1
|
Oklitschek M, Carreira LAM, Muratoğlu M, Søgaard-Andersen L, Treuner-Lange A. Combinatorial control of type IVa pili formation by the four polarized regulators MglA, SgmX, FrzS, and SopA. J Bacteriol 2024; 206:e0010824. [PMID: 39404445 PMCID: PMC11580455 DOI: 10.1128/jb.00108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/20/2024] [Indexed: 11/22/2024] Open
Abstract
Type IVa pili (T4aP) are widespread and enable bacteria to translocate across surfaces. T4aP engage in cycles of extension, surface adhesion, and retraction, thereby pulling cells forward. Accordingly, the number and localization of T4aP are critical to efficient translocation. Here, we address how T4aP formation is regulated in Myxococcus xanthus, which translocates with a well-defined leading and lagging cell pole using T4aP at the leading pole. This localization is orchestrated by the small GTPase MglA and its downstream effector SgmX that both localize at the leading pole and recruit the PilB extension ATPase to the T4aP machinery at this pole. Here, we identify the previously uncharacterized protein SopA and show that it interacts directly with SgmX, localizes at the leading pole, stimulates polar localization of PilB, and is important for T4aP formation. We corroborate that MglA also recruits FrzS to the leading pole, and FrzS stimulates SgmX recruitment. In addition, FrzS and SgmX separately recruit SopA. Precise quantification of T4aP-formation and T4aP-dependent motility in various mutants supports a model whereby the main pathway for stimulating T4aP formation is the MglA/SgmX pathway. FrzS stimulates this pathway by recruiting SgmX and SopA. SopA stimulates the MglA/SgmX pathway by stimulating the function of SgmX, likely by promoting the SgmX-dependent recruitment of PilB to the T4aP machinery. The architecture of the MglA/SgmX/FrzS/SopA protein interaction network for orchestrating T4aP formation allows for combinatorial regulation of T4aP levels at the leading cell pole resulting in discrete levels of T4aP-dependent motility. IMPORTANCE Type IVa pili (T4aP) are widespread bacterial cell surface structures with important functions in translocation across surfaces, surface adhesion, biofilm formation, and virulence. T4aP-dependent translocation crucially depends on the number of pili. To address how the number of T4aP is regulated, we focused on M. xanthus, which assembles T4aP at the leading cell pole and is a model organism for T4aP biology. Our results support a model whereby the four proteins MglA, SgmX, FrzS, and the newly identified SopA protein establish a highly intricate interaction network for orchestrating T4aP formation at the leading cell pole. This network allows for combinatorial regulation of the number of T4aP resulting in discrete levels of T4aP-dependent motility.
Collapse
Affiliation(s)
- Michel Oklitschek
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Memduha Muratoğlu
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anke Treuner-Lange
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
2
|
Wang S, Gong Y, Chen GJ, Du ZJ. The Predatory Properties of Bradymonabacteria, the Representative of Facultative Prey-Dependent Predators. Microorganisms 2024; 12:2008. [PMID: 39458317 PMCID: PMC11509652 DOI: 10.3390/microorganisms12102008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Bradymonabacteria, as the representative of the facultative prey-dependent predators, were re-classified from the preceding Deltaproteobacteria into the phylum Myxococcota and proposed as a novel class named Bradymonadia. However, it was ambiguous whether their predatory pattern and properties were similar to those of the other myxobacterial predators. Therefore, the physiologic features were compared to determine the similarities and differences during the process of group attack and kin discrimination. Comparative genomic analyses were performed to conclude the core genome encoded commonly by bradymonabacteria, Myxococcia, and Polyangia. In conclusion, we proposed that bradymonabacteria have a predation pattern similar to the that of the representative of opportunistic predators like Myxococcus xanthus but with some subtle differences. Their predation was predicted to be initiated by the needle-less T3SS*, and the S-motility mediated by T4P also participated in the process. Meanwhile, their group attacks relied on cell contact and cell destiny. Inter-species (strains) kin discriminations occurred without the existence of T6SS. However, no extracellular lethal substance was detected in the fermentation liquor culture of bradymonabacteria, and the death of prey cells could only be observed when touched by their cells. Moreover, the prey-selective predation was observed when the predator encountered certain prey from Bacillus (G+), Algoriphagus (G-), and Nocardioides (G+). Bradymonabacteria can be regarded as a potential consumer and decomposer, and preying on many sea-dwelling or human pathogenic bacteria allows this group a broad application prospect in marine culture and clinical disease control. Our study will provide more evidence for its exploitations and applications.
Collapse
Affiliation(s)
- Shuo Wang
- School of Life Science, Yantai University, Yantai 264005, China;
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (G.-J.C.)
| | - Ya Gong
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (G.-J.C.)
| | - Guan-Jun Chen
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (G.-J.C.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai 264209, China; (Y.G.); (G.-J.C.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Mookherjee A, Mitra M, Sason G, Jose PA, Martinenko M, Pietrokovski S, Jurkevitch E. Flagellar stator genes control a trophic shift from obligate to facultative predation and biofilm formation in a bacterial predator. mBio 2024; 15:e0071524. [PMID: 39037271 PMCID: PMC11323537 DOI: 10.1128/mbio.00715-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024] Open
Abstract
The bacterial predator Bdellovibrio bacteriovorus is considered to be obligatorily prey (host)-dependent (H-D), and thus unable to form biofilms. However, spontaneous host-independent (H-I) variants grow axenically and can form robust biofilms. A screen of 350 H-I mutants revealed that single mutations in stator genes fliL or motA were sufficient to generate flagellar motility-defective H-I strains able to adhere to surfaces but unable to develop biofilms. The variants showed large transcriptional shifts in genes related to flagella, prey-invasion, and cyclic-di-GMP (CdG), as well as large changes in CdG cellular concentration relative to the H-D parent. The introduction of the parental fliL allele resulted in a full reversion to the H-D phenotype, but we propose that specific interactions between stator proteins prevented functional complementation by fliL paralogs. In contrast, specific mutations in a pilus-associated protein (Bd0108) mutant background were necessary for biofilm formation, including secretion of extracellular DNA (eDNA), proteins, and polysaccharides matrix components. Remarkably, fliL disruption strongly reduced biofilm development. All H-I variants grew similarly without prey, showed a strain-specific reduction in predatory ability in prey suspensions, but maintained similar high efficiency in prey biofilms. Population-wide allele sequencing suggested additional routes to host independence. Thus, stator and invasion pole-dependent signaling control the H-D and the H-I biofilm-forming phenotypes, with single mutations overriding prey requirements, and enabling shifts from obligate to facultative predation, with potential consequences on community dynamics. Our findings on the facility and variety of changes leading to facultative predation also challenge the concept of Bdellovibrio and like organisms being obligate predators. IMPORTANCE The ability of bacteria to form biofilms is a central research theme in biology, medicine, and the environment. We show that cultures of the obligate (host-dependent) "solitary" predatory bacterium Bdellovibrio bacteriovorus, which cannot replicate without prey, can use various genetic routes to spontaneously yield host-independent (H-I) variants that grow axenically (as a single species, in the absence of prey) and exhibit various surface attachment phenotypes, including biofilm formation. These routes include single mutations in flagellar stator genes that affect biofilm formation, provoke motor instability and large motility defects, and disrupt cyclic-di-GMP intracellular signaling. H-I strains also exhibit reduced predatory efficiency in suspension but high efficiency in prey biofilms. These changes override the requirements for prey, enabling a shift from obligate to facultative predation, with potential consequences on community dynamics.
