1
|
Barrasa JI, Kahn TG, Lundkvist MJ, Schwartz YB. DNA elements tether canonical Polycomb Repressive Complex 1 to human genes. Nucleic Acids Res 2023; 51:11613-11633. [PMID: 37855680 PMCID: PMC10681801 DOI: 10.1093/nar/gkad889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Development of multicellular animals requires epigenetic repression by Polycomb group proteins. The latter assemble in multi-subunit complexes, of which two kinds, Polycomb Repressive Complex 1 (PRC1) and Polycomb Repressive Complex 2 (PRC2), act together to repress key developmental genes. How PRC1 and PRC2 recognize specific genes remains an open question. Here we report the identification of several hundreds of DNA elements that tether canonical PRC1 to human developmental genes. We use the term tether to describe a process leading to a prominent presence of canonical PRC1 at certain genomic sites, although the complex is unlikely to interact with DNA directly. Detailed analysis indicates that sequence features associated with PRC1 tethering differ from those that favour PRC2 binding. Throughout the genome, the two kinds of sequence features mix in different proportions to yield a gamut of DNA elements that range from those tethering predominantly PRC1 or PRC2 to ones capable of tethering both complexes. The emerging picture is similar to the paradigmatic targeting of Polycomb complexes by Polycomb Response Elements (PREs) of Drosophila but providing for greater plasticity.
Collapse
Affiliation(s)
- Juan I Barrasa
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Tatyana G Kahn
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Moa J Lundkvist
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Yuri B Schwartz
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
2
|
Brown JL, Price JD, Erokhin M, Kassis JA. Context-dependent role of Pho binding sites in Polycomb complex recruitment in Drosophila. Genetics 2023; 224:iyad096. [PMID: 37216193 PMCID: PMC10411561 DOI: 10.1093/genetics/iyad096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Polycomb group (PcG) proteins maintain the silenced state of key developmental genes, but how these proteins are recruited to specific regions of the genome is still not completely understood. In Drosophila, PcG proteins are recruited to Polycomb response elements (PREs) comprised of a flexible array of sites for sequence-specific DNA binding proteins, "PcG recruiters," including Pho, Spps, Cg, and GAF. Pho is thought to play a central role in PcG recruitment. Early data showed that mutation of Pho binding sites in PREs in transgenes abrogated the ability of those PREs to repress gene expression. In contrast, genome-wide experiments in pho mutants or by Pho knockdown showed that PcG proteins can bind to PREs in the absence of Pho. Here, we directly addressed the importance of Pho binding sites in 2 engrailed (en) PREs at the endogenous locus and in transgenes. Our results show that Pho binding sites are required for PRE activity in transgenes with a single PRE. In a transgene, 2 PREs together lead to stronger, more stable repression and confer some resistance to the loss of Pho binding sites. Making the same mutation in Pho binding sites has little effect on PcG-protein binding at the endogenous en gene. Overall, our data support the model that Pho is important for PcG binding but emphasize how multiple PREs and chromatin environment increase the ability of PREs to function in the absence of Pho. This supports the view that multiple mechanisms contribute to PcG recruitment in Drosophila.
Collapse
Affiliation(s)
- Janet Lesley Brown
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua D Price
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Erokhin M, Mogila V, Lomaev D, Chetverina D. Polycomb Recruiters Inside and Outside of the Repressed Domains. Int J Mol Sci 2023; 24:11394. [PMID: 37511153 PMCID: PMC10379775 DOI: 10.3390/ijms241411394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The establishment and stable inheritance of individual patterns of gene expression in different cell types are required for the development of multicellular organisms. The important epigenetic regulators are the Polycomb group (PcG) and Trithorax group (TrxG) proteins, which control the silenced and active states of genes, respectively. In Drosophila, the PcG/TrxG group proteins are recruited to the DNA regulatory sequences termed the Polycomb response elements (PREs). The PREs are composed of the binding sites for different DNA-binding proteins, the so-called PcG recruiters. Currently, the role of the PcG recruiters in the targeting of the PcG proteins to PREs is well documented. However, there are examples where the PcG recruiters are also implicated in the active transcription and in the TrxG function. In addition, there is increasing evidence that the genome-wide PcG recruiters interact with the chromatin outside of the PREs and overlap with the proteins of differing regulatory classes. Recent studies of the interactomes of the PcG recruiters significantly expanded our understanding that they have numerous interactors besides the PcG proteins and that their functions extend beyond the regulation of the PRE repressive activity. Here, we summarize current data about the functions of the PcG recruiters.
Collapse
Affiliation(s)
- Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Vladic Mogila
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Dmitry Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
4
|
Solorzano J, Carrillo-de Santa Pau E, Laguna T, Busturia A. A genome-wide computational approach to define microRNA-Polycomb/trithorax gene regulatory circuits in Drosophila. Dev Biol 2023; 495:63-75. [PMID: 36596335 DOI: 10.1016/j.ydbio.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 01/02/2023]
Abstract
Characterization of gene regulatory networks is fundamental to understanding homeostatic development. This process can be simplified by analyzing relatively simple genomes such as the genome of Drosophila melanogaster. In this work we have developed a computational framework in Drosophila to explore for the presence of gene regulatory circuits between two large groups of transcriptional regulators: the epigenetic group of the Polycomb/trithorax (PcG/trxG) proteins and the microRNAs (miRNAs). We have searched genome-wide for miRNA targets in PcG/trxG transcripts as well as for Polycomb Response Elements (PREs) in miRNA genes. Our results show that 10% of the analyzed miRNAs could be controlling PcG/trxG gene expression, while 40% of those miRNAs are putatively controlled by the selected set of PcG/trxG proteins. The integration of these analyses has resulted in the predicted existence of 3 classes of miRNA-PcG/trxG crosstalk interactions that define potential regulatory circuits. In the first class, miRNA-PcG circuits are defined by miRNAs that reciprocally crosstalk with PcG. In the second, miRNA-trxG circuits are defined by miRNAs that reciprocally crosstalk with trxG. In the third class, miRNA-PcG/trxG shared circuits are defined by miRNAs that crosstalk with both PcG and trxG regulators. These putative regulatory circuits may uncover a novel mechanism in Drosophila for the control of PcG/trxG and miRNAs levels of expression. The computational framework developed here for Drosophila melanogaster can serve as a model case for similar analyses in other species. Moreover, our work provides, for the first time, a new and useful resource for the Drosophila community to consult prior to experimental studies investigating the epigenetic regulatory networks of miRNA-PcG/trxG mediated gene expression.
Collapse
Affiliation(s)
- Jacobo Solorzano
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, 28049, Madrid, Spain; Centre de Recherches en Cancerologie de Toulouse, 2 Av. Hubert Curien, 31100, Toulouse, France
| | - Enrique Carrillo-de Santa Pau
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, CEI UAM+CSIC, 28049, Madrid, Spain
| | - Teresa Laguna
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, CEI UAM+CSIC, 28049, Madrid, Spain.
| | - Ana Busturia
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, 28049, Madrid, Spain.
| |
Collapse
|
5
|
Mikulski P, Wolff P, Lu T, Nielsen M, Echevarria EF, Zhu D, Questa JI, Saalbach G, Martins C, Dean C. VAL1 acts as an assembly platform co-ordinating co-transcriptional repression and chromatin regulation at Arabidopsis FLC. Nat Commun 2022; 13:5542. [PMID: 36130923 PMCID: PMC9492735 DOI: 10.1038/s41467-022-32897-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Polycomb (PcG) silencing is crucial for development, but how targets are specified remains incompletely understood. The cold-induced Polycomb Repressive Complex 2 (PRC2) silencing of Arabidopsis thaliana FLOWERING LOCUS C (FLC) provides an excellent system to elucidate PcG regulation. Association of the DNA binding protein VAL1 to FLC PcG nucleation regionis an important step. VAL1 co-immunoprecipitates APOPTOSIS AND SPLICING ASSOCIATED PROTEIN (ASAP) complex and PRC1. Here, we show that ASAP and PRC1 are necessary for co-transcriptional repression and chromatin regulation at FLC. ASAP mutants affect FLC transcription in warm conditions, but the rate of FLC silencing in the cold is unaffected. PRC1-mediated H2Aub accumulation increases at the FLC nucleation region during cold, but unlike the PRC2-delivered H3K27me3, does not spread across the locus. H2Aub thus involved in the transition to epigenetic silencing at FLC, facilitating H3K27me3 accumulation and long-term epigenetic memory. Overall, our work highlights the importance of VAL1 as an assembly platform co-ordinating activities necessary for epigenetic silencing at FLC.
