1
|
Jurėnas D. Metabolic Labeling: Snapshot of the Effect of Toxins on the Key Cellular Processes. Methods Mol Biol 2024; 2715:539-545. [PMID: 37930550 DOI: 10.1007/978-1-0716-3445-5_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Competing bacteria secrete vast variety of toxic effectors via secretion systems. Phospholipase, peptidoglycan-hydrolase, or pore forming toxins often manifest in the bursting of the prey cell. Other toxins reach cytoplasm of the prey where they affect cell division machinery, metabolism, nucleic acid integrity, or protein synthesis. Inhibition of cell division or DNA integrity, which summons SOS response, will often lead to bacterial cell filamentation readily observable under the microscope. However, other toxic activities will not manifest in interpretable phenotypic changes that would readily suggest their mechanism of toxicity. Activity measurements of the three fundamental cellular processes-replication, transcription and translation can pave the way for further understanding of the toxin's activity. Method commonly known as metabolic labeling makes use of radioactive precursors for DNA, RNA and protein synthesis. This method provides highly sensitive snapshot of the activity of key cellular processes.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Laboratoire de Génétique et Physiologie Bactérienne, Département de Biologie Moléculaire, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| |
Collapse
|
2
|
Shakeri M, Kong B, Zhuang H, Bowker B. Potential Role of Ribonucleotide Reductase Enzyme in Mitochondria Function and Woody Breast Condition in Broiler Chickens. Animals (Basel) 2023; 13:2038. [PMID: 37370548 DOI: 10.3390/ani13122038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
The cellular events leading to the development of the woody breast myopathy in broiler breast muscle are unclear. Affected woody breast muscle exhibits muscle fiber degeneration/regeneration, connective tissue accumulation, and adverse morphological changes in mitochondria. Ribonucleotide reductase (RNR) is an enzyme for the synthesis of dNTP, which is important for mitochondria DNA content (mtDNA). RNR consists of two subunits: RRM1/RRM2. A decrease in RRM2 is associated with a decrease in mtDNA and mitochondria proteins, leading to impaired ATP production. The objective of this study was to investigate potential RNR differences between woody breast (WB) and normal (N) breast muscle by examining RRM2 expression and associated pathways. Gene expression and enzyme activities were examined by qPCR and commercial kits. Results showed that RRM2 expression reduced for WB (p = 0.01) and genes related to mitochondria, including ATP6 (p = 0.03), COX1 (p = 0.001), CYTB (p = 0.07), ND2 (p = 0.001) and ND4L (p = 0.03). Furthermore, NDUFB7 and COX 14, which are related to mitochondria and ATP synthesis, tended to be reduced in WB. Compared to N, GLUT1 reduced for WB (p = 0.05), which is responsible for glucose transport in cells. Consequently, PDK4 (p = 0.0001) and PPARG (p = 0.008) increased in WB, suggesting increased fatty acid oxidation. Citric synthase activity and the NAD/NADH ratio (p = 0.02) both reduced for WB, while WB increased CHRND expression (p = 0.001), which is a possible indicator of high reactive oxygen species levels. In conclusion, a reduction in RRM2 impaired mitochondria function, potentially ATP synthesis in WB, by increasing fibrosis and the down-regulation of several genes related to mitochondria function.
Collapse
Affiliation(s)
- Majid Shakeri
- U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Byungwhi Kong
- U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Hong Zhuang
- U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Brian Bowker
- U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| |
Collapse
|
3
|
Hsueh BY, Severin GB, Elg CA, Waldron EJ, Kant A, Wessel AJ, Dover JA, Rhoades CR, Ridenhour BJ, Parent KN, Neiditch MB, Ravi J, Top EM, Waters CM. Phage defence by deaminase-mediated depletion of deoxynucleotides in bacteria. Nat Microbiol 2022; 7:1210-1220. [PMID: 35817890 PMCID: PMC9830645 DOI: 10.1038/s41564-022-01162-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/24/2022] [Indexed: 02/03/2023]
Abstract
Vibrio cholerae biotype El Tor is perpetuating the longest cholera pandemic in recorded history. The genomic islands VSP-1 and VSP-2 distinguish El Tor from previous pandemic V. cholerae strains. Using a co-occurrence analysis of VSP genes in >200,000 bacterial genomes we built gene networks to infer biological functions encoded in these islands. This revealed that dncV, a component of the cyclic-oligonucleotide-based anti-phage signalling system (CBASS) anti-phage defence system, co-occurs with an uncharacterized gene vc0175 that we rename avcD for anti-viral cytodine deaminase. We show that AvcD is a deoxycytidylate deaminase and that its activity is post-translationally inhibited by a non-coding RNA named AvcI. AvcID and bacterial homologues protect bacterial populations against phage invasion by depleting free deoxycytidine nucleotides during infection, thereby decreasing phage replication. Homologues of avcD exist in all three domains of life, and bacterial AvcID defends against phage infection by combining traits of two eukaryotic innate viral immunity proteins, APOBEC and SAMHD1.
