1
|
Yuan H, Mancuso CA, Johnson K, Braasch I, Krishnan A. Computational strategies for cross-species knowledge transfer and translational biomedicine. ARXIV 2024:arXiv:2408.08503v1. [PMID: 39184546 PMCID: PMC11343225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Research organisms provide invaluable insights into human biology and diseases, serving as essential tools for functional experiments, disease modeling, and drug testing. However, evolutionary divergence between humans and research organisms hinders effective knowledge transfer across species. Here, we review state-of-the-art methods for computationally transferring knowledge across species, primarily focusing on methods that utilize transcriptome data and/or molecular networks. We introduce the term "agnology" to describe the functional equivalence of molecular components regardless of evolutionary origin, as this concept is becoming pervasive in integrative data-driven models where the role of evolutionary origin can become unclear. Our review addresses four key areas of information and knowledge transfer across species: (1) transferring disease and gene annotation knowledge, (2) identifying agnologous molecular components, (3) inferring equivalent perturbed genes or gene sets, and (4) identifying agnologous cell types. We conclude with an outlook on future directions and several key challenges that remain in cross-species knowledge transfer.
Collapse
Affiliation(s)
- Hao Yuan
- Genetics and Genome Science Program; Ecology, Evolution, and Behavior Program, Michigan State University
| | - Christopher A. Mancuso
- Department of Biostatistics & Informatics, University of Colorado Anschutz Medical Campus
| | - Kayla Johnson
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus
| | - Ingo Braasch
- Department of Integrative Biology; Genetics and Genome Science Program; Ecology, Evolution, and Behavior Program, Michigan State University
| | - Arjun Krishnan
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus
| |
Collapse
|
2
|
Żyła N, Cieśla A, Szała L, Babula-Skowrońska D. Functional and regulatory diversity of homeobox-leucine zipper transcription factors BnaHB6 under dehydration and salt stress in Brassica napus L. PLANT MOLECULAR BIOLOGY 2024; 114:59. [PMID: 38750303 PMCID: PMC11096223 DOI: 10.1007/s11103-024-01465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The plant-specific homeodomain-leucine zipper I subfamily is involved in the regulation of various biological processes, particularly growth, development and stress response. In the present study, we characterized four BnaHB6 homologues from Brassica napus. All BnaHB6 proteins have transcriptional activation activity. Structural and functional data indicate the complex role of BnaHB6 genes in regulating biological processes, with some functions conserved and others diverged. Transcriptional analyzes revealed that they are induced in a similar manner in different tissues but show different expression patterns in response to stress and circadian rhythm. Only the BnaA09HB6 and BnaC08HB6 genes are expressed under dehydration and salt stress, and in darkness. The partial transcriptional overlap of BnaHB6s with the evolutionarily related genes BnaHB5 and BnaHB16 was also observed. Transgenic Arabidopsis thaliana plants expressing a single proBnaHB6::GUS partially confirmed the expression results. Bioinformatic analysis allowed the identification of TF-binding sites in the BnaHB6 promoters that may control their expression under stress and circadian rhythm. ChIP-qPCR analysis revealed that BnaA09HB6 and BnaC08HB6 bind directly to the promoters of the target genes BnaABF4 and BnaDREB2A. Comparison of their expression patterns in the WT plants and the bnac08hb6 mutant showed that BnaC08HB6 positively regulates the expression of the BnaABF4 and BnaDREB2A genes under dehydration and salt stress. We conclude that four BnaHB6 homologues have distinct functions in response to stress despite high sequence similarity, possibly indicating different binding preferences with BnaABF4 and BnaDREB2A. We hypothesize that BnaC08HB6 and BnaA09HB6 function in a complex regulatory network under stress.