Collapse
Affiliation(s)
- Abhirup Mookherjee
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mohor Mitra
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gal Sason
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Polpass Arul Jose
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maria Martinenko
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
4
|
Salgado S, Hernández‐Herreros N, Prieto MA. Controlling the expression of heterologous genes in Bdellovibrio bacteriovorus using synthetic biology strategies. Microb Biotechnol 2024; 17:e14517. [PMID: 38934530 PMCID: PMC11209729 DOI: 10.1111/1751-7915.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Bdellovibrio bacteriovorus HD100 is an obligate predatory bacterium that preys upon Gram-negative bacteria. It has been proposed to be applied as a "living antibiotic" in several fields such as agriculture or even medicine, since it is able to prey upon bacterial pathogens. Its interesting lifestyle makes this bacterium very attractive as a microbial chassis for co-culture systems including two partners. A limitation to this goal is the scarcity of suitable synthetic biology tools for predator domestication. To fill this gap, we have firstly adapted the hierarchical assembly cloning technique Golden Standard (GS) to make it compatible with B. bacteriovorus HD100. The chromosomal integration of the Tn7 transposon's mobile element, in conjunction with the application of the GS technique, has allowed the systematic characterization of a repertoire of constitutive and inducible promoters, facilitating the control of the expression of heterologous genes in this bacterium. PJExD/EliR proved to be an exceptional promoter/regulator system in B. bacteriovorus HD100 when precise regulation is essential, while the synthetic promoter PBG37 showed a constitutive high expression. These genetic tools represent a step forward in the conversion of B. bacteriovorus into an amenable strain for microbial biotechnology approaches.
Collapse
Affiliation(s)
- Sergio Salgado
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC)MadridSpain
- Department of Microbial and Plant BiotechnologyPolymer Biotechnology Group, Margarita Salas Center for Biological Research (CIB‐CSIC)MadridSpain
| | - Natalia Hernández‐Herreros
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC)MadridSpain
- Department of Microbial and Plant BiotechnologyPolymer Biotechnology Group, Margarita Salas Center for Biological Research (CIB‐CSIC)MadridSpain
| | - M. Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC)MadridSpain
- Department of Microbial and Plant BiotechnologyPolymer Biotechnology Group, Margarita Salas Center for Biological Research (CIB‐CSIC)MadridSpain
| |
Collapse
|
5
|
Remy O, Santin YG, Jonckheere V, Tesseur C, Kaljević J, Van Damme P, Laloux G. Distinct dynamics and proximity networks of hub proteins at the prey-invading cell pole in a predatory bacterium. J Bacteriol 2024; 206:e0001424. [PMID: 38470120 PMCID: PMC11025332 DOI: 10.1128/jb.00014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
In bacteria, cell poles function as subcellular compartments where proteins localize during specific lifecycle stages, orchestrated by polar "hub" proteins. Whereas most described bacteria inherit an "old" pole from the mother cell and a "new" pole from cell division, generating cell asymmetry at birth, non-binary division poses challenges for establishing cell polarity, particularly for daughter cells inheriting only new poles. We investigated polarity dynamics in the obligate predatory bacterium Bdellovibrio bacteriovorus, proliferating through filamentous growth followed by non-binary division within prey bacteria. Monitoring the subcellular localization of two proteins known as polar hubs in other species, RomR and DivIVA, revealed RomR as an early polarity marker in B. bacteriovorus. RomR already marks the future anterior poles of the progeny during the predator's growth phase, during a precise period closely following the onset of divisome assembly and the end of chromosome segregation. In contrast to RomR's stable unipolar localization in the progeny, DivIVA exhibits a dynamic pole-to-pole localization. This behavior changes shortly before the division of the elongated predator cell, where DivIVA accumulates at all septa and both poles. In vivo protein interaction networks for DivIVA and RomR, mapped through endogenous miniTurbo-based proximity labeling, further underscore their distinct roles in cell polarization and reinforce the importance of the anterior "invasive" cell pole in prey-predator interactions. Our work also emphasizes the precise spatiotemporal order of cellular processes underlying B. bacteriovorus proliferation, offering insights into the subcellular organization of bacteria with filamentous growth and non-binary division.IMPORTANCEIn bacteria, cell poles are crucial areas where "hub" proteins orchestrate lifecycle events through interactions with multiple partners at specific times. While most bacteria exhibit one "old" and one "new" pole, inherited from the previous division event, setting polar identity poses challenges in bacteria with non-binary division. This study explores polar proteins in the predatory bacterium Bdellovibrio bacteriovorus, which undergoes filamentous growth followed by non-binary division inside another bacterium. Our research reveals distinct localization dynamics of the polar proteins RomR and DivIVA, highlighting RomR as an early "hub" marking polar identity in the filamentous mother cell. Using miniTurbo-based proximity labeling, we uncovered their unique protein networks. Overall, our work provides new insights into the cell polarity in non-binary dividing bacteria.
Collapse
Affiliation(s)
- Ophélie Remy
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Yoann G. Santin
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Veronique Jonckheere
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Coralie Tesseur
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jovana Kaljević
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Géraldine Laloux
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Tyson J, Radford P, Lambert C, Till R, Huwiler SG, Lovering AL, Elizabeth Sockett R. Prey killing without invasion by Bdellovibrio bacteriovorus defective for a MIDAS-family adhesin. Nat Commun 2024; 15:3078. [PMID: 38594280 PMCID: PMC11003981 DOI: 10.1038/s41467-024-47412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
The bacterium Bdellovibrio bacteriovorus is a predator of other Gram-negative bacteria. The predator invades the prey's periplasm and modifies the prey's cell wall, forming a rounded killed prey, or bdelloplast, containing a live B. bacteriovorus. Redundancy in adhesive processes makes invasive mutants rare. Here, we identify a MIDAS adhesin family protein, Bd0875, that is expressed at the predator-prey invasive junction and is important for successful invasion of prey. A mutant strain lacking bd0875 is still able to form round, dead bdelloplasts; however, 10% of the bdelloplasts do not contain B. bacteriovorus, indicative of an invasion defect. Bd0875 activity requires the conserved MIDAS motif, which is linked to catch-and-release activity of MIDAS proteins in other organisms. A proteomic analysis shows that the uninvaded bdelloplasts contain B. bacteriovorus proteins, which are likely secreted into the prey by the Δbd0875 predator during an abortive invasion period. Thus, secretion of proteins into the prey seems to be sufficient for prey killing, even in the absence of a live predator inside the prey periplasm.
Collapse
Affiliation(s)
- Jess Tyson
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
- Chain Biotechnology Ltd, MediCity, D6 Thane Road, Nottingham, NG90 6BH, UK
| | - Paul Radford
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Carey Lambert
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
- Biodiscovery Institute, University of Nottingham, Coates Road, Nottingham, NG7 2RD, UK
| | - Rob Till
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
- Biodiscovery Institute, University of Nottingham, Coates Road, Nottingham, NG7 2RD, UK
| | - Simona G Huwiler
- Department of Plant & Microbial Biology, University of Zurich, CH-, 8057, Zurich, Switzerland
| | - Andrew L Lovering
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - R Elizabeth Sockett
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
7
|
Glazenburg MM, Hettema NM, Laan L, Remy O, Laloux G, Brunet T, Chen X, Tee YH, Wen W, Rizvi MS, Jolly MK, Riddell M. Perspectives on polarity - exploring biological asymmetry across scales. J Cell Sci 2024; 137:jcs261987. [PMID: 38441500 PMCID: PMC11382653 DOI: 10.1242/jcs.261987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
In this Perspective, Journal of Cell Science invited researchers working on cell and tissue polarity to share their thoughts on unique, emerging or open questions relating to their field. The goal of this article is to feature 'voices' from scientists around the world and at various career stages, to bring attention to innovative and thought-provoking topics of interest to the cell biology community. These voices discuss intriguing questions that consider polarity across scales, evolution, development and disease. What can yeast and protists tell us about the evolution of cell and tissue polarity in animals? How are cell fate and development influenced by emerging dynamics in cell polarity? What can we learn from atypical and extreme polarity systems? How can we arrive at a more unified biophysical understanding of polarity? Taken together, these pieces demonstrate the broad relevance of the fascinating phenomenon of cell polarization to diverse fundamental biological questions.