Collapse
Affiliation(s)
- Pawel Mikulski
- Cell and Developmental Biology, John Innes Centre, Norwich, UK. .,Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Philip Wolff
- Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Tiancong Lu
- Cell and Developmental Biology, John Innes Centre, Norwich, UK.,State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mathias Nielsen
- Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | | - Danling Zhu
- Cell and Developmental Biology, John Innes Centre, Norwich, UK.,SUSTech-PKU Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Julia I Questa
- Cell and Developmental Biology, John Innes Centre, Norwich, UK.,Centre for Research in Agricultural Genomics, Barcelona, Spain
| | | | - Carlo Martins
- Biological Chemistry, John Innes Centre, Norwich, UK
| | - Caroline Dean
- Cell and Developmental Biology, John Innes Centre, Norwich, UK. .,MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
6
|
Gnocis: An integrated system for interactive and reproducible analysis and modelling of cis-regulatory elements in Python 3. PLoS One 2022; 17:e0274338. [PMID: 36084008 PMCID: PMC9462789 DOI: 10.1371/journal.pone.0274338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Gene expression is regulated through cis-regulatory elements (CREs), among which are promoters, enhancers, Polycomb/Trithorax Response Elements (PREs), silencers and insulators. Computational prediction of CREs can be achieved using a variety of statistical and machine learning methods combined with different feature space formulations. Although Python packages for DNA sequence feature sets and for machine learning are available, no existing package facilitates the combination of DNA sequence feature sets with machine learning methods for the genome-wide prediction of candidate CREs. We here present Gnocis, a Python package that streamlines the analysis and the modelling of CRE sequences by providing extensible APIs and implementing the glue required for combining feature sets and models for genome-wide prediction. Gnocis implements a variety of base feature sets, including motif pair occurrence frequencies and the k-spectrum mismatch kernel. It integrates with Scikit-learn and TensorFlow for state-of-the-art machine learning. Gnocis additionally implements a broad suite of tools for the handling and preparation of sequence, region and curve data, which can be useful for general DNA bioinformatics in Python. We also present Deep-MOCCA, a neural network architecture inspired by SVM-MOCCA that achieves moderate to high generalization without prior motif knowledge. To demonstrate the use of Gnocis, we applied multiple machine learning methods to the modelling of D. melanogaster PREs, including a Convolutional Neural Network (CNN), making this the first study to model PREs with CNNs. The models are readily adapted to new CRE modelling problems and to other organisms. In order to produce a high-performance, compiled package for Python 3, we implemented Gnocis in Cython. Gnocis can be installed using the PyPI package manager by running ‘pip install gnocis’. The source code is available on GitHub, at https://github.com/bjornbredesen/gnocis.
Collapse
|
7
|
Kang H, Cabrera JR, Zee BM, Kang HA, Jobe JM, Hegarty MB, Barry AE, Glotov A, Schwartz YB, Kuroda MI. Variant Polycomb complexes in Drosophila consistent with ancient functional diversity. SCIENCE ADVANCES 2022; 8:eadd0103. [PMID: 36070387 PMCID: PMC9451159 DOI: 10.1126/sciadv.add0103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Polycomb group (PcG) mutants were first identified in Drosophila on the basis of their failure to maintain proper Hox gene repression during development. The proteins encoded by the corresponding fly genes mainly assemble into one of two discrete Polycomb repressive complexes: PRC1 or PRC2. However, biochemical analyses in mammals have revealed alternative forms of PRC2 and multiple distinct types of noncanonical or variant PRC1. Through a series of proteomic analyses, we identify analogous PRC2 and variant PRC1 complexes in Drosophila, as well as a broader repertoire of interactions implicated in early development. Our data provide strong support for the ancient diversity of PcG complexes and a framework for future analysis in a longstanding and versatile genetic system.
Collapse
Affiliation(s)
- Hyuckjoon Kang
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Janel R. Cabrera
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Biology Department, Emmanuel College, Boston, MA 02115, USA
| | - Barry M. Zee
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Heather A. Kang
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | - Alexander Glotov
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Yuri B. Schwartz
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Mitzi I. Kuroda
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Owen BM, Davidovich C. DNA binding by polycomb-group proteins: searching for the link to CpG islands. Nucleic Acids Res 2022; 50:4813-4839. [PMID: 35489059 PMCID: PMC9122586 DOI: 10.1093/nar/gkac290] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/25/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Polycomb group proteins predominantly exist in polycomb repressive complexes (PRCs) that cooperate to maintain the repressed state of thousands of cell-type-specific genes. Targeting PRCs to the correct sites in chromatin is essential for their function. However, the mechanisms by which PRCs are recruited to their target genes in mammals are multifactorial and complex. Here we review DNA binding by polycomb group proteins. There is strong evidence that the DNA-binding subunits of PRCs and their DNA-binding activities are required for chromatin binding and CpG targeting in cells. In vitro, CpG-specific binding was observed for truncated proteins externally to the context of their PRCs. Yet, the mere DNA sequence cannot fully explain the subset of CpG islands that are targeted by PRCs in any given cell type. At this time we find very little structural and biophysical evidence to support a model where sequence-specific DNA-binding activity is required or sufficient for the targeting of CpG-dinucleotide sequences by polycomb group proteins while they are within the context of their respective PRCs, either PRC1 or PRC2. We discuss the current knowledge and open questions on how the DNA-binding activities of polycomb group proteins facilitate the targeting of PRCs to chromatin.
Collapse
Affiliation(s)
- Brady M Owen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.,EMBL-Australia, Clayton, VIC, Australia
| |
Collapse
|
9
|
Elizarev P, Finkl K, Müller J. Distinct requirements for Pho, Sfmbt, and Ino80 for cell survival in Drosophila. Genetics 2021; 219:iyab096. [PMID: 34849913 PMCID: PMC8633127 DOI: 10.1093/genetics/iyab096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022] Open
Abstract
The Drosophila proteins Pleiohomeotic (Pho) and its paralog Pho-like (Phol) are the homologs of the mammalian transcription factor YY1. Pho and Phol are subunits of the Polycomb group protein complex PhoRC and they are also stably associated with the INO80 nucleosome remodeling complex. Drosophila lacking both Pho and Phol arrest development as larvae with small misshaped imaginal discs. The basis of this phenotype is poorly understood. We find that in pho phol mutant animals cells retain the capacity to proliferate but show a high incidence of apoptotic cell death that results in tissue hypoplasia. Clonal analyses establish that cells stringently require Pho and Phol to survive. In contrast, the PhoRC subunit Sfmbt and the ATP-dependent nucleosome remodeling factor Ino80 are not essential for cell viability. Pho and Phol, therefore, execute their critical role for cell survival through mechanisms that do not involve Sfmbt function or INO80 nucleosome remodeling.
Collapse
Affiliation(s)
- Pavel Elizarev
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Katja Finkl
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Jürg Müller
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| |
Collapse
|
10
|
Bredesen BA, Rehmsmeier M. MOCCA: a flexible suite for modelling DNA sequence motif occurrence combinatorics. BMC Bioinformatics 2021; 22:234. [PMID: 33962556 PMCID: PMC8105988 DOI: 10.1186/s12859-021-04143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cis-regulatory elements (CREs) are DNA sequence segments that regulate gene expression. Among CREs are promoters, enhancers, Boundary Elements (BEs) and Polycomb Response Elements (PREs), all of which are enriched in specific sequence motifs that form particular occurrence landscapes. We have recently introduced a hierarchical machine learning approach (SVM-MOCCA) in which Support Vector Machines (SVMs) are applied on the level of individual motif occurrences, modelling local sequence composition, and then combined for the prediction of whole regulatory elements. We used SVM-MOCCA to predict PREs in Drosophila and found that it was superior to other methods. However, we did not publish a polished implementation of SVM-MOCCA, which can be useful for other researchers, and we only tested SVM-MOCCA with IUPAC motifs and PREs. RESULTS We here present an expanded suite for modelling CRE sequences in terms of motif occurrence combinatorics-Motif Occurrence Combinatorics Classification Algorithms (MOCCA). MOCCA contains efficient implementations of several modelling methods, including SVM-MOCCA, and a new method, RF-MOCCA, a Random Forest-derivative of SVM-MOCCA. We used SVM-MOCCA and RF-MOCCA to model Drosophila PREs and BEs in cross-validation experiments, making this the first study to model PREs with Random Forests and the first study that applies the hierarchical MOCCA approach to the prediction of BEs. Both models significantly improve generalization to PREs and boundary elements beyond that of previous methods-including 4-spectrum and motif occurrence frequency Support Vector Machines and Random Forests-, with RF-MOCCA yielding the best results. CONCLUSION MOCCA is a flexible and powerful suite of tools for the motif-based modelling of CRE sequences in terms of motif composition. MOCCA can be applied to any new CRE modelling problems where motifs have been identified. MOCCA supports IUPAC and Position Weight Matrix (PWM) motifs. For ease of use, MOCCA implements generation of negative training data, and additionally a mode that requires only that the user specifies positives, motifs and a genome. MOCCA is licensed under the MIT license and is available on Github at https://github.com/bjornbredesen/MOCCA .