Collapse
Affiliation(s)
- Natalia Żyła
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Agata Cieśla
- Laboratory of Biotechnology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Laurencja Szała
- Department of Oilseed Crops, Poznań Division, Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, Strzeszyńska 36, 60‑479, Poznań, Poland
| | - Danuta Babula-Skowrońska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| |
Collapse
|
3
|
King SB, Singh M. Primate protein-ligand interfaces exhibit significant conservation and unveil human-specific evolutionary drivers. PLoS Comput Biol 2023; 19:e1010966. [PMID: 36952575 PMCID: PMC10035887 DOI: 10.1371/journal.pcbi.1010966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/22/2023] [Indexed: 03/25/2023] Open
Abstract
Despite the vast phenotypic differences observed across primates, their protein products are largely similar to each other at the sequence level. We hypothesized that, since proteins accomplish all their functions via interactions with other molecules, alterations in the sites that participate in these interactions may be of critical importance. To uncover the extent to which these sites evolve across primates, we built a structurally-derived dataset of ~4,200 one-to-one orthologous sequence groups across 18 primate species, consisting of ~68,000 ligand-binding sites that interact with DNA, RNA, small molecules, ions, or peptides. Using this dataset, we identify functionally important patterns of conservation and variation within the amino acid residues that facilitate protein-ligand interactions across the primate phylogeny. We uncover that interaction sites are significantly more conserved than other sites, and that sites binding DNA and RNA further exhibit the lowest levels of variation. We also show that the subset of ligand-binding sites that do vary are enriched in components of gene regulatory pathways and uncover several instances of human-specific ligand-binding site changes within transcription factors. Altogether, our results suggest that ligand-binding sites have experienced selective pressure in primates and propose that variation in these sites may have an outsized effect on phenotypic variation in primates through pleiotropic effects on gene regulation.
Collapse
Affiliation(s)
- Sean B. King
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Mona Singh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
4
|
Etzion-Fuchs A, Todd DA, Singh M. dSPRINT: predicting DNA, RNA, ion, peptide and small molecule interaction sites within protein domains. Nucleic Acids Res 2021; 49:e78. [PMID: 33999210 PMCID: PMC8287948 DOI: 10.1093/nar/gkab356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/30/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023] Open
Abstract
Domains are instrumental in facilitating protein interactions with DNA, RNA, small molecules, ions and peptides. Identifying ligand-binding domains within sequences is a critical step in protein function annotation, and the ligand-binding properties of proteins are frequently analyzed based upon whether they contain one of these domains. To date, however, knowledge of whether and how protein domains interact with ligands has been limited to domains that have been observed in co-crystal structures; this leaves approximately two-thirds of human protein domain families uncharacterized with respect to whether and how they bind DNA, RNA, small molecules, ions and peptides. To fill this gap, we introduce dSPRINT, a novel ensemble machine learning method for predicting whether a domain binds DNA, RNA, small molecules, ions or peptides, along with the positions within it that participate in these types of interactions. In stringent cross-validation testing, we demonstrate that dSPRINT has an excellent performance in uncovering ligand-binding positions and domains. We also apply dSPRINT to newly characterize the molecular functions of domains of unknown function. dSPRINT's predictions can be transferred from domains to sequences, enabling predictions about the ligand-binding properties of 95% of human genes. The dSPRINT framework and its predictions for 6503 human protein domains are freely available at http://protdomain.princeton.edu/dsprint.