Collapse
Affiliation(s)
- Marieke Margaretha Glazenburg
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - Nynke Marije Hettema
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - Liedewij Laan
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - Ophélie Remy
- Institut de Duve, UCLouvain, 75 avenue Hippocrate, 1200 Brussels, Belgium
| | - Géraldine Laloux
- Institut de Duve, UCLouvain, 75 avenue Hippocrate, 1200 Brussels, Belgium
| | - Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR 3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, 25-28 rue du docteur Roux, 75015 Paris, France
| | - Xin Chen
- Howard Hughes Medical Institute and Department of Biology, Johns Hopkins University, Levi Hall 137, 3400 North Charles Street, Baltimore, MD 21218-2685, USA
| | - Yee Han Tee
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mohd Suhail Rizvi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Meghan Riddell
- Department of Physiology and Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| |
Collapse
|
8
|
Caulton SG, Lambert C, Tyson J, Radford P, Al-Bayati A, Greenwood S, Banks EJ, Clark C, Till R, Pires E, Sockett RE, Lovering AL. Bdellovibrio bacteriovorus uses chimeric fibre proteins to recognize and invade a broad range of bacterial hosts. Nat Microbiol 2024; 9:214-227. [PMID: 38177296 PMCID: PMC10769870 DOI: 10.1038/s41564-023-01552-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
Predatory bacteria, like the model endoperiplasmic bacterium Bdellovibrio bacteriovorus, show several adaptations relevant to their requirements for locating, entering and killing other bacteria. The mechanisms underlying prey recognition and handling remain obscure. Here we use complementary genetic, microscopic and structural methods to address this deficit. During invasion, the B. bacteriovorus protein CpoB concentrates into a vesicular compartment that is deposited into the prey periplasm. Proteomic and structural analyses of vesicle contents reveal several fibre-like proteins, which we name the mosaic adhesive trimer (MAT) superfamily, and show localization on the predator surface before prey encounter. These dynamic proteins indicate a variety of binding capabilities, and we confirm that one MAT member shows specificity for surface glycans from a particular prey. Our study shows that the B. bacteriovorus MAT protein repertoire enables a broad means for the recognition and handling of diverse prey epitopes encountered during bacterial predation and invasion.
Collapse
Affiliation(s)
- Simon G Caulton
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Carey Lambert
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
- Biodiscovery Institute, School of Life Sciences, Nottingham University, Nottingham, UK
| | - Jess Tyson
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
| | - Paul Radford
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
| | - Asmaa Al-Bayati
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
- Northern Technical University, Kirkuk, Iraq
| | - Samuel Greenwood
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
| | - Emma J Banks
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Callum Clark
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Rob Till
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
| | - Elisabete Pires
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - R Elizabeth Sockett
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK.
| | | |
Collapse
|
9
|
Kaljević J, Tesseur C, Le TBK, Laloux G. Cell cycle-dependent organization of a bacterial centromere through multi-layered regulation of the ParABS system. PLoS Genet 2023; 19:e1010951. [PMID: 37733798 PMCID: PMC10547168 DOI: 10.1371/journal.pgen.1010951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/03/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
The accurate distribution of genetic material is crucial for all organisms. In most bacteria, chromosome segregation is achieved by the ParABS system, in which the ParB-bound parS sequence is actively partitioned by ParA. While this system is highly conserved, its adaptation in organisms with unique lifestyles and its regulation between developmental stages remain largely unexplored. Bdellovibrio bacteriovorus is a predatory bacterium proliferating through polyploid replication and non-binary division inside other bacteria. Our study reveals the subcellular dynamics and multi-layered regulation of the ParABS system, coupled to the cell cycle of B. bacteriovorus. We found that ParA:ParB ratios fluctuate between predation stages, their balance being critical for cell cycle progression. Moreover, the parS chromosomal context in non-replicative cells, combined with ParB depletion at cell division, critically contribute to the unique cell cycle-dependent organization of the centromere in this bacterium, highlighting new levels of complexity in chromosome segregation and cell cycle control.
Collapse
Affiliation(s)
| | | | - Tung B. K. Le
- John Innes Centre, Department of Molecular Microbiology, Norwich, United Kingdom
| | | |
Collapse
|
10
|
Caulton SG, Lovering AL. Moving toward a better understanding of the model bacterial predator Bdellovibrio bacteriovorus. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001380. [PMID: 37535060 PMCID: PMC10482364 DOI: 10.1099/mic.0.001380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
The bacterial predator Bdellovibrio bacteriovorus is a model for the wider phenomenon of bacteria:bacteria predation, and the specialization required to achieve a lifestyle dependent on prey consumption. Bdellovibrio bacteriovorus is able to recognize, enter and ultimately consume fellow Gram-negative bacteria, killing these prey from within their periplasmic space, and lysing the host at the end of the cycle. The classic phenotype-driven characterization (and observation of predation) has benefitted from an increased focus on molecular mechanisms and fluorescence microscopy and tomography, revealing new features of several of the lifecycle stages. Herein we summarize a selection of these advances and describe likely areas for exploration that will push the field toward a more complete understanding of this fascinating 'two-cell' system.
Collapse
Affiliation(s)
- Simon G. Caulton
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
11
|
Dinet C, Mignot T. Unorthodox regulation of the MglA Ras-like GTPase controlling polarity in Myxococcus xanthus. FEBS Lett 2023; 597:850-864. [PMID: 36520515 DOI: 10.1002/1873-3468.14565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Motile cells have developed a large array of molecular machineries to actively change their direction of movement in response to spatial cues from their environment. In this process, small GTPases act as molecular switches and work in tandem with regulators and sensors of their guanine nucleotide status (GAP, GEF, GDI and effectors) to dynamically polarize the cell and regulate its motility. In this review, we focus on Myxococcus xanthus as a model organism to elucidate the function of an atypical small Ras GTPase system in the control of directed cell motility. M. xanthus cells direct their motility by reversing their direction of movement through a mechanism involving the redirection of the motility apparatus to the opposite cell pole. The reversal frequency of moving M. xanthus cells is controlled by modular and interconnected protein networks linking the chemosensory-like frizzy (Frz) pathway - that transmits environmental signals - to the downstream Ras-like Mgl polarity control system - that comprises the Ras-like MglA GTPase protein and its regulators. Here, we discuss how variations in the GTPase interactome landscape underlie single-cell decisions and consequently, multicellular patterns.
Collapse
Affiliation(s)
- Céline Dinet
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille University, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille University, France
| |
Collapse
|
12
|
Seef S, Herrou J, de Boissier P, My L, Brasseur G, Robert D, Jain R, Mercier R, Cascales E, Habermann BH, Mignot T. A Tad-like apparatus is required for contact-dependent prey killing in predatory social bacteria. eLife 2021; 10:72409. [PMID: 34505573 PMCID: PMC8460266 DOI: 10.7554/elife.72409] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
Myxococcus xanthus, a soil bacterium, predates collectively using motility to invade prey colonies. Prey lysis is mostly thought to rely on secreted factors, cocktails of antibiotics and enzymes, and direct contact with Myxococcus cells. In this study, we show that on surfaces the coupling of A-motility and contact-dependent killing is the central predatory mechanism driving effective prey colony invasion and consumption. At the molecular level, contact-dependent killing involves a newly discovered type IV filament-like machinery (Kil) that both promotes motility arrest and prey cell plasmolysis. In this process, Kil proteins assemble at the predator-prey contact site, suggesting that they allow tight contact with prey cells for their intoxication. Kil-like systems form a new class of Tad-like machineries in predatory bacteria, suggesting a conserved function in predator-prey interactions. This study further reveals a novel cell-cell interaction function for bacterial pili-like assemblages.