Collapse
Affiliation(s)
- Brian Y Hsueh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Geoffrey B Severin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Clinton A Elg
- Department of Biological Sciences, Institute for Interdisciplinary Data Sciences, Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID, USA
| | - Evan J Waldron
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Abhiruchi Kant
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Alex J Wessel
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - John A Dover
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Christopher R Rhoades
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Benjamin J Ridenhour
- Department of Mathematics and Statistical Sciences, University of Idaho, Moscow, ID, USA
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Matthew B Neiditch
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Janani Ravi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Eva M Top
- Department of Biological Sciences, Institute for Interdisciplinary Data Sciences, Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID, USA
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Campion C, Charbon G, Thomsen TT, Nielsen PE, Løbner-Olesen A. Antisense inhibition of the Escherichia coli NrdAB aerobic ribonucleotide reductase is bactericidal due to induction of DNA strand breaks. J Antimicrob Chemother 2021; 76:2802-2814. [PMID: 34450639 PMCID: PMC8521395 DOI: 10.1093/jac/dkab305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/16/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Antisense peptide nucleic acids (PNAs) constitute an alternative to traditional antibiotics, by their ability to silence essential genes. OBJECTIVES To evaluate the antibacterial effects of antisense PNA-peptide conjugates that target the gene encoding the alpha subunit (NrdA) of the Escherichia coli ribonucleotide reductase (RNR). METHODS Bacterial susceptibility of a series of NrdA-targeting PNAs was studied by MIC determination and time-kill analysis. Western-blot analysis, gene complementation and synergy with hydroxyurea were employed to determine the efficiency of NrdA-PNA antisense treatment. The effect on chromosome replication was addressed by determining the DNA synthesis rate, by flow cytometry analysis, by quantitative PCR and by fluorescence microscopy. The use of DNA repair mutants provided insight into the bactericidal action of NrdA-PNA. RESULTS Treatment with NrdA-PNA specifically inhibited growth of E. coli, as well as NrdA protein translation at 4 μM. Also, the DNA synthesis rate was reduced, preventing completion of chromosome replication and resulting in formation of double-stranded DNA breaks and cell death. CONCLUSIONS These data present subunits of the NrdAB RNR as a target for future antisense microbial agents and provide insight into the bacterial physiological response to RNR-targeting antimicrobials.
Collapse
Affiliation(s)
- Christopher Campion
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Blegdamsvej 3c, 2200 Copenhagen N, Denmark.,Department of Biology, Faculty of Science, Section for Functional Genomics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Godefroid Charbon
- Department of Biology, Faculty of Science, Section for Functional Genomics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Thomas T Thomsen
- Department of Biology, Faculty of Science, Section for Functional Genomics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Henrik Harpestreng Vej 4A, 2100 Copenhagen, Denmark
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Blegdamsvej 3c, 2200 Copenhagen N, Denmark
| | - Anders Løbner-Olesen
- Department of Biology, Faculty of Science, Section for Functional Genomics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
5
|
Electron Microscopy Reveals Unexpected Cytoplasm and Envelope Changes during Thymineless Death in Escherichia coli. J Bacteriol 2021; 203:e0015021. [PMID: 34152201 DOI: 10.1128/jb.00150-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial rod-shaped cells experiencing irreparable chromosome damage should filament without other morphological changes. Thymineless death (TLD) strikes thymidine auxotrophs denied external thymine/thymidine (T) supplementation. Such T-starved cells cannot produce the DNA precursor dTTP and therefore stop DNA replication. Stalled replication forks in T-starved cells were always assumed to experience mysterious chromosome lesions, but TLD was recently found to happen even without origin-dependent DNA replication, with the chromosome still remaining the main TLD target. T starvation also induces morphological changes, as if thymidine prevents cell envelope or cytoplasm problems that otherwise translate into chromosome damage. Here, we used transmission electron microscopy (TEM) to examine cytoplasm and envelope changes in T-starved Escherichia coli cells, using treatment with a DNA gyrase inhibitor as a control for "pure" chromosome death. Besides the expected cell filamentation in response to both treatments, we see the following morphological changes specific for T starvation and which might lead to chromosome damage: (i) significant cell widening, (ii) nucleoid diffusion, (iii) cell pole damage, and (iv) formation of numerous cytoplasmic bubbles. We conclude that T starvation does impact both the cytoplasm and the cell envelope in ways that could potentially affect the chromosome. IMPORTANCE Thymineless death is a dramatic and medically important phenomenon, the mechanisms of which remain a mystery. Unlike most other auxotrophs in the absence of the required supplement, thymidine-requiring E. coli mutants not only go static in the absence of thymidine, but rapidly die of chromosomal damage of unclear nature. Since this chromosomal damage is independent of replication, we examined fine morphological changes in cells undergoing thymineless death in order to identify what could potentially affect the chromosome. Here, we report several cytoplasm and cell envelope changes that develop in thymidine-starved cells but not in gyrase inhibitor-treated cells (negative control) that could be linked to subsequent irreparable chromosome damage. This is the first electron microscopy study of cells undergoing "genetic death" due to irreparable chromosome lesions.
