Neurobiology , University of California , Irvine , CA , USA
| | - Tallie Z Baram
- d Department of Pediatrics and Anatomy/Neurobiology , University of California , Irvine , CA , USA
| | - Janine M LaSalle
- a Department of Medical Microbiology and Immunology , University of California , Davis , CA , USA.,e UC Davis Genome Center , UC Davis , Davis , CA , USA.,f UC Davis MIND Institute , UC Davis , Davis , CA , USA
| | - Dag H Yasui
- a Department of Medical Microbiology and Immunology , University of California , Davis , CA , USA
| |
Collapse
|
13
|
Fukuda A, Mitani A, Miyashita T, Kobayashi H, Umezawa A, Akutsu H. Spatiotemporal dynamics of OCT4 protein localization during preimplantation development in mice. Reproduction 2016; 152:417-30. [PMID: 27495230 PMCID: PMC5064760 DOI: 10.1530/rep-16-0277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/04/2016] [Indexed: 01/19/2023]
Abstract
Spatiotemporal expression of transcription factors is crucial for genomic reprogramming. Pou5f1 (Oct4) is an essential transcription factor for reprogramming. A recent study reported that OCT4A, which is crucial for establishment and maintenance of pluripotent cells, is expressed in oocytes, but maternal OCT4A is dispensable for totipotency induction. Whereas another study reported that OCT4B, which is not related to pluripotency, is predominantly expressed instead of OCT4A during early preimplantation phases in mice. To determine the expression states of OCT4 in murine preimplantation embryos, we conducted in-depth expression and functional analyses. We found that pluripotency-related OCT4 mainly localizes to the cytoplasm in early preimplantation phases, with no major nuclear localization until the 8–16-cell stage despite high expression in both oocytes and early embryos. RNA-sequencing analysis using oocytes and early preimplantation embryos could not identify the splice variants creating alternative forms of OCT4 protein. Forced expression of OCT4 in zygotes by the injection of polyadenylated mRNA clearly showed nuclear localization of OCT4 protein around 3–5-fold greater than physiological levels and impaired developmental competency in a dose-dependent manner. Embryos with modest overexpression of OCT4 could develop to the 16-cell stage; however, more than 50% of the embryos were arrested at this stage, similar to the results for OCT4 depletion. In contrast, extensive overexpression of OCT4 resulted in complete arrest at the 2-cell stage accompanied by downregulation of zygotically activated genes and repetitive elements related to the totipotent state. These results demonstrated that OCT4 protein localization was spatiotemporally altered during preimplantation development, and strict control of Oct4 protein levels was essential for proper totipotential reprogramming.
Collapse
Affiliation(s)
- Atsushi Fukuda
- Center for Regenerative MedicineNational Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Atsushi Mitani
- Center for Regenerative MedicineNational Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Toshiyuki Miyashita
- Department of Molecular GeneticsKitasato University Graduate School of Medical Sciences, Minami, Sagamihara, Kanagawa, Japan
| | - Hisato Kobayashi
- NODAI Genome Research CenterTokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Akihiro Umezawa
- Center for Regenerative MedicineNational Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Hidenori Akutsu
- Center for Regenerative MedicineNational Research Institute for Child Health and Development, Setagaya, Tokyo, Japan Department of Stem Cell ResearchFukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima, Japan
| |
Collapse
|
14
|
Abstract
Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.
Collapse
Affiliation(s)
- Jayu Jen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China. .,Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China.