Collapse
Affiliation(s)
- Sofiene Seef
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| | - Julien Herrou
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| | - Paul de Boissier
- Aix-Marseille Université - CNRS UMR 7288, Institut de Biologie du Développement de Marseille and Turing Center for Living Systems, Marseille, France
| | - Laetitia My
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| | - Gael Brasseur
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| | - Donovan Robert
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| | - Rikesh Jain
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France.,Aix-Marseille Université - CNRS UMR 7288, Institut de Biologie du Développement de Marseille and Turing Center for Living Systems, Marseille, France
| | - Romain Mercier
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| | - Eric Cascales
- Aix-Marseille Université - CNRS UMR 7255, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Bianca H Habermann
- Aix-Marseille Université - CNRS UMR 7288, Institut de Biologie du Développement de Marseille and Turing Center for Living Systems, Marseille, France
| | - Tâm Mignot
- Aix-Marseille Université - CNRS UMR 7283, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France
| |
Collapse
|
13
|
Kaljević J, Saaki TNV, Govers SK, Remy O, van Raaphorst R, Lamot T, Laloux G. Chromosome choreography during the non-binary cell cycle of a predatory bacterium. Curr Biol 2021; 31:3707-3720.e5. [PMID: 34256020 PMCID: PMC8445325 DOI: 10.1016/j.cub.2021.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/13/2021] [Accepted: 06/09/2021] [Indexed: 12/03/2022]
Abstract
In bacteria, the dynamics of chromosome replication and segregation are tightly coordinated with cell-cycle progression and largely rely on specific spatiotemporal arrangement of the chromosome. Whereas these key processes are mostly investigated in species that divide by binary fission, they remain mysterious in bacteria producing larger number of descendants. Here, we establish the predatory bacterium Bdellovibrio bacteriovorus as a model to investigate the non-binary processing of a circular chromosome. We found that its single chromosome is highly compacted in a polarized nucleoid that excludes freely diffusing proteins during the non-proliferative stage of the cell cycle. A binary-like cycle of DNA replication and asymmetric segregation is followed by multiple asynchronous rounds of replication and progressive ParABS-dependent partitioning, uncoupled from cell division. Finally, we provide the first evidence for an on-off behavior of the ParB protein, which localizes at the centromere in a cell-cycle-regulated manner. Altogether, our findings support a model of complex chromosome choreography leading to the generation of variable, odd, or even numbers of offspring and highlight the adaptation of conserved mechanisms to achieve non-binary reproduction. The Bdellovibrio chromosome is polarized, with ori located near the invasive pole The highly compacted nucleoid excludes cytosolic proteins in non-replicative cells Replication and segregation of chromosomes are uncoupled from cell division The centromeric protein ParB localizes at parS in a cell-cycle-dependent manner
Collapse
Affiliation(s)
- Jovana Kaljević
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Terrens N V Saaki
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Sander K Govers
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ophélie Remy
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | | | - Thomas Lamot
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium.
| |
Collapse
|
14
|
The polar Ras-like GTPase MglA activates type IV pilus via SgmX to enable twitching motility in Myxococcus xanthus. Proc Natl Acad Sci U S A 2020; 117:28366-28373. [PMID: 33093210 PMCID: PMC7668184 DOI: 10.1073/pnas.2002783117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The type IV pilus (Tfp) is a multipurpose machine found on bacterial surfaces that works by cycles of synthesis/retraction of a pilin fiber. During surface (twitching) motility, the coordinated actions of multiple Tfps at the cell pole promotes single cells and synchronized group movements. Here, directly observing polar Tfp machines in action during motility of Myxococcus xanthus, we identified the mechanism underlying pole-specific Tfps activation. In this process, the Ras-like protein MglA targets a novel essential Tfp-activator, SgmX, to the pole, ensuring both the unipolar activation of Tfps and its switching to the opposite pole when cells reverse their movement. Thus, a dynamic cascade of polar activators regulates multicellular movements, a feature that is likely conserved in other twitching bacteria. Type IV pili (Tfp) are highly conserved macromolecular structures that fulfill diverse cellular functions, such as adhesion to host cells, the import of extracellular DNA, kin recognition, and cell motility (twitching). Outstandingly, twitching motility enables a poorly understood process by which highly coordinated groups of hundreds of cells move in cooperative manner, providing a basis for multicellular behaviors, such as biofilm formation. In the social bacteria Myxococcus xanthus, we know that twitching motility is under the dependence of the small GTPase MglA, but the underlying molecular mechanisms remain elusive. Here we show that MglA complexed to GTP recruits a newly characterized Tfp regulator, termed SgmX, to activate Tfp machines at the bacterial cell pole. This mechanism also ensures spatial regulation of Tfp, explaining how MglA switching provokes directional reversals. This discovery paves the way to elucidate how polar Tfp machines are regulated to coordinate multicellular movements, a conserved feature in twitching bacteria.
Collapse
|
15
|
The small GTPase MglA together with the TPR domain protein SgmX stimulates type IV pili formation in M. xanthus. Proc Natl Acad Sci U S A 2020; 117:23859-23868. [PMID: 32900945 PMCID: PMC7519303 DOI: 10.1073/pnas.2004722117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many bacteria move across surfaces using type IV pili (T4P). The piliation pattern varies between species; however, the underlying mechanisms governing these patterns remain largely unknown. Here, we demonstrate that in the rod-shaped Myxococcus xanthus cells, the unipolar formation of T4P at the leading cell pole is the result of stimulation by the small GTPase MglA together with the effector protein SgmX, while MglB, the cognate MglA GTPase activating protein (GAP) that localizes to the lagging cell pole, blocks this stimulation at the lagging pole due to its GAP activity. During reversals, MglA/SgmX and MglB switch polarity, laying the foundation for T4P formation at the new leading cell pole and inhibition of T4P formation at the former leading cell pole. Bacteria can move across surfaces using type IV pili (T4P), which undergo cycles of extension, adhesion, and retraction. The T4P localization pattern varies between species; however, the underlying mechanisms are largely unknown. In the rod-shaped Myxococcus xanthus cells, T4P localize at the leading cell pole. As cells reverse their direction of movement, T4P are disassembled at the old leading pole and then form at the new leading pole. Thus, cells can form T4P at both poles but engage only one pole at a time in T4P formation. Here, we address how this T4P unipolarity is realized. We demonstrate that the small Ras-like GTPase MglA stimulates T4P formation in its GTP-bound state by direct interaction with the tetratricopeptide repeat (TPR) domain-containing protein SgmX. SgmX, in turn, is important for polar localization of the T4P extension ATPase PilB. The cognate MglA GTPase activating protein (GAP) MglB, which localizes mainly to the lagging cell pole, indirectly blocks T4P formation at this pole by stimulating the conversion of MglA-GTP to MglA-GDP. Based on these findings, we propose a model whereby T4P unipolarity is accomplished by stimulation of T4P formation at the leading pole by MglA-GTP and SgmX and indirect inhibition of T4P formation at the lagging pole by MglB due to its MglA GAP activity. During reversals, MglA, SgmX, and MglB switch polarity, thus laying the foundation for T4P formation at the new leading pole and inhibition of T4P formation at the new lagging pole.
Collapse
|
16
|
Laloux G. Shedding Light on the Cell Biology of the Predatory Bacterium Bdellovibrio bacteriovorus. Front Microbiol 2020; 10:3136. [PMID: 32038570 PMCID: PMC6985089 DOI: 10.3389/fmicb.2019.03136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022] Open
Abstract
Bdellovibrio bacteriovorus is a predatory bacterium that feeds upon and proliferates inside other Gram-negative bacteria. Upon entry into the periplasmic space of the prey envelope, B. bacteriovorus initiates an exquisite developmental program in which it digests the host resources and grows as a filament, which eventually divides in a non-binary manner, releasing a variable number of daughter cells. The progeny then escape from the prey ghost to encounter new victims and resume the predation cycle. Owing to its unique biology, B. bacteriovorus undoubtedly represents an attractive model to unravel novel mechanisms of bacterial cell cycle control and cellular organization. Yet, the molecular factors behind the sophisticated lifestyle of this micro-predator are still mysterious. In particular, the spatiotemporal dynamics of proteins that control key cellular processes such as transmission of the genetic information, cell growth and division remain largely unexplored. In this Perspective article, I highlight outstanding fundamental questions related to these aspects and arising from the original biology of this bacterium. I also discuss available insights and potential cell biology approaches based on quantitative live imaging techniques, in combination with bacterial genetics and biochemistry, to shed light on the intracellular organization of B. bacteriovorus in space and time.