Collapse
|
6
|
Maslowska KH, Makiela‐Dzbenska K, Fijalkowska IJ. The SOS system: A complex and tightly regulated response to DNA damage. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:368-384. [PMID: 30447030 PMCID: PMC6590174 DOI: 10.1002/em.22267] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 05/10/2023]
Abstract
Genomes of all living organisms are constantly threatened by endogenous and exogenous agents that challenge the chemical integrity of DNA. Most bacteria have evolved a coordinated response to DNA damage. In Escherichia coli, this inducible system is termed the SOS response. The SOS global regulatory network consists of multiple factors promoting the integrity of DNA as well as error-prone factors allowing for survival and continuous replication upon extensive DNA damage at the cost of elevated mutagenesis. Due to its mutagenic potential, the SOS response is subject to elaborate regulatory control involving not only transcriptional derepression, but also post-translational activation, and inhibition. This review summarizes current knowledge about the molecular mechanism of the SOS response induction and progression and its consequences for genome stability. Environ. Mol. Mutagen. 60:368-384, 2019. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Katarzyna H. Maslowska
- Cancer Research Center of Marseille, CNRS, UMR7258Inserm, U1068; Institut Paoli‐Calmettes, Aix‐Marseille UniversityMarseilleFrance
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| | | | - Iwona J. Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| |
Collapse
|
7
|
Thymineless Death in Escherichia coli Is Unaffected by Chromosomal Replication Complexity. J Bacteriol 2019; 201:JB.00797-18. [PMID: 30745374 DOI: 10.1128/jb.00797-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/06/2019] [Indexed: 11/20/2022] Open
Abstract
Thymineless death (TLD) is a rapid loss of viability of unclear mechanism in cultures of thyA mutants starved for thymine/thymidine (T starvation). It is accepted that T starvation repeatedly breaks replication forks, while recombinational repair restores them, but when the resulting futile breakage-repair cycle affects the small replication bubbles at oriC, the origin is degraded, killing the cell. Indeed, cells with increased chromosomal replication complexity (CRC), expressed as an elevated origin/terminus (ori/ter) ratio, die more extensively during TLD. Here we tested this logic by elevating the CRC in Escherichia coli thyA mutants before T starvation, anticipating exaggerated TLD. Unexpectedly, TLD remained unaffected by a CRC increase to either the natural limit (ori/ter ratio, ∼6) or the functional limit (ori/ter ratio, ∼16). Moreover, when we forced the CRC over the functional limit (ori/ter ratio, ∼30), TLD lessened. Thus, prior overinitiation does not sensitize cells to TLD. In contradiction with the published results, even blocking new replication initiations by the dnaA(Ts) defect at 42°C fails to prevent TLD. Using the thyA dnaA(Ts) mutant in a new T starvation protocol that excludes new initiations, we show that at 42°C, the same degree of TLD still occurs when chromosomes are demonstrably nonreplicating. Remarkably, 80% of the chromosomal DNA in these nonreplicating T-starved cells is still lost, by an unclear mechanism.IMPORTANCE Thymineless death kills cells of any type and is used in anticancer and antimicrobial treatments. We tested the idea that the more replication forks there are in the chromosome during growth, the more extensive the resulting thymineless death. We varied the number of replication forks in the Escherichia coli chromosome, as measured by the origin-to-terminus ratio, ranging it from the normal 2 to 60, and even completely eliminated replication forks in the nonreplicating chromosomes (ori/ter ratio = 1). Unexpectedly, we found that thymineless death is unaffected by the intensity of replication or by its complete absence; we also found that even nonreplicating chromosomes still disappear during thymine starvation. We conclude that thymineless death can kill E. coli independently of chromosomal replication.