Collapse
Affiliation(s)
- Bjørn André Bredesen
- Computational Biology Unit, Department of Informatics, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway.
| | - Marc Rehmsmeier
- Department of Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| |
Collapse
|
11
|
Chetverina DA, Lomaev DV, Erokhin MM. Polycomb and Trithorax Group Proteins: The Long Road from Mutations in Drosophila to Use in Medicine. Acta Naturae 2020; 12:66-85. [PMID: 33456979 PMCID: PMC7800605 DOI: 10.32607/actanaturae.11090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) proteins are evolutionarily conserved factors responsible for the repression and activation of the transcription of multiple genes in Drosophila and mammals. Disruption of the PcG/TrxG expression is associated with many pathological conditions, including cancer, which makes them suitable targets for diagnosis and therapy in medicine. In this review, we focus on the major PcG and TrxG complexes, the mechanisms of PcG/TrxG action, and their recruitment to chromatin. We discuss the alterations associated with the dysfunction of a number of factors of these groups in oncology and the current strategies used to develop drugs based on small-molecule inhibitors.
Collapse
Affiliation(s)
- D. A. Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - D. V. Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - M. M. Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
12
|
Ghotbi E, Lackey K, Wong V, Thompson KT, Caston EG, Haddadi M, Benes J, Jones RS. Differential Contributions of DNA-Binding Proteins to Polycomb Response Element Activity at the Drosophila giant Gene. Genetics 2020; 214:623-634. [PMID: 31919108 PMCID: PMC7054010 DOI: 10.1534/genetics.119.302981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 11/18/2022] Open
Abstract
Polycomb-group (PcG) proteins are evolutionarily conserved epigenetic regulators whose primary function is to maintain the transcriptional repression of target genes. Recruitment of Drosophila melanogaster PcG proteins to target genes requires the presence of one or more Polycomb Response Elements (PREs). The functions or necessity for more than one PRE at a gene are not clear and individual PREs at some loci may have distinct regulatory roles. Various combinations of sequence-specific DNA-binding proteins are present at a given PRE, but only Pleiohomeotic (Pho) is present at all strong PREs. The giant (gt) locus has two PREs, a proximal PRE1 and a distal PRE2. During early embryonic development, Pho binds to PRE1 ∼30-min prior to stable binding to PRE2. This observation indicated a possible dependence of PRE2 on PRE1 for PcG recruitment; however, we find here that PRE2 recruits PcG proteins and maintains transcriptional repression independently of Pho binding to PRE1. Pho-like (Phol) is partially redundant with Pho during larval development and binds to the same DNA sequences in vitro Although binding of Pho to PRE1 is dependent on the presence of consensus Pho-Phol-binding sites, Phol binding is less so and appears to play a minimal role in recruiting other PcG proteins to gt Another PRE-binding protein, Sp1/Kruppel-like factor, is dependent on the presence of Pho for PRE1 binding. Further, we show that, in addition to silencing gene expression, PcG proteins dampen transcription of an active gene.
Collapse
Affiliation(s)
- Elnaz Ghotbi
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Kristina Lackey
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Vicki Wong
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Katie T Thompson
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Evan G Caston
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Minna Haddadi
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Judith Benes
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Richard S Jones
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| |
Collapse
|
13
|
Johansen S, Gjerstorff MF. Interaction between Polycomb and SSX Proteins in Pericentromeric Heterochromatin Function and Its Implication in Cancer. Cells 2020; 9:cells9010226. [PMID: 31963307 PMCID: PMC7016822 DOI: 10.3390/cells9010226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/10/2023] Open
Abstract
The stability of pericentromeric heterochromatin is maintained by repressive epigenetic control mechanisms, and failure to maintain this stability may cause severe diseases such as immune deficiency and cancer. Thus, deeper insight into the epigenetic regulation and deregulation of pericentromeric heterochromatin is of high priority. We and others have recently demonstrated that pericentromeric heterochromatin domains are often epigenetically reprogrammed by Polycomb proteins in premalignant and malignant cells to form large subnuclear structures known as Polycomb bodies. This may affect the regulation and stability of pericentromeric heterochromatin domains and/or the distribution of Polycomb factors to support tumorigeneses. Importantly, Polycomb bodies in cancer cells may be targeted by the cancer/testis-related SSX proteins to cause derepression and genomic instability of pericentromeric heterochromatin. This review will discuss the interplay between SSX and Polycomb factors in the repression and stability of pericentromeric heterochromatin and its possible implications for tumor biology.
Collapse
Affiliation(s)
- Simone Johansen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark;
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark;
- Department of Oncology, Odense University Hospital, 5000 Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5000 Odense, Denmark
- Correspondence: ; Tel.: +45-21261563
| |
Collapse
|
14
|
Bredesen BA, Rehmsmeier M. DNA sequence models of genome-wide Drosophila melanogaster Polycomb binding sites improve generalization to independent Polycomb Response Elements. Nucleic Acids Res 2019; 47:7781-7797. [PMID: 31340029 PMCID: PMC6735708 DOI: 10.1093/nar/gkz617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/01/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Polycomb Response Elements (PREs) are cis-regulatory DNA elements that maintain gene transcription states through DNA replication and mitosis. PREs have little sequence similarity, but are enriched in a number of sequence motifs. Previous methods for modelling Drosophila melanogaster PRE sequences (PREdictor and EpiPredictor) have used a set of 7 motifs and a training set of 12 PREs and 16-23 non-PREs. Advances in experimental methods for mapping chromatin binding factors and modifications has led to the publication of several genome-wide sets of Polycomb targets. In addition to the seven motifs previously used, PREs are enriched in the GTGT motif, recently associated with the sequence-specific DNA binding protein Combgap. We investigated whether models trained on genome-wide Polycomb sites generalize to independent PREs when trained with control sequences generated by naive PRE models and including the GTGT motif. We also developed a new PRE predictor: SVM-MOCCA. Training PRE predictors with genome-wide experimental data improves generalization to independent data, and SVM-MOCCA predicts the majority of PREs in three independent experimental sets. We present 2908 candidate PREs enriched in sequence and chromatin signatures. 2412 of these are also enriched in H3K4me1, a mark of Trithorax activated chromatin, suggesting that PREs/TREs have a common sequence code.
Collapse
Affiliation(s)
- Bjørn André Bredesen
- Computational Biology Unit, Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway
| | - Marc Rehmsmeier
- Computational Biology Unit, Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway.,Integrated Research Institute (IRI) for the Life Sciences and Department of Biology, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
15
|
Evolving Role of RING1 and YY1 Binding Protein in the Regulation of Germ-Cell-Specific Transcription. Genes (Basel) 2019; 10:genes10110941. [PMID: 31752312 PMCID: PMC6895862 DOI: 10.3390/genes10110941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Separation of germline cells from somatic lineages is one of the earliest decisions of embryogenesis. Genes expressed in germline cells include apoptotic and meiotic factors, which are not transcribed in the soma normally, but a number of testis-specific genes are active in numerous cancer types. During germ cell development, germ-cell-specific genes can be regulated by specific transcription factors, retinoic acid signaling and multimeric protein complexes. Non-canonical polycomb repressive complexes, like ncPRC1.6, play a critical role in the regulation of the activity of germ-cell-specific genes. RING1 and YY1 binding protein (RYBP) is one of the core members of the ncPRC1.6. Surprisingly, the role of Rybp in germ cell differentiation has not been defined yet. This review is focusing on the possible role of Rybp in this process. By analyzing whole-genome transcriptome alterations of the Rybp-/- embryonic stem (ES) cells and correlating this data with experimentally identified binding sites of ncPRC1.6 subunits and retinoic acid receptors in ES cells, we propose a model how germ-cell-specific transcription can be governed by an RYBP centered regulatory network, underlining the possible role of RYBP in germ cell differentiation and tumorigenesis.