Collapse
Affiliation(s)
- Géraldine Laloux
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
17
|
Complete genome sequence of Bradymonas sediminis FA350T, the first representative of the order Bradymonadales. Mar Genomics 2019. [DOI: 10.1016/j.margen.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Dynamics of Chromosome Replication and Its Relationship to Predatory Attack Lifestyles in Bdellovibrio bacteriovorus. Appl Environ Microbiol 2019; 85:AEM.00730-19. [PMID: 31076424 PMCID: PMC6606864 DOI: 10.1128/aem.00730-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022] Open
Abstract
Bdellovibrio bacteriovorus is a small Gram-negative, obligate predatory bacterium that is largely found in wet, aerobic environments (e.g., soil). This bacterium attacks and invades other Gram-negative bacteria, including animal and plant pathogens. The intriguing life cycle of B. bacteriovorus consists of two phases: a free-living nonreplicative attack phase, in which the predatory bacterium searches for its prey, and a reproductive phase, in which B. bacteriovorus degrades a host's macromolecules and reuses them for its own growth and chromosome replication. Although the cell biology of this predatory bacterium has gained considerable interest in recent years, we know almost nothing about the dynamics of its chromosome replication. Here, we performed a real-time investigation into the subcellular localization of the replisome(s) in single cells of B. bacteriovorus Our results show that in B. bacteriovorus, chromosome replication takes place only during the reproductive phase and exhibits a novel spatiotemporal arrangement of replisomes. The replication process starts at the invasive pole of the predatory bacterium inside the prey cell and proceeds until several copies of the chromosome have been completely synthesized. Chromosome replication is not coincident with the predator cell division, and it terminates shortly before synchronous predator filament septation occurs. In addition, we demonstrate that if this B. bacteriovorus life cycle fails in some cells of Escherichia coli, they can instead use second prey cells to complete their life cycle.IMPORTANCE New strategies are needed to combat multidrug-resistant bacterial infections. Application of the predatory bacterium Bdellovibrio bacteriovorus, which kills other bacteria, including pathogens, is considered promising for combating bacterial infections. The B. bacteriovorus life cycle consists of two phases, a free-living, invasive attack phase and an intracellular reproductive phase, in which this predatory bacterium degrades the host's macromolecules and reuses them for its own growth. To understand the use of B. bacteriovorus as a "living antibiotic," it is first necessary to dissect its life cycle, including chromosome replication. Here, we present a real-time investigation into subcellular localization of chromosome replication in a single cell of B. bacteriovorus This process initiates at the invasion pole of B. bacteriovorus and proceeds until several copies of the chromosome have been completely synthesized. Interestingly, we demonstrate that some cells of B. bacteriovorus require two prey cells sequentially to complete their life cycle.
Collapse
|
19
|
Abstract
Bdellovibrio bacteriovorus is a predatory bacterium that can kill a wide range of Gram-negative bacteria, including many human pathogens. Given the global rise of antibiotic resistance and dearth of new antibiotics discovered in the past 30 years, this predator has potential as an alternative to traditional antibiotics. For many years, B. bacteriovorus research was hampered by a lack of genetic tools, and the genetic mechanisms of predation have only recently begun to be established. Here, we comprehensively identify and characterize predator genes required for killing bacterial prey, as well as genes that interfere in this process, which may allow us to design better therapeutic predators. Based on our study, we and other researchers may ultimately be able to genetically engineer strains that have improved killing rates, target specific species of prey, or preferentially target prey in the planktonic or biofilm state. Bdellovibrio bacteriovorus is a bacterial predator capable of killing and replicating inside most Gram-negative bacteria, including antibiotic-resistant pathogens. Despite growing interest in this organism as a potential therapeutic, many of its genes remain uncharacterized. Here, we perform a high-throughput genetic screen with B. bacteriovorus using transposon sequencing (Tn-seq) to explore the genetic requirements of predation. Two hundred one genes were deemed essential for growth in the absence of prey, whereas over 100 genes were found to be specifically required for predative growth on the human pathogens Vibrio cholerae and Escherichia coli in both planktonic and biofilm states. To further this work, we created an ordered-knockout library in B. bacteriovorus and developed new high-throughput techniques to characterize the mutants by their stage of deficiency in the predator life cycle. Using microscopy and flow cytometry, we confirmed 10 mutants defective in prey attachment and eight mutants defective in prey rounding. The majority of these genes are hypothetical and previously uncharacterized. Finally, we propose new nomenclature to group B. bacteriovorus mutants into classes based on their stage of predation defect. These results contribute to our basic understanding of bacterial predation and may be useful for harnessing B. bacteriovorus to kill harmful pathogens in the clinical setting.
Collapse
|
20
|
Lowry RC, Milner DS, Al-Bayati AMS, Lambert C, Francis VI, Porter SL, Sockett RE. Evolutionary diversification of the RomR protein of the invasive deltaproteobacterium, Bdellovibrio bacteriovorus. Sci Rep 2019; 9:5007. [PMID: 30899045 PMCID: PMC6428892 DOI: 10.1038/s41598-019-41263-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/27/2019] [Indexed: 01/19/2023] Open
Abstract
Bdellovibrio bacteriovorus is a predatory deltaproteobacterium that encounters individual Gram-negative prey bacteria with gliding or swimming motility, and then is able to invade such prey cells via type IVa pilus-dependent mechanisms. Movement control (pili or gliding) in other deltaproteobacteria, such as the pack hunting Myxococcus xanthus, uses a response regulator protein, RomRMx (which dynamically relocalises between the cell poles) and a GTPase, MglAMx, previously postulated as an interface between the FrzMx chemosensory system and gliding or pilus-motility apparatus, to produce regulated bidirectional motility. In contrast, B. bacteriovorus predation is a more singular encounter between a lone predator and prey; contact is always via the piliated, non-flagellar pole of the predator, involving MglABd, but no Frz system. In this new study, tracking fluorescent RomRBd microscopically during predatory growth shows that it does not dynamically relocalise, in contrast to the M. xanthus protein; instead having possible roles in growth events. Furthermore, transcriptional start analysis, site-directed mutagenesis and bacterial two-hybrid interaction studies, indicate an evolutionary loss of RomRBd activation (via receiver domain phosphorylation) in this lone hunting bacterium, demonstrating divergence from its bipolar role in motility in pack-hunting M. xanthus and further evolution that may differentiate lone from pack predators.
Collapse
Affiliation(s)
- Rebecca C Lowry
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom
| | - David S Milner
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom.,Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Asmaa M S Al-Bayati
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom.,Northern Technical University, Mosul, Iraq
| | - Carey Lambert
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom
| | - Vanessa I Francis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Steven L Porter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| | - R E Sockett
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom.
| |
Collapse
|
21
|
Susceptibility of Virulent Yersinia pestis Bacteria to Predator Bacteria in the Lungs of Mice. Microorganisms 2018; 7:microorganisms7010002. [PMID: 30577606 PMCID: PMC6351954 DOI: 10.3390/microorganisms7010002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022] Open
Abstract
Multi-drug resistant bacterial infections are a serious threat to global public health. Changes in treatment modalities and prudent use of antibiotics can assist in reducing the threat, but new approaches are also required for untreatable cases. The use of predatory bacteria, such as Bdellovibriobacteriovorus, is among the novel approaches being considered as possible therapeutics for antibiotic resistant and/or unidentified bacterial infections. Previous studies have examined the feasibility of using predatory bacteria to reduce colony-forming units (CFUs) in the lungs of rats exposed to lethal doses of Klebsiella pneumoniae; here we apply the approach to the Tier 1 select agent Yersinia pestis, and show that three doses of B. bacteriovorus introduced every six hours reduces the number of CFUs of Y. pestis in the lungs of inoculated mice by 86% after 24 h of infection. These experiments further demonstrate that predatory bacteria may serve to combat Gram negative bacterial infections, including those considered potential bioweapon agents, in the future.
Collapse
|
22
|
Whole-Genome Sequencing and Comparative Genome Analysis Provided Insight into the Predatory Features and Genetic Diversity of Two Bdellovibrio Species Isolated from Soil. Int J Genomics 2018; 2018:9402073. [PMID: 29850478 PMCID: PMC5941755 DOI: 10.1155/2018/9402073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/24/2018] [Accepted: 02/19/2018] [Indexed: 01/07/2023] Open
Abstract
Bdellovibrio spp. are predatory bacteria with great potential as antimicrobial agents. Studies have shown that members of the genus Bdellovibrio exhibit peculiar characteristics that influence their ecological adaptations. In this study, whole genomes of two different Bdellovibrio spp. designated SKB1291214 and SSB218315 isolated from soil were sequenced. The core genes shared by all the Bdellovibrio spp. considered for the pangenome analysis including the epibiotic B. exovorus were 795. The number of unique genes identified in Bdellovibrio spp. SKB1291214, SSB218315, W, and B. exovorus JJS was 1343, 113, 857, and 1572, respectively. These unique genes encode hydrolytic, chemotaxis, and transporter proteins which might be useful for predation in the Bdellovibrio strains. Furthermore, the two Bdellovibrio strains exhibited differences based on the % GC content, amino acid identity, and 16S rRNA gene sequence. The 16S rRNA gene sequence of Bdellovibrio sp. SKB1291214 shared 99% identity with that of an uncultured Bdellovibrio sp. clone 12L 106 (a pairwise distance of 0.008) and 95-97% identity (a pairwise distance of 0.043) with that of other culturable terrestrial Bdellovibrio spp., including strain SSB218315. In Bdellovibrio sp. SKB1291214, 174 bp sequence was inserted at the host interaction (hit) locus region usually attributed to prey attachment, invasion, and development of host independent Bdellovibrio phenotypes. Also, a gene equivalent to Bd0108 in B. bacteriovorus HD100 was not conserved in Bdellovibrio sp. SKB1291214. The results of this study provided information on the genetic characteristics and diversity of the genus Bdellovibrio that can contribute to their successful applications as a biocontrol agent.