Collapse
|
8
|
Rao TVP, Kuzminov A. Sources of thymidine and analogs fueling futile damage-repair cycles and ss-gap accumulation during thymine starvation in Escherichia coli. DNA Repair (Amst) 2019; 75:1-17. [PMID: 30684682 PMCID: PMC6382538 DOI: 10.1016/j.dnarep.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/31/2018] [Accepted: 01/06/2019] [Indexed: 10/27/2022]
Abstract
Thymine deprivation in thyA mutant E. coli causes thymineless death (TLD) and is the mode of action of popular antibacterial and anticancer drugs, yet the mechanisms of TLD are still unclear. TLD comprises three defined phases: resistance, rapid exponential death (RED) and survival, with the nature of the resistance phase and of the transition to the RED phase holding key to TLD pathology. We propose that a limited source of endogenous thymine maintains replication forks through the resistance phase. When this source ends, forks undergo futile break-repair cycle during the RED phase, eventually rendering the chromosome non-functional. Two obvious sources of the endogenous thymine are degradation of broken chromosomal DNA and recruitment of thymine from stable RNA. However, mutants that cannot degrade broken chromosomal DNA or lack ribo-thymine, instead of shortening the resistance phase, deepen the RED phase, meaning that only a small fraction of T-starved cells tap into these sources. Interestingly, the substantial chromosomal DNA accumulation during the resistance phase is negated during the RED phase, suggesting futile cycle of incorporation and excision of wrong nucleotides. We tested incorporation of dU or rU, finding some evidence for both, but DNA-dU incorporation accelerates TLD only when intracellular [dUTP] is increased by the dut mutation. In the dut ung mutant, with increased DNA-dU incorporation and no DNA-dU excision, replication is in fact rescued even without dT, but TLD still occurs, suggesting different mechanisms. Finally, we found that continuous DNA synthesis during thymine starvation makes chromosomal DNA increasingly single-stranded, and even the dut ung defect does not completely block this ss-gap accumulation. We propose that instability of single-strand gaps underlies the pathology of thymine starvation.
Collapse
Affiliation(s)
- T V Pritha Rao
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
9
|
Pezo V, Hassan C, Louis D, Sargueil B, Herdewijn P, Marlière P. Metabolic Recruitment and Directed Evolution of Nucleoside Triphosphate Uptake in Escherichia coli. ACS Synth Biol 2018; 7:1565-1572. [PMID: 29746092 DOI: 10.1021/acssynbio.8b00048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the design and elaboration of a selection protocol for importing a canonical substrate of DNA polymerase, thymidine triphosphate (dTTP) in Escherichia coli. Bacterial strains whose growth depend on dTTP uptake, through the action of an algal plastid transporter expressed from a synthetic gene inserted in the chromosome, were constructed and shown to withstand the simultaneous loss of thymidylate synthase and thymidine kinase. Such thyA tdk dual deletant strains provide an experimental model of tight nutritional containment for preventing dissemination of microbial GMOs. Our strains transported the four canonical dNTPs, in the following order of preference: dCTP > dATP ≥ dGTP > dTTP. Prolonged cultivation under limitation of exogenous dTTP led to the enhancement of dNTP transport by adaptive evolution. We investigated the uptake of dCTP analogues with altered sugar or nucleobase moieties, which were found to cause a loss of cell viability and an increase of mutant frequency, respectively. E. coli strains equipped with nucleoside triphosphate transporters should be instrumental for evolving organisms whose DNA genome is morphed chemically by fully substituting its canonical nucleotide components.
Collapse
Affiliation(s)
- Valérie Pezo
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
- ISSB, Génopole, 5 rue Henri Desbruères, 91000 Evry, France
| | | | | | - Bruno Sargueil
- CNRS UMR 8015, Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l’Observatoire, 75006 Paris, France
| | - Piet Herdewijn
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
- ISSB, Génopole, 5 rue Henri Desbruères, 91000 Evry, France
| | - Philippe Marlière
- ISSB, Génopole, 5 rue Henri Desbruères, 91000 Evry, France
- TESSSI, 81 rue Réaumur, 75002 Paris, France
| |
Collapse
|
10
|
Zaritsky A, Rabinovitch A, Liu C, Woldringh CL. Does the eclipse limit bacterial nucleoid complexity and cell width? Synth Syst Biotechnol 2017; 2:267-275. [PMID: 29552651 PMCID: PMC5851910 DOI: 10.1016/j.synbio.2017.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022] Open
Abstract
Cell size of bacteria M is related to 3 temporal parameters: chromosome replication time C, period from replication-termination to subsequent division D, and doubling time τ. Steady-state, bacillary cells grow exponentially by extending length L only, but their constant width W is larger at shorter τ's or longer C's, in proportion to the number of chromosome replication positions n (= C/τ), at least in Escherichia coli and Salmonella typhimurium. Extending C by thymine limitation of fast-growing thyA mutants result in continuous increase of M, associated with rising W, up to a limit before branching. A set of such puzzling observations is qualitatively consistent with the view that the actual cell mass (or volume) at the time of replication-initiation Mi (or Vi), usually relatively constant in growth at varying τ's, rises with time under thymine limitation of fast-growing, thymine-requiring E. coli strains. The hypothesis will be tested that presumes existence of a minimal distance lmin between successive moving replisomes, translated into the time needed for a replisome to reach lmin before a new replication-initiation at oriC is allowed, termed Eclipse E. Preliminary analysis of currently available data is inconsistent with a constant E under all conditions, hence other explanations and ways to test them are proposed in an attempt to elucidate these and other results. The complex hypothesis takes into account much of what is currently known about Bacterial Physiology: the relationships between cell dimensions, growth and cycle parameters, particularly nucleoid structure, replication and position, and the mode of peptidoglycan biosynthesis. Further experiments are mentioned that are necessary to test the discussed ideas and hypotheses.