Collapse
|
16
|
Cheutin T, Cavalli G. The multiscale effects of polycomb mechanisms on 3D chromatin folding. Crit Rev Biochem Mol Biol 2019; 54:399-417. [PMID: 31698957 DOI: 10.1080/10409238.2019.1679082] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/30/2022]
Abstract
Polycomb group (PcG) proteins silence master regulatory genes required to properly confer cell identity during the development of both Drosophila and mammals. They may act through chromatin compaction and higher-order folding of chromatin inside the cell nucleus. During the last decade, analysis on interphase chromosome architecture discovered self-interacting regions named topologically associated domains (TADs). TADs result from the 3D chromatin folding of a succession of transcribed and repressed epigenomic domains and from loop extrusion mediated by cohesin/CTCF in mammals. Polycomb silenced chromatin constitutes one type of repressed epigenomic domains which form compacted nano-compartments inside cell nuclei. Recruitment of canonical PcG proteins on chromatin relies on initial binding to discrete elements and further spreading into large chromatin domains covered with H3K27me3. Some of these discrete elements have a bivalent nature both in mammals and Drosophila and are dynamically regulated during development. Loops can occur between them, suggesting that their interaction plays both functional and structural roles. Formation of large chromatin domains covered by H3K27me3 seems crucial for PcG silencing and PcG proteins might exert their function through compaction of these domains in both mammals and flies, rather than by directly controlling the nucleosomal accessibility of discrete regulatory elements. In addition, PcG chromatin domains interact over long genomic distances, shaping a higher-order chromatin network. Therefore, PcG silencing might rely on multiscale chromatin folding to maintain cell identity during differentiation.
Collapse
Affiliation(s)
- Thierry Cheutin
- Institute of Human Genetics, CNRS and the University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and the University of Montpellier, Montpellier, France
| |
Collapse
|
17
|
Abstract
Though genetic data suggest that Polycomb group proteins (PcGs) are central chromatin modifiers and repressors that have been implicated in control of embryonic stem cell (ESC) pluripotency, the precise mechanism of PcG complex recruitment remains elusive, especially in mammals. We now report that the first and second MBT repeats of L3mbtl2 are important structural and functional features that are necessary and sufficient for L3mbtl2-mediated recruitment of PRC1.6 complex to target promoters. Interestingly, this region of L3mbtl2 harbors the evolutionarily conserved Pho-binding pocket also present in Drosophila Sfmbt, and mutation of the critical residues within this pocket completely abolishes its interaction with target promoters. Additionally, decreased PRC1.6 chromatin occupancy was observed following loss of individual components (L3mbtl2, Pcgf6, and Max) of the complex. Our findings suggest that the recruitment of noncanonical PRC1.6 complex in ESCs might be the result of L3mbtl2's interaction with multiple components of the complex.
Collapse
|
18
|
Tang P, Miri K, Varmuza S. Unique trophoblast chromatin environment mediated by the PcG protein SFMBT2. Biol Open 2019; 8:bio043638. [PMID: 31391163 PMCID: PMC6737984 DOI: 10.1242/bio.043638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
Stem/progenitor cells are maintained by a chromatin environment, mediated in part by Polycomb group (PcG) proteins, which depress differentiation. The trophoblast-specific PcG protein SFMBT2 is known to be required for maintenance of trophoblast progenitors. Rather than binding to trophoblast-specific genes repressed in TSC, SFMBT2 is concentrated at chromocentres and regions rich in repetitive elements, specifically LINE sequences and major satellites, suggesting that it is involved in higher-order organization of the trophoblast genome. It is also found enriched at a subset of ncRNAs. Comparison of ChIP-seq datasets for other chromatin proteins reveals several stereotypical distribution patterns, suggesting that SFMBT2 interacts with several different types of chromatin complexes specific to the trophoblast lineage.
Collapse
Affiliation(s)
- Priscilla Tang
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario M5S 3G5, Canada
| | - Kamelia Miri
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario M5S 3G5, Canada
| | - Susannah Varmuza
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
19
|
Domsch K, Carnesecchi J, Disela V, Friedrich J, Trost N, Ermakova O, Polychronidou M, Lohmann I. The Hox transcription factor Ubx stabilizes lineage commitment by suppressing cellular plasticity in Drosophila. eLife 2019; 8:42675. [PMID: 31050646 PMCID: PMC6513553 DOI: 10.7554/elife.42675] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
During development cells become restricted in their differentiation potential by repressing alternative cell fates, and the Polycomb complex plays a crucial role in this process. However, how alternative fate genes are lineage-specifically silenced is unclear. We studied Ultrabithorax (Ubx), a multi-lineage transcription factor of the Hox class, in two tissue lineages using sorted nuclei and interfered with Ubx in mesodermal cells. We find that depletion of Ubx leads to the de-repression of genes normally expressed in other lineages. Ubx silences expression of alternative fate genes by retaining the Polycomb Group protein Pleiohomeotic at Ubx targeted genomic regions, thereby stabilizing repressive chromatin marks in a lineage-dependent manner. Our study demonstrates that Ubx stabilizes lineage choice by suppressing the multipotency encoded in the genome via its interaction with Pho. This mechanism may explain why the Hox code is maintained throughout the lifecycle, since it could set a block to transdifferentiation in adult cells.
Collapse
Affiliation(s)
- Katrin Domsch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | | | - Vanessa Disela
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | - Jana Friedrich
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | - Nils Trost
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | - Olga Ermakova
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | | | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Luhur A, Klueg KM, Zelhof AC. Generating and working with Drosophila cell cultures: Current challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e339. [PMID: 30561900 DOI: 10.1002/wdev.339] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/30/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022]
Abstract
The use of Drosophila cell cultures has positively impacted both fundamental and biomedical research. The most widely used cell lines: Schneider, Kc, the CNS and imaginal disc lines continue to be the choice for many applications. Drosophila cell lines provide a homogenous source of cells suitable for biochemical experimentations, transcriptomics, functional genomics, and biomedical applications. They are amenable to RNA interference and serve as a platform for high-throughput screens to identify relevant candidate genes or drugs for any biological process. Currently, CRISPR-based functional genomics are also being developed for Drosophila cell lines. Even though many uniquely derived cell lines exist, cell genetic techniques such the transgenic UAS-GAL4-based RasV12 oncogene expression, CRISPR-Cas9 editing and recombination mediated cassette exchange are likely to drive the establishment of many more lines from specific tissues, cells, or genotypes. However, the pace of creating new lines is hindered by several factors inherent to working with Drosophila cell cultures: single cell cloning, optimal media formulations and culture conditions capable of supporting lines from novel tissue sources or genotypes. Moreover, even though many Drosophila cell lines are morphologically and transcriptionally distinct it may be necessary to implement a standard for Drosophila cell line authentication, ensuring the identity and purity of each cell line. Altogether, recent advances and a standardized authentication effort should improve the utility of Drosophila cell cultures as a relevant model for fundamental and biomedical research. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes.
Collapse
Affiliation(s)
- Arthur Luhur
- Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana
| | - Kristin M Klueg
- Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana
| | - Andrew C Zelhof
- Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana
| |
Collapse
|
21
|
Alhaj Abed J, Ghotbi E, Ye P, Frolov A, Benes J, Jones RS. De novo recruitment of Polycomb-group proteins in Drosophila embryos. Development 2018; 145:dev.165027. [PMID: 30389849 DOI: 10.1242/dev.165027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/29/2018] [Indexed: 12/24/2022]
Abstract
Polycomb-group (PcG)-mediated transcriptional repression of target genes can be delineated into two phases. First, following initial repression of target genes by gene-specific transcription factors, PcG proteins recognize the repressed state and assume control of the genes' repression. Second, once the silenced state is established, PcG proteins may maintain repression through an indefinite number of cell cycles. Little is understood about how PcG proteins initially recognize the repressed state of target genes and the steps leading to de novo establishment of PcG-mediated repression. We describe a genetic system in which a Drosophila PcG target gene, giant (gt), is ubiquitously repressed during early embryogenesis by a maternally expressed transcription factor, and show the temporal recruitment of components of three PcG protein complexes: PhoRC, PRC1 and PRC2. We show that de novo PcG recruitment follows a temporal hierarchy in which PhoRC stably localizes at the target gene at least 1 h before stable recruitment of PRC2 and concurrent trimethylation of histone H3 at lysine 27 (H3K27me3). The presence of PRC2 and increased levels of H3K27me3 are found to precede stable binding by PRC1.