Collapse
|
23
|
Negus D, Moore C, Baker M, Raghunathan D, Tyson J, Sockett RE. Predator Versus Pathogen: How Does Predatory Bdellovibrio bacteriovorus Interface with the Challenges of Killing Gram-Negative Pathogens in a Host Setting? Annu Rev Microbiol 2018; 71:441-457. [PMID: 28886689 DOI: 10.1146/annurev-micro-090816-093618] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bdellovibrio bacteriovorus is a small deltaproteobacterial predator that has evolved to invade, reseal, kill, and digest other gram-negative bacteria in soils and water environments. It has a broad host range and kills many antibiotic-resistant, clinical pathogens in vitro, a potentially useful capability if it could be translated to a clinical setting. We review relevant mechanisms of B. bacteriovorus predation and the physiological properties that would influence its survival in a mammalian host. Bacterial pathogens increasingly display conventional antibiotic resistance by expressing and varying surface and soluble biomolecules. Predators coevolved alongside prey bacteria and so encode diverse predatory enzymes that are hard for pathogens to resist by simple mutation. Predators do not replicate outside pathogens and thus express few transport proteins and thus few surface epitopes for host immune recognition. We explain these features, relating them to the potential of predatory bacteria as cellular medicines.
Collapse
Affiliation(s)
- David Negus
- School of Life Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom; , , , , ,
| | - Chris Moore
- School of Life Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom; , , , , ,
| | - Michelle Baker
- School of Life Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom; , , , , , .,School of Computer Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom
| | - Dhaarini Raghunathan
- School of Life Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom; , , , , ,
| | - Jess Tyson
- School of Life Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom; , , , , ,
| | - R Elizabeth Sockett
- School of Life Science, University of Nottingham, University Park, Nottingham NG7 2UH, United Kingdom; , , , , ,
| |
Collapse
|
24
|
Li P, Xu J, Rao HM, Li X, Zhang YK, Jiang F, Wu WX. Mechanism of Apoptosis Induction by Mycoplasmal Nuclease MGA_0676 in Chicken Embryo Fibroblasts. Front Cell Infect Microbiol 2018; 8:105. [PMID: 29670864 PMCID: PMC5893762 DOI: 10.3389/fcimb.2018.00105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/19/2018] [Indexed: 12/22/2022] Open
Abstract
MGA_0676 has been characterized as a Mycoplasma gallisepticum nuclease that can induce apoptosis of chicken cells. However, the mechanism by which MGA_0676 induces apoptosis has remained unclear. In this study, we evaluated MGA_0676-induced apoptosis and internalization in immortalized chicken embryo fibroblasts (DF-1) and cancer cell lines. The internalization of MGA_0676 was proven through caveolin-mediated endocytosis by blocking the endocytosis with specific inhibitors or with siRNA. We identified the Thif domain of NEDD8-activating enzyme E1 regulatory subunit (NAE) in DF-1 as the target region interacting with the SNC domain of MGA_0676. The interaction between the Thif and SNC domains was observed co-located in the perinuclear and nuclear of DF-1. We found that the interaction between NAE and MGA_0676 increased the ability of apoptosis and accelerated the process of cullin neddylation in DF-1 cells, in turn activating NF-κB. This resulted in the observed aggregation of NF-κB in the nuclei of DF-1 cells. Moreover, the apoptosis induced by MGA_0676 decreased significantly when NF-κB was inhibited by siRNA or BAY 11-7082 or when NAE was silenced by siRNA. Overall, our results demonstrate that MGA_0676 is internalized through caveolin-mediated endocytosis, interacts with SNC-dependent Thif to accelerate the process of cullin neddylation and activates NF-κB in DF-1 cells, ultimately playing a key role in apoptosis in chicken cells. Our results indicate MGA_0676 constitutes a critical etiological virulence factor of the respiratory disease caused by M. gallisepticum. This study also opens a venue to investigate MGA_0676 as a potential candidate as pro-apoptotic drug in cancer studies.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Hong-Mei Rao
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xia Li
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yun-Ke Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fei Jiang
- Veterinary Diagnostic Laboratory, China Animal Disease Control Center, Beijing, China
| | - Wen-Xue Wu
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Jurkevitch É, Jacquet S. [Bdellovibrio and like organisms: outstanding predators!]. Med Sci (Paris) 2017; 33:519-527. [PMID: 28612728 DOI: 10.1051/medsci/20173305016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Obligate predatory bacteria, i.e. bacteria requiring a Gram negative prey cell in order to complete their cell cycle, belong to the polyphyletic group referred to as the Bdellovibrio And Like Organisms (BALO). Predatory interactions between bacteria are complex, yet their dynamics and impact on bacterial communities in the environment are becoming better understood. BALO have unique life cycles: they grow epibiotically with the predator remaining attached to the prey's envelope, dividing in a binary manner or periplasmically, i.e. by penetrating the prey's periplasm to generate a number of progeny cells. The periplasmic life cycle includes unique gene and protein patterns and unique signaling features. These ecological and cellular features, along with applications of the BALO in the medical, agricultural and environmental fields are surveyed.
Collapse
Affiliation(s)
- Édouard Jurkevitch
- Faculté d'Agriculture, de l'Alimentation et de l'Environnement, Université Hébraïque de Jérusalem, Rehovot, Israël
| | - Stéphan Jacquet
- INRA, UMR CARRTEL, 75, avenue de Corzent, 74200 Thonon-les-Bains, France
| |
Collapse
|
26
|
Identification and Characterization of Differentially-Regulated Type IVb Pilin Genes Necessary for Predation in Obligate Bacterial Predators. Sci Rep 2017; 7:1013. [PMID: 28432347 PMCID: PMC5430801 DOI: 10.1038/s41598-017-00951-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/17/2017] [Indexed: 11/08/2022] Open
Abstract
Bdellovibrio bacteriovorus is an obligate predator of bacteria that grows and divides within the periplasm of its prey. Functions involved in the early steps of predation have been identified and characterized, but mediators of prey invasion are still poorly detailed. By combining omics data available for Bdellovibrio and like organisms (BALO’s), we identified 43 genes expressed in B. bacteriovorus during the early interaction with prey. These included genes in a tight adherence (TAD) operon encoding for two type IVb fimbriae-like pilin proteins (flp1 and flp2), and their processing and export machinery. Two additional flp genes (flp3 and flp4) were computationally identified at other locations along the chromosome, defining the largest and most diverse type IVb complement known in bacteria to date. Only flp1, flp2 and flp4 were expressed; their respective gene knock-outs resulted in a complete loss of the predatory ability without losing the ability to adhere to prey cells. Additionally, we further demonstrate differential regulation of the flp genes as the TAD operon of BALOs with different predatory strategies is controlled by a flagellar sigma factor FliA, while flp4 is not. Finally, we show that FliA, a known flagellar transcriptional regulator in other bacteria, is an essential Bdellovibrio gene.