Collapse
Affiliation(s)
- Arieh Zaritsky
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84105, Israel
| | - Avinoam Rabinovitch
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84105, Israel
| | - Chenli Liu
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, PR China
| | - Conrad L Woldringh
- Bacterial Cell Biology, SILS, Boelelaan 1108, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Suppressors of dGTP Starvation in Escherichia coli. J Bacteriol 2017; 199:JB.00142-17. [PMID: 28373271 DOI: 10.1128/jb.00142-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/23/2017] [Indexed: 11/20/2022] Open
Abstract
dGTP starvation, a newly discovered phenomenon in which Escherichia coli cells are starved specifically for the DNA precursor dGTP, leads to impaired growth and, ultimately, cell death. Phenomenologically, it represents an example of nutritionally induced unbalanced growth: cell mass amplifies normally as dictated by the nutritional status of the medium, but DNA content growth is specifically impaired. The other known example of such a condition, thymineless death (TLD), involves starvation for the DNA precursor dTTP, which has been found to have important chemotherapeutic applications. Experimentally, dGTP starvation is induced by depriving an E. coligpt optA1 strain of its required purine source, hypoxanthine. In our studies of this phenomenon, we noted the emergence of a relatively high frequency of suppressor mutants that proved resistant to the treatment. To study such suppressors, we used next-generation sequencing on a collection of independently obtained mutants. A significant fraction was found to carry a defect in the PurR transcriptional repressor, controlling de novo purine biosynthesis, or in its downstream purEK operon. Thus, upregulation of de novo purine biosynthesis appears to be a major mode of overcoming the lethal effects of dGTP starvation. In addition, another large fraction of the suppressors contained a large tandem duplication of a 250- to 300-kb genomic region that included the purEK operon as well as the acrAB-encoded multidrug efflux system. Thus, the suppressive effects of the duplications could potentially involve beneficial effects of a number of genes/operons within the amplified regions.IMPORTANCE Concentrations of the four precursors for DNA synthesis (2'-deoxynucleoside-5'-triphosphates [dNTPs]) are critical for both the speed of DNA replication and its accuracy. Previously, we investigated consequences of dGTP starvation, where the DNA precursor dGTP was specifically reduced to a low level. Under this condition, E. coli cells continued cell growth but eventually developed a DNA replication defect, leading to cell death due to formation of unresolvable DNA structures. Nevertheless, dGTP-starved cultures eventually resumed growth due to the appearance of resistant mutants. Here, we used whole-genome DNA sequencing to identify the responsible suppressor mutations. We show that the majority of suppressors can circumvent death by upregulating purine de novo biosynthesis, leading to restoration of dGTP to acceptable levels.
Collapse
|
12
|
Babu VMP, Itsko M, Baxter JC, Schaaper RM, Sutton MD. Insufficient levels of the nrdAB-encoded ribonucleotide reductase underlie the severe growth defect of the Δhda E. coli strain. Mol Microbiol 2017; 104:377-399. [PMID: 28130843 DOI: 10.1111/mmi.13632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 11/28/2022]
Abstract
The ATP-bound form of the Escherichia coli DnaA replication initiator protein remodels the chromosomal origin of replication, oriC, to load the replicative helicase. The primary mechanism for regulating the activity of DnaA involves the Hda and β clamp proteins, which act together to dramatically stimulate the intrinsic DNA-dependent ATPase activity of DnaA via a process termed Regulatory Inactivation of DnaA. In addition to hyperinitiation, strains lacking hda function also exhibit cold sensitive growth at 30°C. Strains impaired for the other regulators of initiation (i.e., ΔseqA or ΔdatA) fail to exhibit cold sensitivity. The goal of this study was to gain insight into why loss of hda function impedes growth. We used a genetic approach to isolate 9 suppressors of Δhda cold sensitivity, and characterized the mechanistic basis by which these suppressors alleviated Δhda cold sensitivity. Taken together, our results provide strong support for the view that the fundamental defect associated with Δhda is diminished levels of DNA precursors, particularly dGTP and dATP. We discuss possible mechanisms by which the suppressors identified here may regulate dNTP pool size, as well as similarities in phenotypes between the Δhda strain and hda+ strains exposed to the ribonucleotide reductase inhibitor hydroxyurea.