Collapse
Affiliation(s)
- Jumana Alhaj Abed
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Elnaz Ghotbi
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Piao Ye
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Alexander Frolov
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Judith Benes
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Richard S Jones
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| |
Collapse
|
22
|
Du J, Kirk B, Zeng J, Ma J, Wang Q. Three classes of response elements for human PRC2 and MLL1/2-Trithorax complexes. Nucleic Acids Res 2018; 46:8848-8864. [PMID: 29992232 PMCID: PMC6158500 DOI: 10.1093/nar/gky595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) proteins are essential for maintaining epigenetic memory in both embryonic stem cells and differentiated cells. To date, how they are localized to hundreds of specific target genes within a vertebrate genome had remained elusive. Here, by focusing on short cis-acting DNA elements of single functions, we discovered three classes of response elements in human genome: Polycomb response elements (PREs), Trithorax response elements (TREs) and Polycomb/Trithorax response elements (P/TREs). In particular, the four PREs (PRE14, 29, 39 and 48) are the first set of, to our knowledge, bona fide vertebrate PREs ever discovered, while many previously reported Drosophila or vertebrate PREs are likely P/TREs. We further demonstrated that YY1 and CpG islands are specifically enriched in the four TREs (PRE30, 41, 44 and 55), but not in the PREs. The three classes of response elements as unraveled in this study should guide further global investigation and open new doors for a deeper understanding of PcG and TrxG mechanisms in vertebrates.
Collapse
Affiliation(s)
- Junqing Du
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Brian Kirk
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jia Zeng
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jianpeng Ma
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Qinghua Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
23
|
Kyrchanova O, Kurbidaeva A, Sabirov M, Postika N, Wolle D, Aoki T, Maksimenko O, Mogila V, Schedl P, Georgiev P. The bithorax complex iab-7 Polycomb response element has a novel role in the functioning of the Fab-7 chromatin boundary. PLoS Genet 2018; 14:e1007442. [PMID: 30110328 PMCID: PMC6110506 DOI: 10.1371/journal.pgen.1007442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/27/2018] [Accepted: 07/30/2018] [Indexed: 12/22/2022] Open
Abstract
Expression of the three bithorax complex homeotic genes is orchestrated by nine parasegment-specific regulatory domains. Autonomy of each domain is conferred by boundary elements (insulators). Here, we have used an in situ replacement strategy to reanalyze the sequences required for the functioning of one of the best-characterized fly boundaries, Fab-7. It was initially identified by a deletion, Fab-71, that transformed parasegment (PS) 11 into a duplicate copy of PS12. Fab-71 deleted four nuclease hypersensitive sites, HS*, HS1, HS2, and HS3, located between the iab-6 and iab-7 regulatory domains. Transgenic and P-element excision experiments mapped the boundary to HS*+HS1+HS2, while HS3 was shown to be the iab-7 Polycomb response element (PRE). Recent replacement experiments showed that HS1 is both necessary and sufficient for boundary activity when HS3 is also present in the replacement construct. Surprisingly, while HS1+HS3 combination has full boundary activity, we discovered that HS1 alone has only minimal function. Moreover, when combined with HS3, only the distal half of HS1, dHS1, is needed. A ~1,000 kD multiprotein complex containing the GAF protein, called the LBC, binds to the dHS1 sequence and we show that mutations in dHS1, that disrupt LBC binding in nuclear extracts, eliminate boundary activity and GAF binding in vivo. HS3 has binding sites for GAF and Pho proteins that are required for PRE silencing. In contrast, HS3 boundary activity only requires the GAF binding sites. LBC binding with HS3 in nuclear extracts, and GAF association in vivo, depend upon the HS3 GAF sites, but not the Pho sites. Consistent with a role for the LBC in HS3 boundary activity, the boundary function of the dHS1+HS3mPho combination is lost when the flies are heterozygous for a mutation in the GAF gene. Taken together, these results reveal a novel function for the iab-7 PREs in chromosome architecture. Polycomb group proteins (PcG) are important epigenetic regulators of developmental genes in all higher eukaryotes. In Drosophila, these proteins are bound to specific regulatory DNA elements called Polycomb group Response Elements (PREs). Drosophila PREs are made up of binding sites for a complex array of DNA binding proteins, including GAF and Pho. In the regulatory region of the bithorax complex (BX-C), the boundary/insulator elements organize the autonomous regulatory domains, and their active or repressed states are regulated by PREs. Here, we studied functional properties of sequences that constitute the Fab-7 boundary and the adjacent iab-7 PRE. It was previously thought that the sole function of the iab-7 PRE is to recruit PcG proteins in parasegments anterior to PS12 and silence the iab-7 domain. However, we found that the iab-7 PRE also functions as a component of the Fab-7 boundary. The boundary activity of the iab-7 PRE sequence depends upon a large complex called the LBC. We show that it is possible to reconstitute a fully functional boundary by combining the LBC binding sequences in HS1 with the iab-7 PRE. Moreover, its boundary function is independent of its PcG silencing activity.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Amina Kurbidaeva
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Marat Sabirov
- Group of Molecular Organization of Genome, Institute of Gene Biology, Russian Acsademy of Sciences, Moscow, Russia
| | - Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daniel Wolle
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Tsutomu Aoki
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Oksana Maksimenko
- Group of Molecular Organization of Genome, Institute of Gene Biology, Russian Acsademy of Sciences, Moscow, Russia
| | - Vladic Mogila
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
- * E-mail: (PS); (PG)
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (PS); (PG)
| |
Collapse
|
24
|
Cameron SR, Nandi S, Kahn TG, Barrasa JI, Stenberg P, Schwartz YB. PTE, a novel module to target Polycomb Repressive Complex 1 to the human cyclin D2 ( CCND2) oncogene. J Biol Chem 2018; 293:14342-14358. [PMID: 30068546 DOI: 10.1074/jbc.ra118.005010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Indexed: 11/06/2022] Open
Abstract
Polycomb group proteins are essential epigenetic repressors. They form multiple protein complexes of which two kinds, PRC1 and PRC2, are indispensable for repression. Although much is known about their biochemical properties, how mammalian PRC1 and PRC2 are targeted to specific genes is poorly understood. Here, we establish the cyclin D2 (CCND2) oncogene as a simple model to address this question. We provide the evidence that the targeting of PRC1 to CCND2 involves a dedicated PRC1-targeting element (PTE). The PTE appears to act in concert with an adjacent cytosine-phosphate-guanine (CpG) island to arrange for the robust binding of PRC1 and PRC2 to repressed CCND2 Our findings pave the way to identify sequence-specific DNA-binding proteins implicated in the targeting of mammalian PRC1 complexes and provide novel link between polycomb repression and cancer.
Collapse
Affiliation(s)
| | - Soumyadeep Nandi
- From the Department of Molecular Biology and.,the Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden and
| | | | | | - Per Stenberg
- From the Department of Molecular Biology and.,the Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden and.,the Division of Chemical, Biological, Radioactive and Nuclear (CBRN) Security and Defence, FOI-Swedish Defence Research Agency, 906 21 Umeå Sweden
| | | |
Collapse
|
25
|
Abstract
Polycomb Group (PcG) proteins assemble a chromatin state that maintains developmental gene repression. A new study combining structure and in vivo analysis details a molecular network from DNA recognition to PcG recruitment, highlighting the essential role of Sterile Alpha Motifs.
Collapse
Affiliation(s)
- Chongwoo A Kim
- Department of Biochemistry, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
| | - Nicole J Francis
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada; Département de biochimie et medécine moléculaire, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
26
|
Global changes of H3K27me3 domains and Polycomb group protein distribution in the absence of recruiters Spps or Pho. Proc Natl Acad Sci U S A 2018; 115:E1839-E1848. [PMID: 29432187 DOI: 10.1073/pnas.1716299115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Polycomb group (PcG) proteins maintain the silenced state of key developmental genes in animals, but how these proteins are recruited to specific regions of the genome is still poorly understood. In Drosophila, PcG proteins are recruited to Polycomb response elements (PREs) that include combinations of sites for sequence specific DNA binding "PcG recruiters," including Pho, Cg, and Spps. To understand their roles in PcG recruitment, we compared Pho-, Cg-, and Spps-binding sites against H3K27me3 and key PcG proteins by ChIP-seq in wild-type and mutant third instar larvae. H3K27me3 in canonical Polycomb domains is decreased after the reduction of any recruiter. Reduction of Spps and Pho, but not Cg, causes the redistribution of H3K27me3 to heterochromatin. Regions with dramatically depleted H3K27me3 after Spps knockout are usually accompanied by decreased Pho binding, suggesting their cooperative binding. PcG recruiters, the PRC2 component E(z), and the PRC1 components Psc and Ph cobind thousands of active genes outside of H3K27me3 domains. This study demonstrates the importance of distinct PcG recruiters for the establishment of unique Polycomb domains. Different PcG recruiters can act both cooperatively and independently at specific PcG target genes, highlighting the complexity and diversity of PcG recruitment mechanisms.
