1
|
Xie D, Gu B, Liu Y, Ye P, Ma Y, Wen T, Song X, Zhao Z. Efficient targeted recombination with CRISPR/Cas9 in hybrids of Caenorhabditis nematodes with suppressed recombination. BMC Biol 2023; 21:203. [PMID: 37775783 PMCID: PMC10542263 DOI: 10.1186/s12915-023-01704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Homology-based recombination (HR) is the cornerstone of genetic mapping. However, a lack of sufficient sequence homology or the presence of a genomic rearrangement prevents HR through crossing, which inhibits genetic mapping in relevant genomic regions. This is particularly true in species hybrids whose genomic sequences are highly divergent along with various genome arrangements, making the mapping of genetic loci, such as hybrid incompatibility (HI) loci, through crossing impractical. We previously mapped tens of HI loci between two nematodes, Caenorhabditis briggsae and C. nigoni, through the repeated backcrossing of GFP-linked C. briggsae fragments into C. nigoni. However, the median introgression size was over 7 Mb, indicating apparent HR suppression and preventing the subsequent cloning of the causative gene underlying a given HI phenotype. Therefore, a robust method that permits recombination independent of sequence homology is desperately desired. RESULTS Here, we report a method of highly efficient targeted recombination (TR) induced by CRISPR/Cas9 with dual guide RNAs (gRNAs), which circumvents the HR suppression in hybrids between the two species. We demonstrated that a single gRNA was able to induce efficient TR between highly homologous sequences only in the F1 hybrids but not in the hybrids that carry a GFP-linked C. briggsae fragment in an otherwise C. nigoni background. We achieved highly efficient TR, regardless of sequence homology or genetic background, when dual gRNAs were used that each specifically targeted one parental chromosome. We further showed that dual gRNAs were able to induce efficient TR within genomic regions that had undergone inversion, in which HR-based recombination was expected to be suppressed, supporting the idea that dual-gRNA-induced TR can be achieved through nonhomology-based end joining between two parental chromosomes. CONCLUSIONS Recombination suppression can be circumvented through CRISPR/Cas9 with dual gRNAs, regardless of sequence homology or the genetic background of the species hybrid. This method is expected to be applicable to other situations in which recombination is suppressed in interspecies or intrapopulation hybrids.
Collapse
Affiliation(s)
- Dongying Xie
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Bida Gu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Yiqing Liu
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Pohao Ye
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Tongshu Wen
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
2
|
Harbin JP, Ellis RE. Efficient production of CRISPR/Cas9 gene knockouts in the male/female nematode Caenorhabditis nigoni. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000968. [PMID: 37746063 PMCID: PMC10512056 DOI: 10.17912/micropub.biology.000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
Although nematode genetics was founded on the use of hermaphrodite genetics for studying animal development and behavior, there is a growing need to extend this work to male/female species. One of the most promising species is C. nigoni, because it is so closely related to the model hermaphroditic C. briggsae. We present methods for using CRISPR/Cas9 gene editing to create mutations, and techniques for balancing, maintaining and studying these mutations.
Collapse
Affiliation(s)
- Jonathan P Harbin
- Molecular Biology, Rowan-Virtua SOM, Stratford, New Jersey, United States
| | - Ronald E Ellis
- Molecular Biology, Rowan-Virtua SOM, Stratford, New Jersey, United States
| |
Collapse
|
3
|
Choi CP, Villeneuve AM. CRISPR/Cas9 mediated genome editing of Caenorhabditis nigoni using the conserved dpy-10 co-conversion marker. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000937. [PMID: 37720684 PMCID: PMC10500344 DOI: 10.17912/micropub.biology.000937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023]
Abstract
In this study, we developed an efficient co-conversion marker, using the conserved dpy-10 gene, to facilitate creation and detection of CRISPR/Cas9-mediated targeted genomic changes in an emerging male/female nematode model system, Caenorhabditis nigoni .
Collapse
Affiliation(s)
- Charlotte P. Choi
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305 U.S.A
| | - Anne M. Villeneuve
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305 U.S.A
| |
Collapse
|
4
|
Cutter AD. Speciation and development. Evol Dev 2023; 25:289-327. [PMID: 37545126 DOI: 10.1111/ede.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein-protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's "mystery of mysteries," this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Yoshida K, Rödelsperger C, Röseler W, Riebesell M, Sun S, Kikuchi T, Sommer RJ. Chromosome fusions repatterned recombination rate and facilitated reproductive isolation during Pristionchus nematode speciation. Nat Ecol Evol 2023; 7:424-439. [PMID: 36717742 PMCID: PMC9998273 DOI: 10.1038/s41559-022-01980-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023]
Abstract
Large-scale genome-structural evolution is common in various organisms. Recent developments in speciation genomics revealed the importance of inversions, whereas the role of other genome-structural rearrangements, including chromosome fusions, have not been well characterized. We study genomic divergence and reproductive isolation of closely related nematodes: the androdioecious (hermaphroditic) model Pristionchus pacificus and its dioecious sister species Pristionchus exspectatus. A chromosome-level genome assembly of P. exspectatus using single-molecule and Hi-C sequencing revealed a chromosome-wide rearrangement relative to P. pacificus. Strikingly, genomic characterization and cytogenetic studies including outgroup species Pristionchus occultus indicated two independent fusions involving the same chromosome, ChrIR, between these related species. Genetic linkage analysis indicated that these fusions altered the chromosome-wide pattern of recombination, resulting in large low-recombination regions that probably facilitated the coevolution between some of the ~14.8% of genes across the entire genomes. Quantitative trait locus analyses for hybrid sterility in all three sexes revealed that major quantitative trait loci mapped to the fused chromosome ChrIR. While abnormal chromosome segregations of the fused chromosome partially explain hybrid female sterility, hybrid-specific recombination that breaks linkage of genes in the low-recombination region was associated with hybrid male sterility. Thus, recent chromosome fusions repatterned recombination rate and drove reproductive isolation during Pristionchus speciation.
Collapse
Affiliation(s)
- Kohta Yoshida
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany.
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Metta Riebesell
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Simo Sun
- Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Taisei Kikuchi
- Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany.
| |
Collapse
|
6
|
Ding Q, Ren X, Li R, Chan L, Ho VWS, Bi Y, Xie D, Zhao Z. Highly efficient transgenesis with miniMos in Caenorhabditis briggsae. G3 (BETHESDA, MD.) 2022; 12:jkac254. [PMID: 36171682 PMCID: PMC9713419 DOI: 10.1093/g3journal/jkac254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 06/13/2023]
Abstract
Caenorhabditis briggsae as a companion species for Caenorhabditis elegans has played an increasingly important role in study of evolution of development and genome and gene regulation. Aided by the isolation of its sister spices, it has recently been established as a model for speciation study. To take full advantage of the species for comparative study, an effective transgenesis method especially those with single-copy insertion is important for functional comparison. Here, we improved a transposon-based transgenesis methodology that had been originally developed in C. elegans but worked marginally in C. briggsae. By incorporation of a heat shock step, the transgenesis efficiency in C. briggsae with a single-copy insertion is comparable to that in C. elegans. We used the method to generate 54 independent insertions mostly consisting of a mCherry tag over the C. briggsae genome. We demonstrated the use of the tags in identifying interacting loci responsible for hybrid male sterility between C. briggsae and Caenorhabditis nigoni when combined with the GFP tags we generated previously. Finally, we demonstrated that C. briggsae tolerates the C. elegans toxin, PEEL-1, but not SUP-35, making the latter a potential negative selection marker against extrachromosomal array.