Collapse
Affiliation(s)
- Vignesh M P Babu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mark Itsko
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jamie C Baxter
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Roel M Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Mark D Sutton
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
13
|
Transcriptome Analysis of Escherichia coli during dGTP Starvation. J Bacteriol 2016; 198:1631-44. [PMID: 27002130 DOI: 10.1128/jb.00218-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/16/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Our laboratory recently discovered that Escherichia coli cells starved for the DNA precursor dGTP are killed efficiently (dGTP starvation) in a manner similar to that described for thymineless death (TLD). Conditions for specific dGTP starvation can be achieved by depriving an E. coli optA1 gpt strain of the purine nucleotide precursor hypoxanthine (Hx). To gain insight into the mechanisms underlying dGTP starvation, we conducted genome-wide gene expression analyses of actively growing optA1 gpt cells subjected to hypoxanthine deprivation for increasing periods. The data show that upon Hx withdrawal, the optA1 gpt strain displays a diminished ability to derepress the de novo purine biosynthesis genes, likely due to internal guanine accumulation. The impairment in fully inducing the purR regulon may be a contributing factor to the lethality of dGTP starvation. At later time points, and coinciding with cell lethality, strong induction of the SOS response was observed, supporting the concept of replication stress as a final cause of death. No evidence was observed in the starved cells for the participation of other stress responses, including the rpoS-mediated global stress response, reinforcing the lack of feedback of replication stress to the global metabolism of the cell. The genome-wide expression data also provide direct evidence for increased genome complexity during dGTP starvation, as a markedly increased gradient was observed for expression of genes located near the replication origin relative to those located toward the replication terminus. IMPORTANCE Control of the supply of the building blocks (deoxynucleoside triphosphates [dNTPs]) for DNA replication is important for ensuring genome integrity and cell viability. When cells are starved specifically for one of the four dNTPs, dGTP, the process of DNA replication is disturbed in a manner that can lead to eventual death. In the present study, we investigated the transcriptional changes in the bacterium E. coli during dGTP starvation. The results show increasing DNA replication stress with an increased time of starvation, as evidenced by induction of the bacterial SOS system, as well as a notable lack of induction of other stress responses that could have saved the cells from cell death by slowing down cell growth.
Collapse
|
14
|
Khan SR, Mahaseth T, Kouzminova EA, Cronan GE, Kuzminov A. Static and Dynamic Factors Limit Chromosomal Replication Complexity in Escherichia coli, Avoiding Dangers of Runaway Overreplication. Genetics 2016; 202:945-60. [PMID: 26801182 PMCID: PMC4788131 DOI: 10.1534/genetics.115.184697] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
We define chromosomal replication complexity (CRC) as the ratio of the copy number of the most replicated regions to that of unreplicated regions on the same chromosome. Although a typical CRC of eukaryotic or bacterial chromosomes is 2, rapidly growing Escherichia coli cells induce an extra round of replication in their chromosomes (CRC = 4). There are also E. coli mutants with stable CRC∼6. We have investigated the limits and consequences of elevated CRC in E. coli and found three limits: the "natural" CRC limit of ∼8 (cells divide more slowly); the "functional" CRC limit of ∼22 (cells divide extremely slowly); and the "tolerance" CRC limit of ∼64 (cells stop dividing). While the natural limit is likely maintained by the eclipse system spacing replication initiations, the functional limit might reflect the capacity of the chromosome segregation system, rather than dedicated mechanisms, and the tolerance limit may result from titration of limiting replication factors. Whereas recombinational repair is beneficial for cells at the natural and functional CRC limits, we show that it becomes detrimental at the tolerance CRC limit, suggesting recombinational misrepair during the runaway overreplication and giving a rationale for avoidance of the latter.