Collapse
|
27
|
Iqbal H, Kenedy MR, Lybecker M, Akins DR. The TamB ortholog of Borrelia burgdorferi interacts with the β-barrel assembly machine (BAM) complex protein BamA. Mol Microbiol 2016; 102:757-774. [PMID: 27588694 PMCID: PMC5582053 DOI: 10.1111/mmi.13492] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 12/29/2022]
Abstract
Two outer membrane protein (OMP) transport systems in diderm bacteria assist in assembly and export of OMPs. These two systems are the β-barrel assembly machine (BAM) complex and the translocation and assembly module (TAM). The BAM complex consists of the OMP component BamA along with several outer membrane associated proteins. The TAM also consists of an OMP, designated TamA, and a single inner membrane (IM) protein, TamB. Together TamA and TamB aid in the secretion of virulence-associated OMPs. In this study we characterized the hypothetical protein BB0794 in Borrelia burgdorferi. BB0794 contains a conserved DUF490 domain, which is a motif found in all TamB proteins. All spirochetes lack a TamA ortholog, but computational and physicochemical characterization of BB0794 revealed it is a TamB ortholog. Interestingly, BB0794 was observed to interact with BamA and a BB0794 regulatable mutant displayed altered cellular morphology and antibiotic sensitivity. The observation that B. burgdorferi contains a TamB ortholog that interacts with BamA and is required for proper outer membrane biogenesis not only identifies a novel role for TamB-like proteins, but also may explain why most diderms harbor a TamB-like protein while only a select group encodes TamA.
Collapse
Affiliation(s)
- Henna Iqbal
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Meghan Lybecker
- Department of Biology, University of Colorado - Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| |
Collapse
|
28
|
Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers. J Bacteriol 2016; 198:15-26. [PMID: 26055111 DOI: 10.1128/jb.00331-15] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The first International Symposium on c-Di-GMP Signaling in Bacteria (22 to 25 March 2015, Harnack-Haus, Berlin, Germany)brought together 131 molecular microbiologists from 17 countries to discuss recent progress in our knowledge of bacterial nucleotide second messenger signaling. While the focus was on signal input, synthesis, degradation, and the striking diversity of the modes of action of the current second messenger paradigm, i.e., cyclic di-GMP (c-di-GMP), “classics” like cAMP and (p)ppGpp were also presented, in novel facets, and more recent “newcomers,” such as c-di-AMP and c-AMP-GMP, made an impressive appearance. A number of clear trends emerged during the 30 talks, on the 71 posters, and in the lively discussions, including (i)c-di-GMP control of the activities of various ATPases and phosphorylation cascades, (ii) extensive cross talk between c-di-GMP and other nucleotide second messenger signaling pathways, and (iii) a stunning number of novel effectors for nucleotide second messengers that surprisingly include some long-known master regulators of developmental pathways. Overall, the conference made it amply clear that second messenger signaling is currently one of the most dynamic fields within molecular microbiology,with major impacts in research fields ranging from human health to microbial ecology.
Collapse
|
29
|
Pérez J, Moraleda-Muñoz A, Marcos-Torres FJ, Muñoz-Dorado J. Bacterial predation: 75 years and counting! Environ Microbiol 2016; 18:766-79. [PMID: 26663201 DOI: 10.1111/1462-2920.13171] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 11/30/2022]
Abstract
The first documented study on bacterial predation was carried out using myxobacteria three quarters of a century ago. Since then, many predatory strains, diverse hunting strategies, environmental consequences and potential applications have been reported by groups all over the world. Now we know that predatory bacteria are distributed in a wide variety of environments and that interactions between predatory and non-predatory populations seem to be the most important factor in bacterial selection and mortality in some ecosystems. Bacterial predation has now been proposed as an evolutionary driving force. The structure and diversity of the predatory bacterial community is beginning to be recognized as an important factor in biodiversity due to its potential role in controlling and modelling bacterial populations in the environment. In this paper, we review the current understanding of bacterial predation, going over the strategies used by the main predatory bacteria to kill their prey. We have also reviewed and integrated the accumulated advances of the last 75 years with the interesting new insights that are provided by the analyses of genomes, predatomes, predatosomes and other comparative genomics studies, focusing on potential applications that derive from all of these areas of study.
Collapse
Affiliation(s)
- Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, E-18071, Granada, Spain
| | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, E-18071, Granada, Spain
| | - Francisco Javier Marcos-Torres
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, E-18071, Granada, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, E-18071, Granada, Spain
| |
Collapse
|
30
|
Cell-cycle progress in obligate predatory bacteria is dependent upon sequential sensing of prey recognition and prey quality cues. Proc Natl Acad Sci U S A 2015; 112:E6028-37. [PMID: 26487679 DOI: 10.1073/pnas.1515749112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Predators feed on prey to acquire the nutrients necessary to sustain their survival, growth, and replication. In Bdellovibrio bacteriovorus, an obligate predator of Gram-negative bacteria, cell growth and replication are tied to a shift from a motile, free-living phase of search and attack to a sessile, intracellular phase of growth and replication during which a single prey cell is consumed. Engagement and sustenance of growth are achieved through the sensing of two unidentified prey-derived cues. We developed a novel ex vivo cultivation system for B. bacteriovorus composed of prey ghost cells that are recognized and invaded by the predator. By manipulating their content, we demonstrated that an early cue is located in the prey envelope and a late cue is found within the prey soluble fraction. These spatially and temporally separated cues elicit discrete and combinatory regulatory effects on gene transcription. Together, they delimit a poorly characterized transitory phase between the attack phase and the growth phase, during which the bdelloplast (the invaded prey cell) is constructed. This transitory phase constitutes a checkpoint in which the late cue presumably acts as a determinant of the prey's nutritional value before the predator commits. These regulatory adaptations to a unique bacterial lifestyle have not been reported previously.
Collapse
|
31
|
An Extended Cyclic Di-GMP Network in the Predatory Bacterium Bdellovibrio bacteriovorus. J Bacteriol 2015; 198:127-37. [PMID: 26324450 DOI: 10.1128/jb.00422-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/20/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Over the course of the last 3 decades the role of the second messenger cyclic di-GMP (c-di-GMP) as a master regulator of bacterial physiology was determined. Although the control over c-di-GMP levels via synthesis and breakdown and the allosteric regulation of c-di-GMP over receptor proteins (effectors) and riboswitches have been extensively studied, relatively few effectors have been identified and most are of unknown functions. The obligate predatory bacterium Bdellovibrio bacteriovorus has a peculiar dimorphic life cycle, in which a phenotypic transition from a free-living attack phase (AP) to a sessile, intracellular predatory growth phase (GP) is tightly regulated by specific c-di-GMP diguanylate cyclases. B. bacteriovorus also bears one of the largest complement of defined effectors, almost none of known functions, suggesting that additional proteins may be involved in c-di-GMP signaling. In order to uncover novel c-di-GMP effectors, a c-di-GMP capture-compound mass-spectroscopy experiment was performed on wild-type AP and host-independent (HI) mutant cultures, the latter serving as a proxy for wild-type GP cells. Eighty-four proteins were identified as candidate c-di-GMP binders. Of these proteins, 65 did not include any recognized c-di-GMP binding site, and 3 carried known unorthodox binding sites. Putative functions could be assigned to 59 proteins. These proteins are included in metabolic pathways, regulatory circuits, cell transport, and motility, thereby creating a potentially large c-di-GMP network. False candidate effectors may include members of protein complexes, as well as proteins binding nucleotides or other cofactors that were, respectively, carried over or unspecifically interacted with the capture compound during the pulldown. Of the 84 candidates, 62 were found to specifically bind the c-di-GMP capture compound in AP or in HI cultures, suggesting c-di-GMP control over the whole-cell cycle of the bacterium. High affinity and specificity to c-di-GMP binding were confirmed using microscale thermophoresis with a hypothetical protein bearing a PilZ domain, an acyl coenzyme A dehydrogenase, and a two-component system response regulator, indicating that additional c-di-GMP binding candidates may be bona fide novel effectors. IMPORTANCE In this study, 84 putative c-di-GMP binding proteins were identified in B. bacteriovorus, an obligate predatory bacterium whose lifestyle and reproduction are dependent on c-di-GMP signaling, using a c-di-GMP capture compound precipitation approach. This predicted complement covers metabolic, energy, transport, motility and regulatory pathways, and most of it is phase specific, i.e., 62 candidates bind the capture compound at defined modes of B. bacteriovorus lifestyle. Three of the putative binders further demonstrated specificity and high affinity to c-di-GMP via microscale thermophoresis, lending support for the presence of additional bona fide c-di-GMP effectors among the pulled-down protein repertoire.