Collapse
Affiliation(s)
- Anat Etzion-Fuchs
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Laboratory, Princeton, NJ 08544, USA
| | - David A Todd
- Department of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ 08544, USA
| | - Mona Singh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Laboratory, Princeton, NJ 08544, USA.,Department of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ 08544, USA
| |
Collapse
|
5
|
Stamboulian M, Guerrero RF, Hahn MW, Radivojac P. The ortholog conjecture revisited: the value of orthologs and paralogs in function prediction. Bioinformatics 2020; 36:i219-i226. [PMID: 32657391 PMCID: PMC7355290 DOI: 10.1093/bioinformatics/btaa468] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MOTIVATION The computational prediction of gene function is a key step in making full use of newly sequenced genomes. Function is generally predicted by transferring annotations from homologous genes or proteins for which experimental evidence exists. The 'ortholog conjecture' proposes that orthologous genes should be preferred when making such predictions, as they evolve functions more slowly than paralogous genes. Previous research has provided little support for the ortholog conjecture, though the incomplete nature of the data cast doubt on the conclusions. RESULTS We use experimental annotations from over 40 000 proteins, drawn from over 80 000 publications, to revisit the ortholog conjecture in two pairs of species: (i) Homo sapiens and Mus musculus and (ii) Saccharomyces cerevisiae and Schizosaccharomyces pombe. By making a distinction between questions about the evolution of function versus questions about the prediction of function, we find strong evidence against the ortholog conjecture in the context of function prediction, though questions about the evolution of function remain difficult to address. In both pairs of species, we quantify the amount of information that would be ignored if paralogs are discarded, as well as the resulting loss in prediction accuracy. Taken as a whole, our results support the view that the types of homologs used for function transfer are largely irrelevant to the task of function prediction. Maximizing the amount of data used for this task, regardless of whether it comes from orthologs or paralogs, is most likely to lead to higher prediction accuracy. AVAILABILITY AND IMPLEMENTATION https://github.com/predragradivojac/oc. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Moses Stamboulian
- Department of Computer Science, Indiana University, Bloomington, IN 47405, USA
| | - Rafael F Guerrero
- Department of Computer Science, Indiana University, Bloomington, IN 47405, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Matthew W Hahn
- Department of Computer Science, Indiana University, Bloomington, IN 47405, USA
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
6
|
Zhang YX, Chen X, Wang JP, Zhang ZQ, Wei H, Yu HY, Zheng HK, Chen Y, Zhang LS, Lin JZ, Sun L, Liu DY, Tang J, Lei Y, Li XM, Liu M. Genomic insights into mite phylogeny, fitness, development, and reproduction. BMC Genomics 2019; 20:954. [PMID: 31818245 PMCID: PMC6902594 DOI: 10.1186/s12864-019-6281-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Predatory mites (Acari: Phytoseiidae) are the most important beneficial arthropods used in augmentative biological pest control of protected crops around the world. However, the genomes of mites are far less well understood than those of insects and the evolutionary relationships among mite and other chelicerate orders are contested, with the enigmatic origin of mites at one of the centres in discussion of the evolution of Arachnida. RESULTS We here report the 173 Mb nuclear genome (from 51.75 Gb pairs of Illumina reads) of the predatory mite, Neoseiulus cucumeris, a biocontrol agent against pests such as mites and thrips worldwide. We identified nearly 20.6 Mb (~ 11.93% of this genome) of repetitive sequences and annotated 18,735 protein-coding genes (a typical gene 2888 bp in size); the total length of protein-coding genes was about 50.55 Mb (29.2% of this assembly). About 37% (6981) of the genes are unique to N. cucumeris based on comparison with other arachnid genomes. Our phylogenomic analysis supported the monophyly of Acari, therefore rejecting the biphyletic origin of mites advocated by other studies based on limited gene fragments or few taxa in recent years. Our transcriptomic analyses of different life stages of N. cucumeris provide new insights into genes involved in its development. Putative genes involved in vitellogenesis, regulation of oviposition, sex determination, development of legs, signal perception, detoxification and stress-resistance, and innate immune systems are identified. CONCLUSIONS Our genomics and developmental transcriptomics analyses of N. cucumeris provide invaluable resources for further research on the development, reproduction, and fitness of this economically important mite in particular and Arachnida in general.