Collapse
Affiliation(s)
- Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Luyan Chan
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Vincy W S Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yu Bi
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
7
|
Velazco-Cruz L, Ross JA. Genetic architecture and temporal analysis of Caenorhabditis briggsae hybrid developmental delay. PLoS One 2022; 17:e0272843. [PMID: 35951524 PMCID: PMC9371335 DOI: 10.1371/journal.pone.0272843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
Identifying the alleles that reduce hybrid fitness is a major goal in the study of speciation genetics. It is rare to identify systems in which hybrid incompatibilities with minor phenotypic effects are segregating in genetically diverse populations of the same biological species. Such traits do not themselves cause reproductive isolation but might initiate the process. In the nematode Caenorhabditis briggsae, a small percent of F2 generation hybrids between two natural populations suffer from developmental delay, in which adulthood is reached after approximately 33% more time than their wild-type siblings. Prior efforts to identify the genetic basis for this hybrid incompatibility assessed linkage using one or two genetic markers on chromosome III and suggested that delay is caused by a toxin-antidote element. Here, we have genotyped F2 hybrids using multiple chromosome III markers to refine the developmental delay locus. Also, to better define the developmental delay phenotype, we measured the development rate of 66 F2 hybrids and found that delay is not restricted to a particular larval developmental stage. Deviation of the developmental delay frequency from hypothetical expectations for a toxin-antidote element adds support to the assertion that the epistatic interaction is not fully penetrant. Our mapping and refinement of the delay phenotype motivates future efforts to study the genetic architecture of hybrid dysfunction between genetically distinct populations of one species by identifying the underlying loci.
Collapse
Affiliation(s)
- Leonardo Velazco-Cruz
- Department of Biology, California State University, Fresno, California, United States of America
| | - Joseph A. Ross
- Department of Biology, California State University, Fresno, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Ding Q, Li R, Ren X, Chan LY, Ho VWS, Xie D, Ye P, Zhao Z. Genomic architecture of 5S rDNA cluster and its variations within and between species. BMC Genomics 2022; 23:238. [PMID: 35346033 PMCID: PMC8961926 DOI: 10.1186/s12864-022-08476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ribosomal DNAs (rDNAs) are arranged in purely tandem repeats, preventing them from being reliably assembled onto chromosomes during generation of genome assembly. The uncertainty of rDNA genomic structure presents a significant barrier for studying their function and evolution. RESULTS Here we generate ultra-long Oxford Nanopore Technologies (ONT) and short NGS reads to delineate the architecture and variation of the 5S rDNA cluster in the different strains of C. elegans and C. briggsae. We classify the individual rDNA's repeating units into 25 types based on the unique sequence variations in each unit of C. elegans (N2). We next perform assembly of the cluster by taking advantage of the long reads that carry these units, which led to an assembly of 5S rDNA cluster consisting of up to 167 consecutive 5S rDNA units in the N2 strain. The ordering and copy number of various rDNA units are consistent with the separation time between strains. Surprisingly, we observed a drastically reduced level of variation in the unit composition in the 5S rDNA cluster in the C. elegans CB4856 and C. briggsae AF16 strains than in the C. elegans N2 strain, suggesting that N2, a widely used reference strain, is likely to be defective in maintaining the 5S rDNA cluster stability compared with other wild isolates of C. elegans or C. briggsae. CONCLUSIONS The results demonstrate that Nanopore DNA sequencing reads are capable of generating assembly of highly repetitive sequences, and rDNA units are highly dynamic both within and between population(s) of the same species in terms of sequence and copy number. The detailed structure and variation of the 5S rDNA units within the rDNA cluster pave the way for functional and evolutionary studies.
Collapse
Affiliation(s)
- Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lu-Yan Chan
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Vincy W S Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Pohao Ye
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
9
|
Andersen EC, Rockman MV. Natural genetic variation as a tool for discovery in Caenorhabditis nematodes. Genetics 2022; 220:iyab156. [PMID: 35134197 PMCID: PMC8733454 DOI: 10.1093/genetics/iyab156] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/11/2021] [Indexed: 11/12/2022] Open
Abstract
Over the last 20 years, studies of Caenorhabditis elegans natural diversity have demonstrated the power of quantitative genetic approaches to reveal the evolutionary, ecological, and genetic factors that shape traits. These studies complement the use of the laboratory-adapted strain N2 and enable additional discoveries not possible using only one genetic background. In this chapter, we describe how to perform quantitative genetic studies in Caenorhabditis, with an emphasis on C. elegans. These approaches use correlations between genotype and phenotype across populations of genetically diverse individuals to discover the genetic causes of phenotypic variation. We present methods that use linkage, near-isogenic lines, association, and bulk-segregant mapping, and we describe the advantages and disadvantages of each approach. The power of C. elegans quantitative genetic mapping is best shown in the ability to connect phenotypic differences to specific genes and variants. We will present methods to narrow genomic regions to candidate genes and then tests to identify the gene or variant involved in a quantitative trait. The same features that make C. elegans a preeminent experimental model animal contribute to its exceptional value as a tool to understand natural phenotypic variation.
Collapse
Affiliation(s)
- Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
10
|
Xie D, Ye P, Ma Y, Li Y, Liu X, Sarkies P, Zhao Z. Genetic exchange with an outcrossing sister species causes severe genome-wide dysregulation in a selfing Caenorhabditis nematode. Genome Res 2022; 32:2015-2027. [PMID: 36351773 PMCID: PMC9808620 DOI: 10.1101/gr.277205.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Different modes of reproduction evolve rapidly, with important consequences for genome composition. Selfing species often occupy a similar niche as their outcrossing sister species with which they are able to mate and produce viable hybrid progeny, raising the question of how they maintain genomic identity. Here, we investigate this issue by using the nematode Caenorhabditis briggsae, which reproduces as a hermaphrodite, and its outcrossing sister species Caenorhabditis nigoni We hypothesize that selfing species might develop some barriers to prevent gene intrusions through gene regulation. We therefore examined gene regulation in the hybrid F2 embryos resulting from reciprocal backcrosses between F1 hybrid progeny and C. nigoni or C. briggsae F2 hybrid embryos with ∼75% of their genome derived from C. briggsae (termed as bB2) were inviable, whereas those with ∼75% of their genome derived from C. nigoni (termed as nB2) were viable. Misregulation of transposable elements, coding genes, and small regulatory RNAs was more widespread in the bB2 compared with the nB2 hybrids, which is a plausible explanation for the differential phenotypes between the two hybrids. Our results show that regulation of the C. briggsae genome is strongly affected by genetic exchanges with its outcrossing sister species, C. nigoni, whereas regulation of the C. nigoni genome is more robust on genetic exchange with C. briggsae The results provide new insights into how selfing species might maintain their identity despite genetic exchanges with closely related outcrossing species.