Collapse
|
27
|
Khan S, Iqbal M, Tariq M, Baig SM, Abbas W. Epigenetic regulation of HIV-1 latency: focus on polycomb group (PcG) proteins. Clin Epigenetics 2018; 10:14. [PMID: 29441145 PMCID: PMC5800276 DOI: 10.1186/s13148-018-0441-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/05/2018] [Indexed: 01/10/2023] Open
Abstract
HIV-1 latency allows the virus to persist until reactivation, in a transcriptionally silent form in its cellular reservoirs despite the presence of effective cART. Such viral persistence represents a major barrier to HIV eradication since treatment interruption leads to rebound plasma viremia. Polycomb group (PcG) proteins have recently got a considerable attention in regulating HIV-1 post-integration latency as they are involved in the repression of proviral gene expression through the methylation of histones. This epigenetic regulation plays an important role in the establishment and maintenance of HIV-1 latency. In fact, PcG proteins act in complexes and modulate the epigenetic signatures of integrated HIV-1 promoter. Key role played by PcG proteins in the molecular control of HIV-1 latency has led to hypothesize that PcG proteins may represent a valuable target for future HIV-1 therapy in purging HIV-1 reservoirs. In this regard, various small molecules have been synthesized or explored to specifically block the epigenetic activity of PcG. In this review, we will highlight the possible therapeutic approaches to achieve either a functional or sterilizing cure of HIV-1 infection with special focus on histone methylation by PcG proteins together with current and novel pharmacological approaches to reactivate HIV-1 from latency that could ultimately lead towards a better clearance of viral latent reservoirs.
Collapse
Affiliation(s)
- Sheraz Khan
- Health Biotechnology Division (HBD), National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang road, Faisalabad, 38000 Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division (HBD), National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang road, Faisalabad, 38000 Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Muhammad Tariq
- Department of Biology (Epigenetics group), SBA School of Science and Engineering, LUMS, Lahore, 54792 Pakistan
| | - Shahid M. Baig
- Health Biotechnology Division (HBD), National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang road, Faisalabad, 38000 Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Wasim Abbas
- Health Biotechnology Division (HBD), National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang road, Faisalabad, 38000 Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| |
Collapse
|
28
|
|
29
|
Abstract
Polycomb Group (PcG) proteins epigenetically repress key developmental genes and thereby control alternative cell fates. PcG proteins act as complexes that can modify histones and these histone modifications play a role in transmitting the “memory” of the repressed state as cells divide. Here we consider mainstream models that link histone modifications to hierarchical recruitment of PcG complexes and compare them to results of a direct test of interdependence between PcG complexes for recruitment to Drosophila genes. The direct test indicates that PcG complexes do not rely on histone modifications to recognize their target genes but use them to stabilize the interactions within large chromatin domains. It also shows that multiple strategies are used to coordinate the targeting of PcG complexes to different genes, which may make the repression of these genes more or less robust.
Collapse
Affiliation(s)
- Eshagh Dorafshan
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Tatyana G Kahn
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Yuri B Schwartz
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| |
Collapse
|
30
|
Schuettengruber B, Bourbon HM, Di Croce L, Cavalli G. Genome Regulation by Polycomb and Trithorax: 70 Years and Counting. Cell 2017; 171:34-57. [DOI: 10.1016/j.cell.2017.08.002] [Citation(s) in RCA: 611] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/17/2017] [Accepted: 08/01/2017] [Indexed: 01/05/2023]
|
31
|
Kassis JA, Kennison JA, Tamkun JW. Polycomb and Trithorax Group Genes in Drosophila. Genetics 2017; 206:1699-1725. [PMID: 28778878 PMCID: PMC5560782 DOI: 10.1534/genetics.115.185116] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) genes encode important regulators of development and differentiation in metazoans. These two groups of genes were discovered in Drosophila by their opposing effects on homeotic gene (Hox) expression. PcG genes collectively behave as genetic repressors of Hox genes, while the TrxG genes are necessary for HOX gene expression or function. Biochemical studies showed that many PcG proteins are present in two protein complexes, Polycomb repressive complexes 1 and 2, which repress transcription via chromatin modifications. TrxG proteins activate transcription via a variety of mechanisms. Here we summarize the large body of genetic and biochemical experiments in Drosophila on these two important groups of genes.
Collapse
Affiliation(s)
- Judith A Kassis
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Kennison
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - John W Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| |
Collapse
|
32
|
Three-Dimensional Genome Organization and Function in Drosophila. Genetics 2017; 205:5-24. [PMID: 28049701 PMCID: PMC5223523 DOI: 10.1534/genetics.115.185132] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/15/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent technological advances started to reveal connections at the molecular level. Here we will consider general features of the architectural organization of the Drosophila genome, providing historical perspective and insights from recent work. We will compare the linear and spatial segmentation of the fly genome and focus on the two key regulators of genome architecture: insulator components and Polycomb group proteins. With its unique set of genetic tools and a compact, well annotated genome, Drosophila is poised to remain a model system of choice for rapid progress in understanding principles of genome organization and to serve as a proving ground for development of 3D genome-engineering techniques.
Collapse
|
33
|
Boldyreva LV, Goncharov FP, Demakova OV, Zykova TY, Levitsky VG, Kolesnikov NN, Pindyurin AV, Semeshin VF, Zhimulev IF. Protein and Genetic Composition of Four Chromatin Types in Drosophila melanogaster Cell Lines. Curr Genomics 2017; 18:214-226. [PMID: 28367077 PMCID: PMC5345337 DOI: 10.2174/1389202917666160512164913] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recently, we analyzed genome-wide protein binding data for the Drosophila cell lines S2, Kc, BG3 and Cl.8 (modENCODE Consortium) and identified a set of 12 proteins enriched in the regions corresponding to interbands of salivary gland polytene chromosomes. Using these data, we developed a bioinformatic pipeline that partitioned the Drosophila genome into four chromatin types that we hereby refer to as aquamarine, lazurite, malachite and ruby. RESULTS Here, we describe the properties of these chromatin types across different cell lines. We show that aquamarine chromatin tends to harbor transcription start sites (TSSs) and 5' untranslated regions (5'UTRs) of the genes, is enriched in diverse "open" chromatin proteins, histone modifications, nucleosome remodeling complexes and transcription factors. It encompasses most of the tRNA genes and shows enrichment for non-coding RNAs and miRNA genes. Lazurite chromatin typically encompasses gene bodies. It is rich in proteins involved in transcription elongation. Frequency of both point mutations and natural deletion breakpoints is elevated within lazurite chromatin. Malachite chromatin shows higher frequency of insertions of natural transposons. Finally, ruby chromatin is enriched for proteins and histone modifications typical for the "closed" chromatin. Ruby chromatin has a relatively low frequency of point mutations and is essentially devoid of miRNA and tRNA genes. Aquamarine and ruby chromatin types are highly stable across cell lines and have contrasting properties. Lazurite and malachite chromatin types also display characteristic protein composition, as well as enrichment for specific genomic features. We found that two types of chromatin, aquamarine and ruby, retain their complementary protein patterns in four Drosophila cell lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Igor F. Zhimulev
- Address correspondence to this author at the Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Tel: +7 383 363-90-41; Fax: +7 383 363-90-78; E-mail:
| |
Collapse
|
34
|
Maini J, Ghasemi M, Yandhuri D, Thakur SS, Brahmachari V. Human PRE-PIK3C2B, an intronic cis-element with dual function of activation and repression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:196-204. [PMID: 27932267 DOI: 10.1016/j.bbagrm.2016.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/28/2016] [Accepted: 12/02/2016] [Indexed: 02/01/2023]
Abstract
The Polycomb/Trithorax Responsive Elements (PRE/TREs) are the cis-regulatory sequences that interact with both repressive (PcG) as well as activating (TrxG) complexes. However, most of the mammalian PREs are demonstrated to interact with the repressive polycomb (PcG) complexes only. We have carried out an unbiased search for proteins interacting with human PRE-PIK3C2B (hPRE-PIK3C2B) based on DNA affinity purification followed by mass spectrometry and identified MLL, MLL4 and WDR87 among other proteins in three biological replicates in HEK, U87 and HeLa cell lines. The hPRE-PIK3C2B interacts with the members of multiple activating complexes (COMPASS-like). The increase in the interaction of MLL and MLL4 on depletion of YY1 and the increase in the enrichment of YY1 and EZH2 upon MLL knockdown at the hPRE-PIK3C2B indicate the dual occupancy and suggest a concentration dependent enrichment of the activator or the repressor complex at hPRE-PIK3C2B. Further, we show that the hPRE-PIK3C2B interacts with the Drosophila homologues of PcG and TrxG proteins in transgenic flies. Here, we found that there is an increased enrichment of Pc (Polycomb) in comparison to Trx (TrxG protein) at hPRE-PIK3C2B in the Drosophila transgenic flies and this seems to be the default state while the balance is tipped towards the trithorax complex in PcG mutants. To the best of our knowledge, this is one of the early demonstrations of human PRE acting as a TRE without any sequence alteration.