Collapse
Affiliation(s)
- Yan-Xuan Zhang
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Xia Chen
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Jie-Ping Wang
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013 People’s Republic of China
| | - Zhi-Qiang Zhang
- Landcare Research, Auckland and School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Hui Wei
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Hai-Yan Yu
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Hong-Kun Zheng
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Yong Chen
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Li-Sheng Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Jian-Zhen Lin
- Fujian Yanxuan Bio-preventing and Technology Biocontrol Corporation, Fuzhou, People’s Republic of China
| | - Li Sun
- Research Center of Engineering and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003 People’s Republic of China
| | - Dong-Yuan Liu
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Juan Tang
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Yan Lei
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Xu-Ming Li
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, 101300 People’s Republic of China
| |
Collapse
|
7
|
Lamrabet O, Plumbridge J, Martin M, Lenski RE, Schneider D, Hindré T. Plasticity of Promoter-Core Sequences Allows Bacteria to Compensate for the Loss of a Key Global Regulatory Gene. Mol Biol Evol 2019; 36:1121-1133. [PMID: 30825312 DOI: 10.1093/molbev/msz042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Transcription regulatory networks (TRNs) are of central importance for both short-term phenotypic adaptation in response to environmental fluctuations and long-term evolutionary adaptation, with global regulatory genes often being targets of natural selection in laboratory experiments. Here, we combined evolution experiments, whole-genome resequencing, and molecular genetics to investigate the driving forces, genetic constraints, and molecular mechanisms that dictate how bacteria can cope with a drastic perturbation of their TRNs. The crp gene, encoding a major global regulator in Escherichia coli, was deleted in four different genetic backgrounds, all derived from the Long-Term Evolution Experiment (LTEE) but with different TRN architectures. We confirmed that crp deletion had a more deleterious effect on growth rate in the LTEE-adapted genotypes; and we showed that the ptsG gene, which encodes the major glucose-PTS transporter, gained CRP (cyclic AMP receptor protein) dependence over time in the LTEE. We then further evolved the four crp-deleted genotypes in glucose minimal medium, and we found that they all quickly recovered from their growth defects by increasing glucose uptake. We showed that this recovery was specific to the selective environment and consistently relied on mutations in the cis-regulatory region of ptsG, regardless of the initial genotype. These mutations affected the interplay of transcription factors acting at the promoters, changed the intrinsic properties of the existing promoters, or produced new transcription initiation sites. Therefore, the plasticity of even a single promoter region can compensate by three different mechanisms for the loss of a key regulatory hub in the E. coli TRN.
Collapse
Affiliation(s)
- Otmane Lamrabet
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Jacqueline Plumbridge
- CNRS UMR8261, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-chimique, Paris, France
| | - Mikaël Martin
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI
| | | | - Thomas Hindré
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| |
Collapse
|
8
|
Lambert SA, Yang AWH, Sasse A, Cowley G, Albu M, Caddick MX, Morris QD, Weirauch MT, Hughes TR. Similarity regression predicts evolution of transcription factor sequence specificity. Nat Genet 2019; 51:981-989. [PMID: 31133749 DOI: 10.1038/s41588-019-0411-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/04/2019] [Indexed: 11/09/2022]
Abstract
Transcription factor (TF) binding specificities (motifs) are essential for the analysis of gene regulation. Accurate prediction of TF motifs is critical, because it is infeasible to assay all TFs in all sequenced eukaryotic genomes. There is ongoing controversy regarding the degree of motif diversification among related species that is, in part, because of uncertainty in motif prediction methods. Here we describe similarity regression, a significantly improved method for predicting motifs, which we use to update and expand the Cis-BP database. Similarity regression inherently quantifies TF motif evolution, and shows that previous claims of near-complete conservation of motifs between human and Drosophila are inflated, with nearly half of the motifs in each species absent from the other, largely due to extensive divergence in C2H2 zinc finger proteins. We conclude that diversification in DNA-binding motifs is pervasive, and present a new tool and updated resource to study TF diversity and gene regulation across eukaryotes.