Collapse
Affiliation(s)
- Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Pohao Ye
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yongbin Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xiao Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, OX1 4BH, United Kingdom
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China;,State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
11
|
Malinovskaya LP, Tishakova KV, Bikchurina TI, Slobodchikova AY, Torgunakov NY, Torgasheva AA, Tsepilov YA, Volkova NA, Borodin PM. Negative heterosis for meiotic recombination rate in spermatocytes of the domestic chicken Gallus gallus. Vavilovskii Zhurnal Genet Selektsii 2021; 25:661-668. [PMID: 34782886 PMCID: PMC8558918 DOI: 10.18699/vj21.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022] Open
Abstract
Benef its and costs of meiotic recombination are a matter of discussion. Because recombination breaks
allele combinations already tested by natural selection and generates new ones of unpredictable f itness, a high
recombination rate is generally benef icial for the populations living in a f luctuating or a rapidly changing environment
and costly in a stable environment. Besides genetic benef its and costs, there are cytological effects of recombination,
both positive and negative. Recombination is necessary for chromosome synapsis and segregation. However,
it involves a massive generation of double-strand DNA breaks, erroneous repair of which may lead to germ
cell death or various mutations and chromosome rearrangements. Thus, the benef its of recombination (generation
of new allele combinations) would prevail over its costs (occurrence of deleterious mutations) as long as the population
remains suff iciently heterogeneous. Using immunolocalization of MLH1, a mismatch repair protein, at the
synaptonemal complexes, we examined the number and distribution of recombination nodules in spermatocytes
of two chicken breeds with high (Pervomai) and low (Russian Crested) recombination rates and their F1 hybrids and
backcrosses. We detected negative heterosis for recombination rate in the F1 hybrids. Backcrosses to the Pervomai
breed were rather homogenous and showed an intermediate recombination rate. The differences in overall recombination
rate between the breeds, hybrids and backcrosses were mainly determined by the differences in the crossing
over number in the seven largest macrochromosomes. The decrease in recombination rate in F1 is probably
determined by diff iculties in homology matching between the DNA sequences of genetically divergent breeds. The
suppression of recombination in the hybrids may impede gene f low between parapatric populations and therefore
accelerate their genetic divergence.
Collapse
Affiliation(s)
- L P Malinovskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - T I Bikchurina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A Yu Slobodchikova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N Yu Torgunakov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Torgasheva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Y A Tsepilov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N A Volkova
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Moscow region, Russia
| | - P M Borodin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
12
|
Presgraves DC, Meiklejohn CD. Hybrid Sterility, Genetic Conflict and Complex Speciation: Lessons From the Drosophila simulans Clade Species. Front Genet 2021; 12:669045. [PMID: 34249091 PMCID: PMC8261240 DOI: 10.3389/fgene.2021.669045] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
The three fruitfly species of the Drosophila simulans clade- D. simulans, D. mauritiana, and D. sechellia- have served as important models in speciation genetics for over 40 years. These species are reproductively isolated by geography, ecology, sexual signals, postmating-prezygotic interactions, and postzygotic genetic incompatibilities. All pairwise crosses between these species conform to Haldane's rule, producing fertile F1 hybrid females and sterile F1 hybrid males. The close phylogenetic proximity of the D. simulans clade species to the model organism, D. melanogaster, has empowered genetic analyses of their species differences, including reproductive incompatibilities. But perhaps no phenotype has been subject to more continuous and intensive genetic scrutiny than hybrid male sterility. Here we review the history, progress, and current state of our understanding of hybrid male sterility among the D. simulans clade species. Our aim is to integrate the available information from experimental and population genetics analyses bearing on the causes and consequences of hybrid male sterility. We highlight numerous conclusions that have emerged as well as issues that remain unresolved. We focus on the special role of sex chromosomes, the fine-scale genetic architecture of hybrid male sterility, and the history of gene flow between species. The biggest surprises to emerge from this work are that (i) genetic conflicts may be an important general force in the evolution of hybrid incompatibility, (ii) hybrid male sterility is polygenic with contributions of complex epistasis, and (iii) speciation, even among these geographically allopatric taxa, has involved the interplay of gene flow, negative selection, and positive selection. These three conclusions are marked departures from the classical views of speciation that emerged from the modern evolutionary synthesis.
Collapse
Affiliation(s)
- Daven C. Presgraves
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Colin D. Meiklejohn
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
13
|
Chamberlin HM, Jain IM, Corchado-Sonera M, Kelley LH, Sharanya D, Jama A, Pabla R, Dawes AT, Gupta BP. Evolution of Transcriptional Repressors Impacts Caenorhabditis Vulval Development. Mol Biol Evol 2021; 37:1350-1361. [PMID: 31960924 DOI: 10.1093/molbev/msaa009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Comparative genomic sequence analysis has found that the genes for many chromatin-associated proteins are poorly conserved, but the biological consequences of these sequence changes are not understood. Here, we show that four genes identified for an Inappropriate Vulval cell Proliferation (ivp) phenotype in the nematode Caenorhabditis briggsae exhibit distinct functions and genetic interactions when compared with their orthologs in C. elegans. Specifically, we show that the four C. briggsae ivp genes encode the noncanonical histone HTZ-1/H2A.z and three nematode-specific proteins predicted to function in the nucleus. The mutants exhibit ectopic vulval precursor cell proliferation (the multivulva [Muv] phenotype) due to inappropriate expression of the lin-3/EGF gene, and RNAseq analysis suggests a broad role for these ivp genes in transcriptional repression. Importantly, although the C. briggsae phenotypes have parallels with those seen in the C. elegans synMuv system, except for the highly conserved HTZ-1/H2A.z, comparable mutations in C. elegans ivp orthologs do not exhibit synMuv gene interactions or phenotypes. These results demonstrate the evolutionary changes that can underlie conserved biological outputs and argue that proteins critical to repress inappropriate expression from the genome participate in a rapidly evolving functional landscape.