Collapse
Affiliation(s)
- Sharik R Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Tulip Mahaseth
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Glen E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
15
|
A DinB Ortholog Enables Mycobacterial Growth under dTTP-Limiting Conditions Induced by the Expression of a Mycobacteriophage-Derived Ribonucleotide Reductase Gene. J Bacteriol 2015; 198:352-62. [PMID: 26527643 DOI: 10.1128/jb.00669-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/24/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Mycobacterium species such as M. smegmatis and M. tuberculosis encode at least two translesion synthesis (TLS) polymerases, DinB1 and DinB2, respectively. Although predicted to be linked to DNA repair, their role in vivo remains enigmatic. M. smegmatis mc(2)155, a strain commonly used to investigate mycobacterial genetics, has two copies of dinB2, the gene that codes for DinB2, by virtue of a 56-kb chromosomal duplication. Expression of a mycobacteriophage D29 gene (gene 50) encoding a class II ribonucleotide reductase in M. smegmatis ΔDRKIN, a strain derived from mc(2)155 in which one copy of the duplication is lost, resulted in DNA replication defects and growth inhibition. The inhibitory effect could be linked to the deficiency of dTTP that resulted under these circumstances. The selective inhibition observed in the ΔDRKIN strain was found to be due solely to a reduced dosage of dinB2 in this strain. Mycobacterium bovis, which is closely related to M. tuberculosis, the tuberculosis pathogen, was found to be highly susceptible to gene 50 overexpression. Incidentally, these slow-growing pathogens harbor one copy of dinB2. The results indicate that the induction of a dTTP-limiting state can lead to growth inhibition in mycobacteria, with the effect being maximum in cells deficient in DinB2. IMPORTANCE Mycobacterium species, such as M. tuberculosis, the tuberculosis pathogen, are known to encode several Y family DNA polymerases, one of which is DinB2, an ortholog of the DNA repair-related protein DinP of Escherichia coli. Although this protein has been biochemically characterized previously and found to be capable of translesion synthesis in vitro, its in vivo function remains unknown. Using a novel method to induce dTTP deficiency in mycobacteria, we demonstrate that DinB2 can aid mycobacterial survival under such conditions. Apart from unraveling a specific role for the mycobacterial Y family DNA polymerase DinB2 for the first time, this study also paves the way for the development of drugs that can kill mycobacteria by inducing a dTTP-deficient state.
Collapse
|
16
|
Wu N, He L, Cui P, Wang W, Yuan Y, Liu S, Xu T, Zhang S, Wu J, Zhang W, Zhang Y. Ranking of persister genes in the same Escherichia coli genetic background demonstrates varying importance of individual persister genes in tolerance to different antibiotics. Front Microbiol 2015; 6:1003. [PMID: 26483762 PMCID: PMC4588708 DOI: 10.3389/fmicb.2015.01003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/07/2015] [Indexed: 12/31/2022] Open
Abstract
Despite the identification of many genes and pathways involved in the persistence phenomenon of bacteria, the relative importance of these genes in a single organism remains unclear. Here, using Escherichia coli as a model, we generated mutants of 21 known candidate persister genes and compared the relative importance of these mutants in persistence to various antibiotics (ampicillin, gentamicin, norfloxacin, and trimethoprim) at different times. We found that oxyR, dnaK, sucB, relA, rpoS, clpB, mqsR, and recA were prominent persister genes involved in persistence to multiple antibiotics. These genes map to the following pathways: antioxidative defense pathway (oxyR), global regulators (dnaK, clpB, and rpoS), energy production (sucB), stringent response (relA), toxin-antitoxin (TA) module (mqsR), and SOS response (recA). Among the TA modules, the ranking order was mqsR, lon, relE, tisAB, hipA, and dinJ. Intriguingly, rpoS deletion caused a defect in persistence to gentamicin but increased persistence to ampicillin and norfloxacin. Mutants demonstrated dramatic differences in persistence to different antibiotics at different time points: some mutants (oxyR, dnaK, phoU, lon, recA, mqsR, and tisAB) displayed defect in persistence from early time points, while other mutants (relE, smpB, glpD, umuD, and tnaA) showed defect only at later time points. These results indicate that varying hierarchy and importance of persister genes exist and that persister genes can be divided into those involved in shallow persistence and those involved in deep persistence. Our findings suggest that the persistence phenomenon is a dynamic process with different persister genes playing roles of variable significance at different times. These findings have implications for improved understanding of persistence phenomenon and developing new drugs targeting persisters for more effective cure of persistent infections.