| |
Collapse
|
15
|
Aaronson Y, Livyatan I, Gokhman D, Meshorer E. Systematic identification of gene family regulators in mouse and human embryonic stem cells. Nucleic Acids Res 2016; 44:4080-9. [PMID: 27084933 PMCID: PMC4872113 DOI: 10.1093/nar/gkw259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/01/2016] [Indexed: 01/22/2023] Open
Abstract
Pluripotent self-renewing embryonic stem cells (ESCs) have been the focus of a growing number of high-throughput experiments, revealing the genome-wide locations of hundreds of transcription factors and histone modifications. While most of these datasets were used in a specific context, all datasets combined offer a comprehensive view of chromatin characteristics and regulatory elements that govern cell states. Here, using hundreds of datasets in ESCs, we generated colocalization maps of chromatin proteins and modifications, and built a discovery pipeline for regulatory proteins of gene families. By comparing genome-wide binding data with over-expression and knockdown analysis of hundreds of genes, we discovered that the pluripotency-related factor NR5A2 separates mitochondrial from cytosolic ribosomal genes, regulating their expression. We further show that genes with a common chromatin profile are enriched for distinct Gene Ontology (GO) categories. Our approach can be generalized to reveal common regulators of any gene group; discover novel gene families, and identify common genomic elements based on shared chromatin features.
Collapse
Affiliation(s)
- Yair Aaronson
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Jerusalem 91904, Israel
| | - Ilana Livyatan
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Jerusalem 91904, Israel
| | - David Gokhman
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Jerusalem 91904, Israel
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Jerusalem 91904, Israel The Edmond and Lily Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| |
Collapse
|
16
|
Yu S, Ma H, Ow JR, Goh Z, Chiang R, Yang H, Loh YH, Wu Q. Zfp553 Is Essential for Maintenance and Acquisition of Pluripotency. Stem Cells Dev 2016; 25:55-67. [DOI: 10.1089/scd.2015.0128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Sue Yu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Ma
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin Rong Ow
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ziyi Goh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rachel Chiang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Yuin Han Loh
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Qiang Wu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Parfitt DE, Shen MM. From blastocyst to gastrula: gene regulatory networks of embryonic stem cells and early mouse embryogenesis. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0542. [PMID: 25349451 DOI: 10.1098/rstb.2013.0542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To date, many regulatory genes and signalling events coordinating mammalian development from blastocyst to gastrulation stages have been identified by mutational analyses and reverse-genetic approaches, typically on a gene-by-gene basis. More recent studies have applied bioinformatic approaches to generate regulatory network models of gene interactions on a genome-wide scale. Such models have provided insights into the gene networks regulating pluripotency in embryonic and epiblast stem cells, as well as cell-lineage determination in vivo. Here, we review how regulatory networks constructed for different stem cell types relate to corresponding networks in vivo and provide insights into understanding the molecular regulation of the blastocyst-gastrula transition.
Collapse
Affiliation(s)
- David-Emlyn Parfitt
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael M Shen
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
18
|
The dosage of Patz1 modulates reprogramming process. Sci Rep 2014; 4:7519. [PMID: 25515777 PMCID: PMC4268633 DOI: 10.1038/srep07519] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/26/2014] [Indexed: 01/11/2023] Open
Abstract
The acquisition of pluripotent cells can be achieved by combined overexpression of transcription factors Oct4, Klf4, Sox2 and c-Myc in somatic cells. This cellular reprogramming process overcomes various barriers to re-activate pluripotency genes and re-acquire the highly dynamic pluripotent chromatin status. Many genetic and epigenetic factors are essentially involved in the reprogramming process. We previously reported that Patz1 is required for maintenance of ES cell identity. Here we report that Patz1 plays an inhibitory role in OKSM-induced reprogramming process since more iPS colonies can be induced from Patz1+/− MEFs than wild type MEFs; while the addition of Patz1 significantly repressed reprogramming efficiency. Patz1+/− MEFs can surpass the senescence barrier of Ink4a/Arf locus, thus enhancing iPS colonies formation. Moreover, Patz1+/− MEFs displayed higher levels of acetylated histone H3, H3K4me2, H3K4me3, H3K36me3 and lower levels of histone H3K9me3 and HP1α, indicating that heterozygous knockout of Patz1 results in a globally open chromatin which is more accessible for transcriptional activation. However, Patz1−/− MEFs gave the lowest reprogramming efficiency which may result from cell senescence trigged by up-regulated Ink4a/Arf locus. Together, we have demonstrated that the dosage of Patz1 modulates reprogramming process via significantly influencing cell senescence, proliferation and chromatin structure.
Collapse
|