Collapse
Affiliation(s)
| | - Ish M Jain
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | - Leanne H Kelley
- Department of Molecular Genetics, Ohio State University, Columbus, OH
| | - Devika Sharanya
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Abdulrahman Jama
- Department of Molecular Genetics, Ohio State University, Columbus, OH
| | - Romy Pabla
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Adriana T Dawes
- Department of Molecular Genetics, Ohio State University, Columbus, OH.,Department of Mathematics, Ohio State University, Columbus, OH
| | - Bhagwati P Gupta
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
14
|
Sánchez-Ramírez S, Weiss JG, Thomas CG, Cutter AD. Widespread misregulation of inter-species hybrid transcriptomes due to sex-specific and sex-chromosome regulatory evolution. PLoS Genet 2021; 17:e1009409. [PMID: 33667233 PMCID: PMC7968742 DOI: 10.1371/journal.pgen.1009409] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/17/2021] [Accepted: 02/09/2021] [Indexed: 01/04/2023] Open
Abstract
When gene regulatory networks diverge between species, their dysfunctional expression in inter-species hybrid individuals can create genetic incompatibilities that generate the developmental defects responsible for intrinsic post-zygotic reproductive isolation. Both cis- and trans-acting regulatory divergence can be hastened by directional selection through adaptation, sexual selection, and inter-sexual conflict, in addition to cryptic evolution under stabilizing selection. Dysfunctional sex-biased gene expression, in particular, may provide an important source of sexually-dimorphic genetic incompatibilities. Here, we characterize and compare male and female/hermaphrodite transcriptome profiles for sibling nematode species Caenorhabditis briggsae and C. nigoni, along with allele-specific expression in their F1 hybrids, to deconvolve features of expression divergence and regulatory dysfunction. Despite evidence of widespread stabilizing selection on gene expression, misexpression of sex-biased genes pervades F1 hybrids of both sexes. This finding implicates greater fragility of male genetic networks to produce dysfunctional organismal phenotypes. Spermatogenesis genes are especially prone to high divergence in both expression and coding sequences, consistent with a "faster male" model for Haldane's rule and elevated sterility of hybrid males. Moreover, underdominant expression pervades male-biased genes compared to female-biased and sex-neutral genes and an excess of cis-trans compensatory regulatory divergence for X-linked genes underscores a "large-X effect" for hybrid male expression dysfunction. Extensive regulatory divergence in sex determination pathway genes likely contributes to demasculinization of XX hybrids. The evolution of genetic incompatibilities due to regulatory versus coding sequence divergence, however, are expected to arise in an uncorrelated fashion. This study identifies important differences between the sexes in how regulatory networks diverge to contribute to sex-biases in how genetic incompatibilities manifest during the speciation process.
Collapse
Affiliation(s)
- Santiago Sánchez-Ramírez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- * E-mail: (SSR); (ADC)
| | - Jörg G. Weiss
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Cristel G. Thomas
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- * E-mail: (SSR); (ADC)
| |
Collapse
|
15
|
Delattre M, Goehring NW. The first steps in the life of a worm: Themes and variations in asymmetric division in C. elegans and other nematodes. Curr Top Dev Biol 2021; 144:269-308. [PMID: 33992156 DOI: 10.1016/bs.ctdb.2020.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Starting with Boveri in the 1870s, microscopic investigation of early embryogenesis in a broad swath of nematode species revealed the central role of asymmetric cell division in embryonic axis specification, blastomere positioning, and cell fate specification. Notably, across the class Chromadorea, a conserved theme emerges-asymmetry is first established in the zygote and specifies its asymmetric division, giving rise to an anterior somatic daughter cell and a posterior germline daughter cell. Beginning in the 1980s, the emergence of Caenorhabditis elegans as a model organism saw the advent of genetic tools that enabled rapid progress in our understanding of the molecular mechanisms underlying asymmetric division, in many cases defining key paradigms that turn out to regulate asymmetric division in a wide range of systems. Yet, the consequence of this focus on C. elegans came at the expense of exploring the extant diversity of developmental variation exhibited across nematode species. Given the resurgent interest in evolutionary studies facilitated in part by new tools, here we revisit the diversity in this asymmetric first division, juxtaposing molecular insight into mechanisms of symmetry-breaking, spindle positioning and fate specification, with a consideration of plasticity and variability within and between species. In the process, we hope to highlight questions of evolutionary forces and molecular variation that may have shaped the extant diversity of developmental mechanisms observed across Nematoda.
Collapse
Affiliation(s)
- Marie Delattre
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Inserm, UCBL, Lyon, France.
| | | |
Collapse
|
16
|
Specific Interactions Between Autosome and X Chromosomes Cause Hybrid Male Sterility in Caenorhabditis Species. Genetics 2019; 212:801-813. [PMID: 31064822 DOI: 10.1534/genetics.119.302202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/03/2019] [Indexed: 11/18/2022] Open
Abstract
Hybrid male progeny from interspecies crosses are more prone to sterility or inviability than hybrid female progeny, and the male sterility and inviability often demonstrate parent-of-origin asymmetry. However, the underlying genetic mechanism of asymmetric sterility or inviability remains elusive. We previously established a genome-wide hybrid incompatibility (HI) landscape between Caenorhabditis briggsae and C. nigoni by phenotyping a large collection of C. nigoni strains each carrying a C. briggsae introgression. In this study, we systematically dissect the genetic mechanism of asymmetric sterility and inviability in both hybrid male and female progeny between the two species. Specifically, we performed reciprocal crosses between C . briggsae and different C. nigoni strains that each carry a GFP-labeled C. briggsae genomic fragment referred to as introgression, and scored the HI phenotypes in the F1 progeny. The aggregated introgressions cover 94.6% of the C. briggsae genome, including 100% of the X chromosome. Surprisingly, we observed that two C. briggsae X fragments that produce C. nigoni male sterility as an introgression rescued hybrid F1 sterility in males fathered by C. briggsae Subsequent backcrossing analyses indicated that a specific interaction between the X-linked interaction and one autosome introgression is required to rescue the hybrid male sterility. In addition, we identified another two C. briggsae genomic intervals on chromosomes II and IV that can rescue the inviability, but not the sterility, of hybrid F1 males fathered by C. nigoni, suggesting the involvement of differential epistatic interactions in the asymmetric hybrid male fertility and inviability. Importantly, backcrossing of the rescued sterile males with C. nigoni led to the isolation of a 1.1-Mb genomic interval that specifically interacts with an X-linked introgression, which is essential for hybrid male fertility. We further identified three C. briggsae genomic intervals on chromosome I, II, and III that produced inviability in all F1 progeny, dependent on or independent of the parent-of-origin. Taken together, we identified multiple independent interacting loci that are responsible for asymmetric hybrid male and female sterility, and inviability, which lays a foundation for their molecular characterization.