Collapse
|
32
|
Guzzo M, Agrebi R, Espinosa L, Baronian G, Molle V, Mauriello EMF, Brochier-Armanet C, Mignot T. Evolution and Design Governing Signal Precision and Amplification in a Bacterial Chemosensory Pathway. PLoS Genet 2015; 11:e1005460. [PMID: 26291327 PMCID: PMC4546325 DOI: 10.1371/journal.pgen.1005460] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/23/2015] [Indexed: 11/19/2022] Open
Abstract
Understanding the principles underlying the plasticity of signal transduction networks is fundamental to decipher the functioning of living cells. In Myxococcus xanthus, a particular chemosensory system (Frz) coordinates the activity of two separate motility systems (the A- and S-motility systems), promoting multicellular development. This unusual structure asks how signal is transduced in a branched signal transduction pathway. Using combined evolution-guided and single cell approaches, we successfully uncoupled the regulations and showed that the A-motility regulation system branched-off an existing signaling system that initially only controlled S-motility. Pathway branching emerged in part following a gene duplication event and changes in the circuit structure increasing the signaling efficiency. In the evolved pathway, the Frz histidine kinase generates a steep biphasic response to increasing external stimulations, which is essential for signal partitioning to the motility systems. We further show that this behavior results from the action of two accessory response regulator proteins that act independently to filter and amplify signals from the upstream kinase. Thus, signal amplification loops may underlie the emergence of new connectivity in signal transduction pathways.
Collapse
Affiliation(s)
- Mathilde Guzzo
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS Aix-Marseille University UMR 7283, Marseille, France
| | - Rym Agrebi
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS Aix-Marseille University UMR 7283, Marseille, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS Aix-Marseille University UMR 7283, Marseille, France
| | - Grégory Baronian
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS Universités de Montpellier II et I, UMR 5235, case 107, Montpellier, France
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS Universités de Montpellier II et I, UMR 5235, case 107, Montpellier, France
| | - Emilia M. F. Mauriello
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS Aix-Marseille University UMR 7283, Marseille, France
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS Aix-Marseille University UMR 7283, Marseille, France
- * E-mail:
| |
Collapse
|
33
|
Prehna G, Ramirez BE, Lovering AL. The lifestyle switch protein Bd0108 of Bdellovibrio bacteriovorus is an intrinsically disordered protein. PLoS One 2014; 9:e115390. [PMID: 25514156 PMCID: PMC4267844 DOI: 10.1371/journal.pone.0115390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/21/2014] [Indexed: 01/15/2023] Open
Abstract
Bdellovibrio bacteriovorus is a δ-proteobacterium that preys upon Salmonella spp., E. coli, and other Gram-negative bacteria. Bdellovibrio can grow axenically (host-independent, HI, rare and mutation-driven) or subsist via a predatory lifecycle (host-dependent, HD, the usual case). Upon contact with prey, B. bacteriovorus enters the host periplasm from where it slowly drains the host cytosol of nutrients for its own replication. At the core of this mechanism is a retractile pilus, whose architecture is regulated by the protein Bd0108 and its interaction with the neighboring gene product Bd0109. Deletion of bd0108 results in negligible pilus formation, whereas an internal deletion (the one that instigates host-independence) causes mis-regulation of pilus length. These mutations, along with a suite of naturally occurring bd0108 mutant strains, act to control the entry to HI growth. To further study the molecular mechanism of predatory regulation, we focused on the apparent lifecycle switch protein Bd0108. Here we characterize the solution structure and dynamics of Bd0108 using nuclear magnetic resonance (NMR) spectroscopy complemented with additional biophysical methods. We then explore the interaction between Bd0108 and Bd0109 in detail utilizing isothermal titration calorimetry (ITC) and NMR spectroscopy. Together our results demonstrate that Bd0108 is an intrinsically disordered protein (IDP) and that the interaction with Bd0109 is of low affinity. Furthermore, we observe that Bd0108 retains an IDP nature while binding Bd0109. From our data we conclude that Bdellovibrio bacteriovorus utilizes an intrinsically disordered protein to regulate its pilus and control predation signaling.
Collapse
Affiliation(s)
- Gerd Prehna
- Center for Structural Biology, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Benjamin E. Ramirez
- Center for Structural Biology, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Andrew L. Lovering
- Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Wuichet K, Søgaard-Andersen L. Evolution and diversity of the Ras superfamily of small GTPases in prokaryotes. Genome Biol Evol 2014; 7:57-70. [PMID: 25480683 PMCID: PMC4316618 DOI: 10.1093/gbe/evu264] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Ras superfamily of small GTPases are single domain nucleotide-dependent molecular switches that act as highly tuned regulators of complex signal transduction pathways. Originally identified in eukaryotes for their roles in fundamental cellular processes including proliferation, motility, polarity, nuclear transport, and vesicle transport, recent studies have revealed that single domain GTPases also control complex functions such as cell polarity, motility, predation, development and antibiotic resistance in bacteria. Here, we used a computational genomics approach to understand the abundance, diversity, and evolution of small GTPases in prokaryotes. We collected 520 small GTPase sequences present in 17% of 1,611 prokaryotic genomes analyzed that cover diverse lineages. We identified two discrete families of small GTPases in prokaryotes that show evidence of three distinct catalytic mechanisms. The MglA family includes MglA homologs, which are typically associated with the MglB GTPase activating protein, whereas members of the Rup (Ras superfamily GTPase of unknown function in prokaryotes) family are not predicted to interact with MglB homologs. System classification and genome context analyses support the involvement of small GTPases in diverse prokaryotic signal transduction pathways including two component systems, laying the foundation for future experimental characterization of these proteins. Phylogenetic analysis of prokaryotic and eukaryotic GTPases supports that the last universal common ancestor contained ancestral MglA and Rup family members. We propose that the MglA family was lost from the ancestral eukaryote and that the Ras superfamily members in extant eukaryotes are the result of vertical and horizontal gene transfer events of ancestral Rup GTPases.
Collapse
Affiliation(s)
- Kristin Wuichet
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
35
|
Salzer R, Joos F, Averhoff B. Different effects of MglA and MglB on pilus-mediated functions and natural competence in Thermus thermophilus. Extremophiles 2014; 19:261-7. [PMID: 25472010 DOI: 10.1007/s00792-014-0711-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/16/2014] [Indexed: 02/02/2023]
Abstract
The thermophilic bacterium Thermus thermophilus is known for its high natural competence. Uptake of DNA is mediated by a DNA translocator that shares components with type IV pili. Localization and function of type IV pili in other bacteria depend on the cellular localization at the poles of the bacterium, a process that involves MglA and MglB. T. thermophilus contains homologs of MglA and MglB. The genes encoding MglA and MglB were deleted and the physiology of the mutants was studied. Deletion of the genes individually or in tandem had no effect on pili formation but pili lost their localization at the poles. The mutants abolished pilus-mediated functions such as twitching motility and adherence but had no effect on uptake of DNA by natural competence. These data demonstrate that MglA and MglB are dispensable for natural transformation and are consistent with the hypothesis that uptake of DNA does not depend on type IV pili or their cellular localization.
Collapse
Affiliation(s)
- Ralf Salzer
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | | | | |
Collapse
|
36
|
Communication, cooperation, and social interactions: a report from the third Young Microbiologists Symposium on microbe signalling, organisation, and pathogenesis. J Bacteriol 2014; 196:3527-33. [PMID: 25070739 PMCID: PMC4187693 DOI: 10.1128/jb.02029-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The third Young Microbiologists Symposium took place on the vibrant campus of the University of Dundee, Scotland, from the 2nd to 3rd of June 2014. The symposium attracted over 150 microbiologists from 17 different countries. The significant characteristic of this meeting was that it was specifically aimed at providing a forum for junior scientists to present their work. The meeting was supported by the Society for General Microbiology and the American Society for Microbiology, with further sponsorship from the European Molecular Biology Organization, the Federation of European Microbiological Societies, and The Royal Society of Edinburgh. In this report, we highlight some themes that emerged from the many exciting talks and poster presentations given by the young and talented microbiologists in the area of microbial gene expression, regulation, biogenesis, pathogenicity, and host interaction.
Collapse
|