Collapse
Affiliation(s)
- Nan Wu
- Key Lab of Molecular Virology, Institute of Medical Microbiology, Department of Infectious Diseases, Huashan Hospital, Fudan University Shanghai, China
| | - Lei He
- Key Lab of Molecular Virology, Institute of Medical Microbiology, Department of Infectious Diseases, Huashan Hospital, Fudan University Shanghai, China
| | - Peng Cui
- Key Lab of Molecular Virology, Institute of Medical Microbiology, Department of Infectious Diseases, Huashan Hospital, Fudan University Shanghai, China
| | - Wenjie Wang
- Key Lab of Molecular Virology, Institute of Medical Microbiology, Department of Infectious Diseases, Huashan Hospital, Fudan University Shanghai, China
| | - Youhua Yuan
- Key Lab of Molecular Virology, Institute of Medical Microbiology, Department of Infectious Diseases, Huashan Hospital, Fudan University Shanghai, China
| | - Shuang Liu
- Key Lab of Molecular Virology, Institute of Medical Microbiology, Department of Infectious Diseases, Huashan Hospital, Fudan University Shanghai, China
| | - Tao Xu
- Key Lab of Molecular Virology, Institute of Medical Microbiology, Department of Infectious Diseases, Huashan Hospital, Fudan University Shanghai, China
| | - Shanshan Zhang
- Key Lab of Molecular Virology, Institute of Medical Microbiology, Department of Infectious Diseases, Huashan Hospital, Fudan University Shanghai, China
| | - Jing Wu
- Key Lab of Molecular Virology, Institute of Medical Microbiology, Department of Infectious Diseases, Huashan Hospital, Fudan University Shanghai, China
| | - Wenhong Zhang
- Key Lab of Molecular Virology, Institute of Medical Microbiology, Department of Infectious Diseases, Huashan Hospital, Fudan University Shanghai, China
| | - Ying Zhang
- Key Lab of Molecular Virology, Institute of Medical Microbiology, Department of Infectious Diseases, Huashan Hospital, Fudan University Shanghai, China ; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
17
|
Abstract
Cancer was recognized as a genetic disease at least four decades ago, with the realization that the spontaneous mutation rate must increase early in tumorigenesis to account for the many mutations in tumour cells compared with their progenitor pre-malignant cells. Abnormalities in the deoxyribonucleotide pool have long been recognized as determinants of DNA replication fidelity, and hence may contribute to mutagenic processes that are involved in carcinogenesis. In addition, many anticancer agents antagonize deoxyribonucleotide metabolism. Here, we consider the extent to which aspects of deoxyribonucleotide metabolism contribute to our understanding of both carcinogenesis and to the effective use of anticancer agents.
Collapse
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, USA
| |
Collapse
|
18
|
Khodursky A, Guzmán EC, Hanawalt PC. Thymineless Death Lives On: New Insights into a Classic Phenomenon. Annu Rev Microbiol 2015; 69:247-63. [PMID: 26253395 DOI: 10.1146/annurev-micro-092412-155749] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The primary mechanisms by which bacteria lose viability when deprived of thymine have been elusive for over half a century. Early research focused on stalled replication forks and the deleterious effects of uracil incorporation into DNA from thymidine-deficient nucleotide pools. The initiation of the replication cycle and origin-proximal DNA degradation during thymine starvation have now been quantified via whole-genome microarrays and other approaches. These advances have fostered innovative models and informative experiments in bacteria since this topic was last reviewed. Given that thymineless death is similar in mammalian cells and that certain antibacterial and chemotherapeutic drugs elicit thymine deficiency, a mechanistic understanding of this phenomenon might have valuable biomedical applications.
Collapse
Affiliation(s)
- Arkady Khodursky
- Biotechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108;
| | - Elena C Guzmán
- Departamento de Bioquímica Biología Molecular y Genética, Universidad de Extremadura, 06071 Badajoz, Spain;
| | - Philip C Hanawalt
- Department of Biology, Stanford University, Stanford, California 94305;
| |
Collapse
|
19
|
Singh D, Gawel D, Itsko M, Hochkoeppler A, Krahn JM, London RE, Schaaper RM. Structure of Escherichia coli dGTP triphosphohydrolase: a hexameric enzyme with DNA effector molecules. J Biol Chem 2015; 290:10418-29. [PMID: 25694425 DOI: 10.1074/jbc.m115.636936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Indexed: 01/23/2023] Open
Abstract
The Escherichia coli dgt gene encodes a dGTP triphosphohydrolase whose detailed role still remains to be determined. Deletion of dgt creates a mutator phenotype, indicating that the dGTPase has a fidelity role, possibly by affecting the cellular dNTP pool. In the present study, we have investigated the structure of the Dgt protein at 3.1-Å resolution. One of the obtained structures revealed a protein hexamer that contained two molecules of single-stranded DNA. The presence of DNA caused significant conformational changes in the enzyme, including in the catalytic site of the enzyme. Dgt preparations lacking DNA were able to bind single-stranded DNA with high affinity (Kd ∼ 50 nM). DNA binding positively affected the activity of the enzyme: dGTPase activity displayed sigmoidal (cooperative) behavior without DNA but hyperbolic (Michaelis-Menten) kinetics in its presence, consistent with a specific lowering of the apparent Km for dGTP. A mutant Dgt enzyme was also created containing residue changes in the DNA binding cleft. This mutant enzyme, whereas still active, was incapable of DNA binding and could no longer be stimulated by addition of DNA. We also created an E. coli strain containing the mutant dgt gene on the chromosome replacing the wild-type gene. The mutant also displayed a mutator phenotype. Our results provide insight into the allosteric regulation of the enzyme and support a physiologically important role of DNA binding.
Collapse
Affiliation(s)
- Deepa Singh
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Damian Gawel
- the Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, 01-813 Warsaw, Poland, and
| | - Mark Itsko
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | | | - Juno M Krahn
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Robert E London
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Roel M Schaaper
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709,
| |
Collapse
|