Collapse
|
17
|
Haddad R, Meter B, Ross JA. The Genetic Architecture of Intra-Species Hybrid Mito-Nuclear Epistasis. Front Genet 2018; 9:481. [PMID: 30505316 PMCID: PMC6250786 DOI: 10.3389/fgene.2018.00481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/28/2018] [Indexed: 01/03/2023] Open
Abstract
Genetic variants that are neutral within, but deleterious between, populations (Dobzhansky-Muller Incompatibilities) are thought to initiate hybrid dysfunction and then to accumulate and complete the speciation process. To identify the types of genetic differences that might initiate speciation, it is useful to study inter-population (intra-species) hybrids that exhibit reduced fitness. In Caenorhabditis briggsae, a close relative of the nematode C. elegans, such minor genetic incompatibilities have been identified. One incompatibility between the mitochondrial and nuclear genomes reduces the fitness of some hybrids. To understand the nuclear genetic architecture of this epistatic interaction, we constructed two sets of recombinant inbred lines by hybridizing two genetically diverse wild populations. In such lines, selection is able to eliminate deleterious combinations of alleles derived from the two parental populations. The genotypes of surviving hybrid lines thus reveal favorable allele combinations at loci experiencing selection. Our genotype data from the resulting lines are consistent with the interpretation that the X alleles participate in epistatic interactions with autosomes and the mitochondrial genome. We evaluate this possibility given predictions that mitochondria-X epistasis should be more prevalent than between mitochondria and autosomes. Our empirical identification of inter-genomic linkage disequilibrium supports the body of literature indicating that the accumulation of mito-nuclear genetic incompatibilities might initiate the speciation process through the generation of less-fit inter-population hybrids.
Collapse
Affiliation(s)
- Rania Haddad
- Department of Biology, California State University, Fresno, Fresno, CA, United States
| | - Brandon Meter
- Department of Biology, California State University, Fresno, Fresno, CA, United States
| | - Joseph A Ross
- Department of Biology, California State University, Fresno, Fresno, CA, United States
| |
Collapse
|
18
|
Presgraves DC. Evaluating genomic signatures of "the large X-effect" during complex speciation. Mol Ecol 2018; 27:3822-3830. [PMID: 29940087 PMCID: PMC6705125 DOI: 10.1111/mec.14777] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022]
Abstract
The ubiquity of the "two rules of speciation"-Haldane's rule and the large X-effect-implies a general, special role for sex chromosomes in the evolution of intrinsic postzygotic reproductive isolation. The recent proliferation of genome-scale analyses has revealed two further general observations: (a) complex speciation involving some form of gene flow is not uncommon, and (b) sex chromosomes in male- and in female-heterogametic taxa tend to show elevated differentiation relative to autosomes. Together, these observations are consistent with speciation histories in which population genetic differentiation at autosomal loci is reduced by gene flow while natural selection against hybrid incompatibilities renders sex chromosomes relatively refractory to gene flow. Here, I summarize multilocus population genetic and population genomic evidence for greater differentiation on the X (or Z) vs. the autosomes and consider the possible causes. I review common population genetic circumstances involving no selection and/or no interspecific gene flow that are nevertheless expected to elevate differentiation on sex chromosomes relative to autosomes. I then review theory for why large X-effects exist for hybrid incompatibilities and, more generally, for loci mediating local adaptation. The observed levels of sex chromosome vs. autosomal differentiation, in many cases, appear consistent with simple explanations requiring neither large X-effects nor gene flow. Discerning signatures of large X-effects during complex speciation will therefore require analyses that go beyond chromosome-scale summaries of population genetic differentiation, explicitly test for differential introgression, and/or integrate experimental genetic data.
Collapse
Affiliation(s)
- Daven C. Presgraves
- Department of Biology, University of Rochester, Rochester, New York, 14627, USA
| |
Collapse
|
19
|
Bundus JD, Wang D, Cutter AD. Genetic basis to hybrid inviability is more complex than hybrid male sterility in Caenorhabditis nematodes. Heredity (Edinb) 2018; 121:169-182. [PMID: 29626207 PMCID: PMC6039526 DOI: 10.1038/s41437-018-0069-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/22/2018] [Accepted: 02/11/2018] [Indexed: 12/31/2022] Open
Abstract
Hybrid male sterility often evolves before female sterility or inviability of hybrids, implying that the accumulation of divergence between separated lineages should lead hybrid male sterility to have a more polygenic basis. However, experimental evidence is mixed. Here, we use the nematodes Caenorhabditis remanei and C. latens to characterize the underlying genetic basis of asymmetric hybrid male sterility and hybrid inviability. We demonstrate that hybrid male sterility is consistent with a simple genetic basis, involving a single X-autosome incompatibility. We also show that hybrid inviability involves more genomic compartments, involving diverse nuclear-nuclear incompatibilities, a mito-nuclear incompatibility, and maternal effects. These findings demonstrate that male sensitivity to genetic perturbation may be genetically simple compared to hybrid inviability in Caenorhabditis and motivates tests of generality for the genetic architecture of hybrid incompatibility across the breadth of phylogeny.
Collapse
Affiliation(s)
- Joanna D Bundus
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Donglin Wang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada.
| |
Collapse
|
20
|
Ren X, Li R, Wei X, Bi Y, Ho V, Ding Q, Xu Z, Zhang Z, Hsieh CL, Young A, Zeng J, Liu X, Zhao Z. Genomic basis of recombination suppression in the hybrid between Caenorhabditis briggsae and C. nigoni. Nucleic Acids Res 2018; 46:1295-1307. [PMID: 29325078 PMCID: PMC5814819 DOI: 10.1093/nar/gkx1277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/07/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023] Open
Abstract
DNA recombination is required for effective segregation and diversification of genomes and for the successful completion of meiosis. Recent studies in various species hybrids have demonstrated a genetic link between DNA recombination and speciation. Consistent with this, we observed a striking suppression of recombination in the hybrids between two nematodes, the hermaphroditic Caenorhabditis briggsae and the gonochoristic C. nigoni. To unravel the molecular basis underlying the recombination suppression in their hybrids, we generated a C. nigoni genome with chromosome-level contiguity and produced an improved C. briggsae genome with resolved gaps up to 2.8 Mb. The genome alignment reveals not only high sequence divergences but also pervasive intra- and inter-chromosomal sequence re-arrangements between the two species, which are plausible culprits for the observed suppression. Comparison of recombination boundary sequences suggests that recombination in the hybrid requires extensive sequence homology, which is rarely seen between the two genomes. The new genomes and genomic libraries form invaluable resources for studying genome evolution, hybrid incompatibilities and sex evolution for this pair of model species.
Collapse
Affiliation(s)
- Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaolin Wei
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- PTN (Peking University-Tsinghua University-National Institute of Biological Sciences) Joint Graduate Program, Beijing 100084, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Bi
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhichao Xu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhihong Zhang
- Illumina Inc., 5200 Illumina Way, San Diego 92122, USA
| | | | - Amanda Young
- Illumina Inc., 5200 Illumina Way, San Diego 92122, USA
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
21
|
Yin D, Schwarz EM, Thomas CG, Felde RL, Korf IF, Cutter AD, Schartner CM, Ralston EJ, Meyer BJ, Haag ES. Rapid genome shrinkage in a self-fertile nematode reveals sperm competition proteins. Science 2018; 359:55-61. [PMID: 29302007 PMCID: PMC5789457 DOI: 10.1126/science.aao0827] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/17/2017] [Indexed: 12/30/2022]
Abstract
To reveal impacts of sexual mode on genome content, we compared chromosome-scale assemblies of the outcrossing nematode Caenorhabditis nigoni to its self-fertile sibling species, C. briggsaeC. nigoni's genome resembles that of outcrossing relatives but encodes 31% more protein-coding genes than C. briggsaeC. nigoni genes lacking C. briggsae orthologs were disproportionately small and male-biased in expression. These include the male secreted short (mss) gene family, which encodes sperm surface glycoproteins conserved only in outcrossing species. Sperm from mss-null males of outcrossing C. remanei failed to compete with wild-type sperm, despite normal fertility in noncompetitive mating. Restoring mss to C. briggsae males was sufficient to enhance sperm competitiveness. Thus, sex has a pervasive influence on genome content that can be used to identify sperm competition factors.