Collapse
Affiliation(s)
- Jayant Maini
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Mohsen Ghasemi
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Deepti Yandhuri
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500007, India
| | - Suman S Thakur
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500007, India
| | - Vani Brahmachari
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| |
Collapse
|
35
|
Kahn TG, Dorafshan E, Schultheis D, Zare A, Stenberg P, Reim I, Pirrotta V, Schwartz YB. Interdependence of PRC1 and PRC2 for recruitment to Polycomb Response Elements. Nucleic Acids Res 2016; 44:10132-10149. [PMID: 27557709 PMCID: PMC5137424 DOI: 10.1093/nar/gkw701] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/31/2022] Open
Abstract
Polycomb Group (PcG) proteins are epigenetic repressors essential for control of development and cell differentiation. They form multiple complexes of which PRC1 and PRC2 are evolutionary conserved and obligatory for repression. The targeting of PRC1 and PRC2 is poorly understood and was proposed to be hierarchical and involve tri-methylation of histone H3 (H3K27me3) and/or monoubiquitylation of histone H2A (H2AK118ub). Here, we present a strict test of this hypothesis using the Drosophila model. We discover that neither H3K27me3 nor H2AK118ub is required for targeting PRC complexes to Polycomb Response Elements (PREs). We find that PRC1 can bind PREs in the absence of PRC2 but at many PREs PRC2 requires PRC1 to be targeted. We show that one role of H3K27me3 is to allow PcG complexes anchored at PREs to interact with surrounding chromatin. In contrast, the bulk of H2AK118ub is unrelated to PcG repression. These findings radically change our view of how PcG repression is targeted and suggest that PRC1 and PRC2 can communicate independently of histone modifications.
Collapse
Affiliation(s)
- Tatyana G Kahn
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Eshagh Dorafshan
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Dorothea Schultheis
- Friedrich-Alexander University of Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Erlangen, D-91058, Germany
| | - Aman Zare
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Per Stenberg
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden.,Division of CBRN Defense and Security, Swedish Defense Research Agency, FOI, Umeå, 906 21, Sweden
| | - Ingolf Reim
- Friedrich-Alexander University of Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Erlangen, D-91058, Germany
| | - Vincenzo Pirrotta
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yuri B Schwartz
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| |
Collapse
|
36
|
Formation of a Polycomb-Domain in the Absence of Strong Polycomb Response Elements. PLoS Genet 2016; 12:e1006200. [PMID: 27466807 PMCID: PMC4965088 DOI: 10.1371/journal.pgen.1006200] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 06/25/2016] [Indexed: 12/24/2022] Open
Abstract
Polycomb group response elements (PREs) in Drosophila are DNA-elements that recruit Polycomb proteins (PcG) to chromatin and regulate gene expression. PREs are easily recognizable in the Drosophila genome as strong peaks of PcG-protein binding over discrete DNA fragments; many small but statistically significant PcG peaks are also observed in PcG domains. Surprisingly, in vivo deletion of the four characterized strong PREs from the PcG regulated invected-engrailed (inv-en) gene complex did not disrupt the formation of the H3K27me3 domain and did not affect inv-en expression in embryos or larvae suggesting the presence of redundant PcG recruitment mechanism. Further, the 3D-structure of the inv-en domain was only minimally altered by the deletion of the strong PREs. A reporter construct containing a 7.5kb en fragment that contains three weak peaks but no large PcG peaks forms an H3K27me3 domain and is PcG-regulated. Our data suggests a model for the recruitment of PcG-complexes to Drosophila genes via interactions with multiple, weak PREs spread throughout an H3K27me3 domain.
Collapse
|
37
|
Entrevan M, Schuettengruber B, Cavalli G. Regulation of Genome Architecture and Function by Polycomb Proteins. Trends Cell Biol 2016; 26:511-525. [PMID: 27198635 DOI: 10.1016/j.tcb.2016.04.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022]
Abstract
Polycomb group (PcG) proteins dynamically define cellular identities through the epigenetic repression of key developmental regulatory genes. PcG proteins are recruited to specific regulatory elements to modify the chromatin surrounding them. In addition, they regulate the organization of their target genes in the 3D space of the nucleus, and this regulatory function of the 3D genome architecture is involved in cell differentiation and the maintenance of cellular memory. In this review we discuss recent advances in our understanding of how PcG proteins are recruited to chromatin to induce local and global changes in chromosome conformation and regulate their target genes.
Collapse
Affiliation(s)
- Marianne Entrevan
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Bernd Schuettengruber
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| |
Collapse
|
38
|
Combgap contributes to recruitment of Polycomb group proteins in Drosophila. Proc Natl Acad Sci U S A 2016; 113:3826-31. [PMID: 27001825 DOI: 10.1073/pnas.1520926113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polycomb group (PcG) proteins are responsible for maintaining the silenced transcriptional state of many developmentally regulated genes. PcG proteins are organized into multiprotein complexes that are recruited to DNA via cis-acting elements known as "Polycomb response elements" (PREs). In Drosophila, PREs consist of binding sites for many different DNA-binding proteins, some known and others unknown. Identification of these DNA-binding proteins is crucial to understanding the mechanism of PcG recruitment to PREs. We report here the identification of Combgap (Cg), a sequence-specific DNA-binding protein that is involved in recruitment of PcG proteins. Cg can bind directly to PREs via GTGT motifs and colocalizes with the PcG proteins Pleiohomeotic (Pho) and Polyhomeotic (Ph) at the majority of PREs in the genome. In addition, Cg colocalizes with Ph at a number of targets independent of Pho. Loss of Cg leads to decreased recruitment of Ph at only a subset of sites; some of these sites are binding sites for other Polycomb repressive complex 1 (PRC1) components, others are not. Our data suggest that Cg can recruit Ph in the absence of PRC1 and illustrate the diversity and redundancy of PcG protein recruitment mechanisms.
Collapse
|
39
|
Calvo-Martín JM, Librado P, Aguadé M, Papaceit M, Segarra C. Adaptive selection and coevolution at the proteins of the Polycomb repressive complexes in Drosophila. Heredity (Edinb) 2016; 116:213-23. [PMID: 26486609 PMCID: PMC4806890 DOI: 10.1038/hdy.2015.91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/23/2015] [Accepted: 08/10/2015] [Indexed: 11/08/2022] Open
Abstract
Polycomb group (PcG) proteins are important epigenetic regulatory proteins that modulate the chromatin state through posttranslational histone modifications. These interacting proteins form multimeric complexes that repress gene expression. Thus, PcG proteins are expected to evolve coordinately, which might be reflected in their phylogenetic trees by concordant episodes of positive selection and by a correlation in evolutionary rates. In order to detect these signals of coevolution, the molecular evolution of 17 genes encoding the subunits of five Polycomb repressive complexes has been analyzed in the Drosophila genus. The observed distribution of divergence differs substantially among and along proteins. Indeed, CAF1 is uniformly conserved, whereas only the established protein domains are conserved in other proteins, such as PHO, PHOL, PSC, PH-P and ASX. Moreover, regions with a low divergence not yet described as protein domains are present, for instance, in SFMBT and SU(Z)12. Maximum likelihood methods indicate an acceleration in the nonsynonymous substitution rate at the lineage ancestral to the obscura group species in most genes encoding subunits of the Pcl-PRC2 complex and in genes Sfmbt, Psc and Kdm2. These methods also allow inferring the action of positive selection in this lineage at genes E(z) and Sfmbt. Finally, the protein interaction network predicted from the complete proteomes of 12 Drosophila species using a coevolutionary approach shows two tight PcG clusters. These clusters include well-established binary interactions among PcG proteins as well as new putative interactions.
Collapse
Affiliation(s)
- J M Calvo-Martín
- Facultat de Biologia, Departament de Genètica, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - P Librado
- Facultat de Biologia, Departament de Genètica, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - M Aguadé
- Facultat de Biologia, Departament de Genètica, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - M Papaceit
- Facultat de Biologia, Departament de Genètica, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - C Segarra
- Facultat de Biologia, Departament de Genètica, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Geisler SJ, Paro R. Trithorax and Polycomb group-dependent regulation: a tale of opposing activities. Development 2015; 142:2876-2887. [DOI: 10.1242/dev.120030] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Intricate layers of regulation determine the unique gene expression profiles of a given cell and, therefore, underlie the immense phenotypic diversity observed among cell types. Understanding the mechanisms that govern which genes are expressed and which genes are silenced is a fundamental focus in biology. The Polycomb and Trithorax group chromatin proteins play important roles promoting the stable and heritable repression and activation of gene expression, respectively. These proteins, which are conserved across metazoans, modulate post-translational modifications on histone tails and regulate nucleosomal structures. Here, we review recent advances that have shed light on the mechanisms by which these two classes of proteins act to maintain epigenetic memory and allow dynamic switches in gene expression during development.