Collapse
Affiliation(s)
- Da Yin
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Cristel G Thomas
- Department of Biology, University of Maryland, College Park, MD 20742, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Rebecca L Felde
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Ian F Korf
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA 95616, USA
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Caitlin M Schartner
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Edward J Ralston
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Barbara J Meyer
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Eric S Haag
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
22
|
Cutter AD. X exceptionalism in Caenorhabditis speciation. Mol Ecol 2017; 27:3925-3934. [PMID: 29134711 DOI: 10.1111/mec.14423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
Speciation genetics research in diverse organisms shows the X-chromosome to be exceptional in how it contributes to "rules" of speciation. Until recently, however, the nematode phylum has been nearly silent on this issue, despite the model organism Caenorhabditis elegans having touched most other topics in biology. Studies of speciation with Caenorhabditis accelerated with the recent discovery of species pairs showing partial interfertility. The resulting genetic analyses of reproductive isolation in nematodes demonstrate key roles for the X-chromosome in hybrid male sterility and inviability, opening up new understanding of the genetic causes of Haldane's rule, Darwin's corollary to Haldane's rule, and enabling tests of the large-X effect hypothesis. Studies to date implicate improper chromatin regulation of the X-chromosome by small RNA pathways as integral to hybrid male dysfunction. Sexual transitions in reproductive mode to self-fertilizing hermaphroditism inject distinctive molecular evolutionary features into the speciation process for some species. Caenorhabditis also provides unique opportunities for analysis in a system with XO sex determination that lacks a Y-chromosome, sex chromosome-dependent sperm competition differences and mechanisms of gametic isolation, exceptional accessibility to the development process and rapid experimental evolution. As genetic analysis of reproductive isolation matures with investigation of multiple pairs of Caenorhabditis species and new species discovery, nematodes will provide a powerful complement to more established study organisms for deciphering the genetic basis of and rules to speciation.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Le TS, Yang FJ, Lo YH, Chang TC, Hsu JC, Kao CY, Wang J. Non-Mendelian assortment of homologous autosomes of different sizes in males is the ancestral state in the Caenorhabditis lineage. Sci Rep 2017; 7:12819. [PMID: 28993668 PMCID: PMC5634442 DOI: 10.1038/s41598-017-13215-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/19/2017] [Indexed: 01/25/2023] Open
Abstract
Organismal genome sizes vary by six orders of magnitude and appear positively correlated with organismal size and complexity. Neutral models have been proposed to explain the broad patterns of genome size variation based on organism population sizes. In the Caenorhabditis genus, hermaphrodite genomes are smaller than those of gonochoristic species. One possible driving force for this genome size difference could be non-random chromosome segregation. In Caenorhabditis elegans, chromosome assortment is non-independent and violates Mendel's second law. In males, the shorter homologue of a heterozygous autosome pair preferentially co-segregates with the X chromosome while the longer one preferentially co-segregates with the nullo-X (O) chromosome in a process we call "skew". Since hermaphrodites preferentially receive the shorter chromosomes and can start populations independently, their genome size would be predicted to decrease over evolutionary time. If skew is an important driver for genome size reduction in hermaphroditic Caenorhabditis species, then it should be present in all congeneric species. In this study, we tested this hypothesis and found that skew is present in all eight examined species. Our results suggest that skew is likely the ancestral state in this genus. More speculatively, skew may drive genome size patterns in hermaphroditic species in other nematodes.
Collapse
Affiliation(s)
- Tho Son Le
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.,Department of Molecular Genetics and Gene Technology, College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - Fang-Jung Yang
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yun-Hua Lo
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tiffany C Chang
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Jung-Chen Hsu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Yi Kao
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
24
|
Dion-Côté AM, Barbash DA. Beyond speciation genes: an overview of genome stability in evolution and speciation. Curr Opin Genet Dev 2017; 47:17-23. [PMID: 28830007 DOI: 10.1016/j.gde.2017.07.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/17/2017] [Accepted: 07/28/2017] [Indexed: 01/03/2023]
Abstract
Genome stability ensures individual fitness and reliable transmission of genetic information. Hybridization between diverging lineages can trigger genome instability, highlighting its potential role in post-zygotic reproductive isolation. We argue that genome instability is not merely one of several types of hybrid incompatibility, but rather that genome stability is one of the very first and most fundamental traits that can break down when two diverged genomes are combined. Future work will reveal how frequent and predictable genome instability is in hybrids, how it affects hybrid fitness, and whether it is a direct cause or consequence of speciation.
Collapse
Affiliation(s)
- Anne-Marie Dion-Côté
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Road, Ithaca, NY 14853, United States
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Road, Ithaca, NY 14853, United States.
| |
Collapse
|
25
|
Comparative proteome analysis between C . briggsae embryos and larvae reveals a role of chromatin modification proteins in embryonic cell division. Sci Rep 2017; 7:4296. [PMID: 28655887 PMCID: PMC5487359 DOI: 10.1038/s41598-017-04533-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/16/2017] [Indexed: 11/12/2022] Open
Abstract
Caenorhabditis briggsae has emerged as a model for comparative biology against model organism C. elegans. Most of its cell fate specifications are completed during embryogenesis whereas its cell growth is achieved mainly in larval stages. The molecular mechanism underlying the drastic developmental changes is poorly understood. To gain insights into the molecular changes between the two stages, we compared the proteomes between the two stages using iTRAQ. We identified a total of 2,791 proteins in the C. briggsae embryos and larvae, 247 of which undergo up- or down-regulation between the two stages. The proteins that are upregulated in the larval stages are enriched in the Gene Ontology categories of energy production, protein translation, and cytoskeleton; whereas those upregulated in the embryonic stage are enriched in the categories of chromatin dynamics and posttranslational modification, suggesting a more active chromatin modification in the embryos than in the larva. Perturbation of a subset of chromatin modifiers followed by cell lineage analysis suggests their roles in controlling cell division pace. Taken together, we demonstrate a general molecular switch from chromatin modification to metabolism during the transition from C. briggsae embryonic to its larval stages using iTRAQ approach. The switch might be conserved across metazoans.
Collapse
|
26
|
Revisiting Suppression of Interspecies Hybrid Male Lethality in Caenorhabditis Nematodes. G3-GENES GENOMES GENETICS 2017; 7:1211-1214. [PMID: 28209763 PMCID: PMC5386869 DOI: 10.1534/g3.117.039479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Within the nematode genus Caenorhabditis, Caenorhabditis briggsae and C. nigoni are among the most closely related species known. They differ in sexual mode, with C. nigoni retaining the ancestral XO male-XX female outcrossing system, while C. briggsae recently evolved self-fertility and an XX-biased sex ratio. Wild-type C. briggsae and C. nigoni can produce fertile hybrid XX female progeny, but XO progeny are either 100% inviable (when C. briggsae is the mother) or viable but sterile (when C. nigoni is the mother). A recent study provided evidence suggesting that loss of the Cbr-him-8 meiotic regulator in C. briggsae hermaphrodites allowed them to produce viable and fertile hybrid XO male progeny when mated to C. nigoni Because such males would be useful for a variety of genetic experiments, we sought to verify this result. Preliminary crosses with wild-type C. briggsae hermaphrodites occasionally produced fertile males, but they could not be confirmed to be interspecies hybrids. Using an RNA interference (RNAi) protocol that eliminates any possibility of self-progeny in Cbr-him-8 hermaphrodites, we found sterile males bearing the C. nigoni X chromosome, but no fertile males bearing the C. briggsae X, as in wild-type crosses. Our results suggest that the apparent rescue of XO hybrid viability and fertility is due to incomplete purging of self-sperm prior to mating.
Collapse
|
27
|
Cytoplasmic-Nuclear Incompatibility Between Wild Isolates of Caenorhabditis nouraguensis. G3-GENES GENOMES GENETICS 2017; 7:823-834. [PMID: 28064190 PMCID: PMC5345712 DOI: 10.1534/g3.116.037101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
How species arise is a fundamental question in biology. Species can be defined as populations of interbreeding individuals that are reproductively isolated from other such populations. Therefore, understanding how reproductive barriers evolve between populations is essential for understanding the process of speciation. Hybrid incompatibility (for example, hybrid sterility or lethality) is a common and strong reproductive barrier in nature. Here we report a lethal incompatibility between two wild isolates of the nematode Caenorhabditis nouraguensis Hybrid inviability results from the incompatibility between a maternally inherited cytoplasmic factor from each strain and a recessive nuclear locus from the other. We have excluded the possibility that maternally inherited endosymbiotic bacteria cause the incompatibility by treating both strains with tetracycline and show that hybrid death is unaffected. Furthermore, cytoplasmic-nuclear incompatibility commonly occurs between other wild isolates, indicating that this is a significant reproductive barrier within C. nouraguensis We hypothesize that the maternally inherited cytoplasmic factor is the mitochondrial genome and that mitochondrial dysfunction underlies hybrid death. This system has the potential to shed light on the dynamics of divergent mitochondrial-nuclear coevolution and its role in promoting speciation.
Collapse
|
28
|
Ellis RE. "The persistence of memory"-Hermaphroditism in nematodes. Mol Reprod Dev 2016; 84:144-157. [PMID: 27291983 DOI: 10.1002/mrd.22668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
Self-fertility has evolved many times in nematodes. This transition often produces an androdioecious species, with XX hermaphrodites and XO males. Although these hermaphrodites resemble females in most respects, early germ cells differentiate as sperm, and late ones as oocytes. The sperm then receive an activation signal, populate the spermathecae, and are stored for later use in self-fertilization. These traits are controlled by complex modifications to the sex-determination and sperm activation pathways, which have arisen independently during the evolution of each hermaphroditic species. This transformation in reproductive strategy then promotes other major changes in the development, evolution, and population structure of these animals. Mol. Reprod. Dev. 84: 144-157, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, Stratford, New Jersey
| |
Collapse
|
29
|
Hou J, Fournier T, Schacherer J. Species-wide survey reveals the various flavors of intraspecific reproductive isolation in yeast. FEMS Yeast Res 2016; 16:fow048. [PMID: 27288348 DOI: 10.1093/femsyr/fow048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 12/13/2022] Open
Abstract
Exploring the origin and extent of reproductive isolation within the same species is valuable to capture early events to the onset of speciation. In multiple genetic models, reproductive isolation was recently observed at the intraspecific scale, indicating that the raw potential for speciation segregates readily within populations, which could be a rule rather than an exception in a broad context. We briefly recapitulate the molecular evidence of intrinsic post-zygotic isolation in major model organisms including Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster and their close relatives. We then focus on recent advances in yeast and review the genetic basis of post-zygotic isolation within and between multiple members of the Saccharomyces genus, especially in Saccharomyces cerevisiae We discuss the role of various mechanisms involved in the onset of reproductive isolation including DNA sequence divergence, chromosomal rearrangement, cytonuclear as well as nuclear-nuclear genetic incompatibilities and provide a comparative view along a continuum of genetic differentiation, which encompasses intraspecific populations, recent delineating nascent species as well as closely related sister species in the same subphylum.
Collapse
Affiliation(s)
- Jing Hou
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS UMR 7156, Strasbourg, France
| | - Téo Fournier
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS UMR 7156, Strasbourg, France
| |
Collapse
|
30
|
Li R, Ren X, Bi Y, Ho VWS, Hsieh CL, Young A, Zhang Z, Lin T, Zhao Y, Miao L, Sarkies P, Zhao Z. Specific down-regulation of spermatogenesis genes targeted by 22G RNAs in hybrid sterile males associated with an X-Chromosome introgression. Genome Res 2016; 26:1219-32. [PMID: 27197225 PMCID: PMC5052035 DOI: 10.1101/gr.204479.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/16/2016] [Indexed: 12/23/2022]
Abstract
Hybrid incompatibility (HI) prevents gene flow between species, thus lying at the heart of speciation genetics. One of the most common HIs is male sterility. Two superficially contradictory observations exist for hybrid male sterility. First, an introgression on the X Chromosome is more likely to produce male sterility than on autosome (so-called large-X theory); second, spermatogenesis genes are enriched on the autosomes but depleted on the X Chromosome (demasculinization of X Chromosome). Analysis of gene expression in Drosophila hybrids suggests a genetic interaction between the X Chromosome and autosomes that is essential for male fertility. However, the prevalence of such an interaction and its underlying mechanism remain largely unknown. Here we examine the interaction in nematode species by contrasting the expression of both coding genes and transposable elements (TEs) between hybrid sterile males and its parental nematode males. We use two lines of hybrid sterile males, each carrying an independent introgression fragment from Caenorhabditis briggsae X Chromosome in an otherwise Caenorhabditis nigoni background, which demonstrate similar defects in spermatogenesis. We observe a similar pattern of down-regulated genes that are specific for spermatogenesis between the two hybrids. Importantly, the down-regulated genes caused by the X Chromosome introgressions show a significant enrichment on the autosomes, supporting an epistatic interaction between the X Chromosome and autosomes. We investigate the underlying mechanism of the interaction by measuring small RNAs and find that a subset of 22G RNAs specifically targeting the down-regulated spermatogenesis genes is significantly up-regulated in hybrids, suggesting that perturbation of small RNA-mediated regulation may contribute to the X-autosome interaction.