Collapse
Affiliation(s)
- Sarah J. Geisler
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland
| | - Renato Paro
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland
- Faculty of Science, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| |
Collapse
|
41
|
Wang W, Qin JJ, Voruganti S, Nag S, Zhou J, Zhang R. Polycomb Group (PcG) Proteins and Human Cancers: Multifaceted Functions and Therapeutic Implications. Med Res Rev 2015; 35:1220-67. [PMID: 26227500 DOI: 10.1002/med.21358] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polycomb group (PcG) proteins are transcriptional repressors that regulate several crucial developmental and physiological processes in the cell. More recently, they have been found to play important roles in human carcinogenesis and cancer development and progression. The deregulation and dysfunction of PcG proteins often lead to blocking or inappropriate activation of developmental pathways, enhancing cellular proliferation, inhibiting apoptosis, and increasing the cancer stem cell population. Genetic and molecular investigations of PcG proteins have long been focused on their PcG functions. However, PcG proteins have recently been shown to exert non-classical-Pc-functions, contributing to the regulation of diverse cellular functions. We and others have demonstrated that PcG proteins regulate the expression and function of several oncogenes and tumor suppressor genes in a PcG-independent manner, and PcG proteins are associated with the survival of patients with cancer. In this review, we summarize the recent advances in the research on PcG proteins, including both the Pc-repressive and non-classical-Pc-functions. We specifically focus on the mechanisms by which PcG proteins play roles in cancer initiation, development, and progression. Finally, we discuss the potential value of PcG proteins as molecular biomarkers for the diagnosis and prognosis of cancer, and as molecular targets for cancer therapy.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106.,Center for Cancer Biology and Therapy, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Sukesh Voruganti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106.,Center for Cancer Biology and Therapy, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| |
Collapse
|
42
|
Zhao G, Li Q, Wang A, Jiao J. YY1 regulates melanoma tumorigenesis through a miR-9 ~ RYBP axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:66. [PMID: 26104682 PMCID: PMC4511530 DOI: 10.1186/s13046-015-0177-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/27/2015] [Indexed: 12/22/2022]
Abstract
Background The Yin Yang 1 (YY1) transcription factor has been identified to target a plethora of potential target genes, which are important for cell proliferation and differentiation. Although the role that YY1 plays in different human types of cancer has been reported, its biological and mechanistic significance in melanoma has not been well defined. Methods Quantitative RT-PCR analysis was used to determine whether aberrant YY1 and miR-9 expression occurred in melanoma, compared with benign nevi and normal tissue controls. Furthermore, the transcriptional regulation of YY1 on miR-9 expression was assessed by using quantitative ChIP-PCR assay. Subsequently, the effects of YY1 and miR-9 on proliferation, cell cycle, migration and invasion of melanoma cells were detected using CCK-8, flow cytometric analysis, wound healing and transwell invasion assays, respectively. Finally, the post-transcriptional regulation of miR-9 on RYBP was analyzed using luciferase reporter and immunoblot analysis. Results Elevated YY1 levels were observed in patients with melanoma, compared with benign nevi and normal tissue controls, and the increased YY1 was associated with melanoma metastasis state and tumor stage. Furthermore, YY1 negatively regulated miR-9 transcription. Silencing of YY1 inhibited proliferation, cell cycle progression, migration and invasion in melanoma cells, while ectopic of miR-9 did the same. Additionally, RYBP was shown to be a direct target of miR-9 through binding to its 3′ UTR, thus forming a YY1 ~ miR-9 ~ RYBP axis. Conclusions These results identify a novel YY1 ~ miR-9 ~ RYBP axis involved in melanoma tumorigenesis and reinforce the idea that regulatory circuitries involving miRNAs and TFs are prevalent mechanisms.
Collapse
Affiliation(s)
- Guowei Zhao
- Department of Dermatology, The Central Hospital of Zibo City, Zibo, 255036, Shandong Province, China.
| | - Qiang Li
- Oncology Department, The Foruth People's Hospital of Zibo City, Zibo, 255067, Shandong Province, China.
| | - Aiqin Wang
- Department of Dermatology, The Central Hospital of Zibo City, Zibo, 255036, Shandong Province, China.
| | - Jian Jiao
- Department of Dermatology, Qilu Hospital Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
43
|
Lee HG, Kahn TG, Simcox A, Schwartz YB, Pirrotta V. Genome-wide activities of Polycomb complexes control pervasive transcription. Genome Res 2015; 25:1170-81. [PMID: 25986499 PMCID: PMC4510001 DOI: 10.1101/gr.188920.114] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/15/2015] [Indexed: 11/24/2022]
Abstract
Polycomb group (PcG) complexes PRC1 and PRC2 are well known for silencing specific developmental genes. PRC2 is a methyltransferase targeting histone H3K27 and producing H3K27me3, essential for stable silencing. Less well known but quantitatively much more important is the genome-wide role of PRC2 that dimethylates ∼70% of total H3K27. We show that H3K27me2 occurs in inverse proportion to transcriptional activity in most non-PcG target genes and intergenic regions and is governed by opposing roaming activities of PRC2 and complexes containing the H3K27 demethylase UTX. Surprisingly, loss of H3K27me2 results in global transcriptional derepression proportionally greatest in silent or weakly transcribed intergenic and genic regions and accompanied by an increase of H3K27ac and H3K4me1. H3K27me2 therefore sets a threshold that prevents random, unscheduled transcription all over the genome and even limits the activity of highly transcribed genes. PRC1-type complexes also have global roles. Unexpectedly, we find a pervasive distribution of histone H2A ubiquitylated at lysine 118 (H2AK118ub) outside of canonical PcG target regions, dependent on the RING/Sce subunit of PRC1-type complexes. We show, however, that H2AK118ub does not mediate the global PRC2 activity or the global repression and is predominantly produced by a new complex involving L(3)73Ah, a homolog of mammalian PCGF3.
Collapse
Affiliation(s)
- Hun-Goo Lee
- Molecular Biology & Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Tatyana G Kahn
- Molecular Biology & Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA; Molecular Biology, Umeå University, NUS, 901 87 Umeå, Sweden
| | - Amanda Simcox
- Molecular Genetics, Ohio State University, Columbus, Ohio, USA
| | - Yuri B Schwartz
- Molecular Biology & Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA; Molecular Biology, Umeå University, NUS, 901 87 Umeå, Sweden
| | - Vincenzo Pirrotta
- Molecular Biology & Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
44
|
Schuettengruber B, Oded Elkayam N, Sexton T, Entrevan M, Stern S, Thomas A, Yaffe E, Parrinello H, Tanay A, Cavalli G. Cooperativity, specificity, and evolutionary stability of Polycomb targeting in Drosophila. Cell Rep 2014; 9:219-233. [PMID: 25284790 DOI: 10.1016/j.celrep.2014.08.072] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/08/2014] [Accepted: 08/27/2014] [Indexed: 12/21/2022] Open
Abstract
Metazoan genomes are partitioned into modular chromosomal domains containing active or repressive chromatin. In flies, Polycomb group (PcG) response elements (PREs) recruit PHO and other DNA-binding factors and act as nucleation sites for the formation of Polycomb repressive domains. The sequence specificity of PREs is not well understood. Here, we use comparative epigenomics and transgenic assays to show that Drosophila domain organization and PRE specification are evolutionarily conserved despite significant cis-element divergence within Polycomb domains, whereas cis-element evolution is strongly correlated with transcription factor binding divergence outside of Polycomb domains. Cooperative interactions of PcG complexes and their recruiting factor PHO stabilize PHO recruitment to low-specificity sequences. Consistently, PHO recruitment to sites within Polycomb domains is stabilized by PRC1. These data suggest that cooperative rather than hierarchical interactions among low-affinity sequences, DNA-binding factors, and the Polycomb machinery are giving rise to specific and strongly conserved 3D structures in Drosophila.
Collapse
Affiliation(s)
- Bernd Schuettengruber
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Noa Oded Elkayam
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tom Sexton
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Marianne Entrevan
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Shani Stern
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aubin Thomas
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Eitan Yaffe
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hugues Parrinello
- Montpellier GenomiX IBiSA, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Giacomo Cavalli
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|