Collapse
Affiliation(s)
- Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yu Bi
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | | | - Amanda Young
- Illumina Incorporated, San Diego, California 92122, USA
| | - Zhihong Zhang
- Illumina Incorporated, San Diego, California 92122, USA
| | - Tingting Lin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanmei Zhao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Long Miao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peter Sarkies
- MRC Clinical Sciences Centre, London W12 0NN, United Kingdom; Institute of Clinical Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
31
|
Ragavapuram V, Hill EE, Baird SE. Suppression of F1 Male-Specific Lethality in Caenorhabditis Hybrids by cbr-him-8. G3 (BETHESDA, MD.) 2015; 6:623-9. [PMID: 26721896 PMCID: PMC4777125 DOI: 10.1534/g3.115.025320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/29/2015] [Indexed: 01/26/2023]
Abstract
Haldane's Rule and Darwin's Corollary to Haldane's Rule are the observations that heterogametic F1 hybrids are frequently less fit than their homogametic siblings, and that asymmetric results are often obtained from reciprocal hybrid crosses. In Caenorhabditis, Haldane's Rule and Darwin's Corollary have been observed in several hybrid crosses, including crosses of Caenorhabditis briggsae and C. nigoni. Fertile F1 females are obtained from reciprocal crosses. However, F1 males obtained from C. nigoni mothers are sterile and F1 males obtained from C. briggsae die during embryogenesis. We have identified cbr-him-8 as a recessive maternal-effect suppressor of F1 hybrid male-specific lethality in this combination of species. This result implicates epigenetic meiotic silencing in the suppression of F1 male-specific lethality. It is also shown that F1 males bearing a C. briggsae X chromosome are fertile. When crossed to C. briggsae hermaphrodites or F1 females derived from C. briggsae hermaphrodites, viable F2 and backcross (B2) progeny were obtained. Sibling males that possessed a C. nigoni X chromosome were sterile. Therefore, the sterility of F1 males bearing a C. nigoni X chromosome must result from dysgenic interactions between the X chromosome of C. nigoni and the autosomes of C. briggsae. The fertility of F1 males bearing a C. briggsae X chromosome provides an opportunity to identify C. nigoni loci that prevent spermatogenesis, and hence hermaphroditic reproduction, in diplo-X hybrids.
Collapse
Affiliation(s)
| | - Emily Elaine Hill
- Department of Biological Sciences, Wright State University, Dayton, Ohio 45435
| | - Scott Everet Baird
- Department of Biological Sciences, Wright State University, Dayton, Ohio 45435
| |
Collapse
|
32
|
Bundus JD, Alaei R, Cutter AD. Gametic selection, developmental trajectories, and extrinsic heterogeneity in Haldane's rule. Evolution 2015; 69:2005-17. [PMID: 26102479 DOI: 10.1111/evo.12708] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022]
Abstract
Deciphering the genetic and developmental causes of the disproportionate rarity, inviability, and sterility of hybrid males, Haldane's rule, is important for understanding the evolution of reproductive isolation between species. Moreover, extrinsic and prezygotic factors can contribute to the magnitude of intrinsic isolation experienced between species with partial reproductive compatibility. Here, we use the nematodes Caenorhabditis briggsae and C. nigoni to quantify the sensitivity of hybrid male viability to extrinsic temperature and developmental timing, and test for a role of mito-nuclear incompatibility as a genetic cause. We demonstrate that hybrid male inviability manifests almost entirely as embryonic, not larval, arrest and is maximal at the lowest rearing temperatures, indicating an intrinsic-by-extrinsic interaction to hybrid inviability. Crosses using mitochondrial substitution strains that have reciprocally introgressed mitochondrial and nuclear genomes show that mito-nuclear incompatibility is not a dominant contributor to postzygotic isolation and does not drive Haldane's rule in this system. Crosses also reveal that competitive superiority of X-bearing sperm provides a novel means by which postmating prezygotic factors exacerbate the rarity of hybrid males. These findings highlight the important roles of gametic, developmental, and extrinsic factors in modulating the manifestation of Haldane's rule.
Collapse
Affiliation(s)
- Joanna D Bundus
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Ravin Alaei
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2.
| |
Collapse
|
33
|
Abstract
Recent research has filled many gaps about Caenorhabditis natural history, simultaneously exposing how much remains to be discovered. This awareness now provides means of connecting ecological and evolutionary theory with diverse biological patterns within and among species in terms of adaptation, sexual selection, breeding systems, speciation, and other phenomena. Moreover, the heralded laboratory tractability of C. elegans, and Caenorhabditis species generally, provides a powerful case study for experimental hypothesis testing about evolutionary and ecological processes to levels of detail unparalleled by most study systems. Here, I synthesize pertinent theory with what we know and suspect about Caenorhabditis natural history for salient features of biodiversity, phenotypes, population dynamics, and interactions within and between species. I identify topics of pressing concern to advance Caenorhabditis biology and to study general evolutionary processes, including the key opportunities to tackle problems in dispersal dynamics, competition, and the dimensionality of niche space.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Li R, Hsieh CL, Young A, Zhang Z, Ren X, Zhao Z. Illumina Synthetic Long Read Sequencing Allows Recovery of Missing Sequences even in the "Finished" C. elegans Genome. Sci Rep 2015; 5:10814. [PMID: 26039588 PMCID: PMC4650653 DOI: 10.1038/srep10814] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/28/2015] [Indexed: 12/02/2022] Open
Abstract
Most next-generation sequencing platforms permit acquisition of high-throughput DNA sequences, but the relatively short read length limits their use in genome assembly or finishing. Illumina has recently released a technology called Synthetic Long-Read Sequencing that can produce reads of unusual length, i.e., predominately around 10 Kb. However, a systematic assessment of their use in genome finishing and assembly is still lacking. We evaluate the promise and deficiency of the long reads in these aspects using isogenic C. elegans genome with no gap. First, the reads are highly accurate and capable of recovering most types of repetitive sequences. However, the presence of tandem repetitive sequences prevents pre-assembly of long reads in the relevant genomic region. Second, the reads are able to reliably detect missing but not extra sequences in the C. elegans genome. Third, the reads of smaller size are more capable of recovering repetitive sequences than those of bigger size. Fourth, at least 40 Kbp missing genomic sequences are recovered in the C. elegans genome using the long reads. Finally, an N50 contig size of at least 86 Kbp can be achieved with 24 × reads but with substantial mis-assembly errors, highlighting a need for novel assembly algorithm for the long reads.
Collapse
Affiliation(s)
- Runsheng Li
- Department of Biology, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, China
| | | | - Amanda Young
- Illumina Inc., 5200 Illumina Way, San Diego, 92122, USA
| | - Zhihong Zhang
- Illumina Inc., 5200 Illumina Way, San Diego, 92122, USA
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|