Collapse
Affiliation(s)
- Samuel A Lambert
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ally W H Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Sasse
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gwendolyn Cowley
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mihai Albu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Mark X Caddick
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Quaid D Morris
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Canadian Institutes For Advanced Research (CIFAR) Artificial Intelligence Chair, Vector Institute, Toronto, Ontario, Canada.,Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| | - Matthew T Weirauch
- Divisions of Biomedical Informatics and Developmental Biology, Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. .,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada. .,CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Baral S, Arumugam G, Deshmukh R, Kunte K. Genetic architecture and sex-specific selection govern modular, male-biased evolution of doublesex. SCIENCE ADVANCES 2019; 5:eaau3753. [PMID: 31086812 PMCID: PMC6506240 DOI: 10.1126/sciadv.aau3753] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
doublesex regulates early embryonic sex differentiation in holometabolous insects, along with the development of species-, sex-, and morph-specific adaptations during pupal stages. How does a highly conserved gene with a critical developmental role also remain functionally dynamic enough to gain ecologically important adaptations that are divergent in sister species? We analyzed patterns of exon-level molecular evolution and protein structural homology of doublesex from 145 species of four insect orders representing 350 million years of divergence. This analysis revealed that evolution of doublesex was governed by a modular architecture: Functional domains and female-specific regions were highly conserved, whereas male-specific sequences and protein structures evolved up to thousand-fold faster, with sites under pervasive and/or episodic positive selection. This pattern of sex bias was reversed in Hymenoptera. Thus, highly conserved yet dynamic master regulators such as doublesex may partition specific conserved and novel functions in different genic modules at deep evolutionary time scales.
Collapse
|
10
|
Moseley RC, Mewalal R, Motta F, Tuskan GA, Haase S, Yang X. Conservation and Diversification of Circadian Rhythmicity Between a Model Crassulacean Acid Metabolism Plant Kalanchoë fedtschenkoi and a Model C 3 Photosynthesis Plant Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1757. [PMID: 30546378 PMCID: PMC6279919 DOI: 10.3389/fpls.2018.01757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/12/2018] [Indexed: 05/04/2023]
Abstract
Crassulacean acid metabolism (CAM) improves photosynthetic efficiency under limited water availability relative to C3 photosynthesis. It is widely accepted that CAM plants have evolved from C3 plants and it is hypothesized that CAM is under the control of the internal circadian clock. However, the role that the circadian clock plays in the evolution of CAM is not well understood. To identify the molecular basis of circadian control over CAM evolution, rhythmic gene sets were identified in a CAM model plant species (Kalanchoë fedtschenkoi) and a C3 model plant species (Arabidopsis thaliana) through analysis of diel time-course gene expression data using multiple periodicity detection algorithms. Based on protein sequences, ortholog groups were constructed containing genes from each of these two species. The ortholog groups were categorized into five gene sets based on conservation and diversification of rhythmic gene expression. Interestingly, minimal functional overlap was observed when comparing the rhythmic gene sets of each species. Specifcally, metabolic processes were enriched in the gene set under circadian control in K. fedtschenkoi and numerous genes were found to have retained or gained rhythmic expression in K. fedtsechenkoi. Additonally, several rhythmic orthologs, including CAM-related orthologs, displayed phase shifts between species. Results of this analysis point to several mechanisms by which the circadian clock plays a role in the evolution of CAM. These genes provide a set of testable hypotheses for future experiments.
Collapse
Affiliation(s)
| | - Ritesh Mewalal
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Francis Motta
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- DOE Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Steve Haase
- Department of Biology, Duke University, Durham, NC, United States
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- DOE Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
11
|
Geng S, Miyagi A, Umen JG. Evolutionary divergence of the sex-determining gene MID uncoupled from the transition to anisogamy in volvocine algae. Development 2018; 145:dev.162537. [PMID: 29549112 DOI: 10.1242/dev.162537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/13/2018] [Indexed: 12/28/2022]
Abstract
Volvocine algae constitute a unique comparative model for investigating the evolution of oogamy from isogamous mating types. The sex- or mating type-determining gene MID encodes a conserved RWP-RK transcription factor found in either the MT- or male mating locus of dioecious volvocine species. We previously found that MID from the isogamous species Chlamydomonas reinhardtii (CrMID) could not induce ectopic spermatogenesis when expressed heterologously in Volvox carteri females, suggesting coevolution of Mid function with gamete dimorphism. Here we found that ectopic expression of MID from the anisogamous species Pleodorina starrii (PsMID) could efficiently induce spermatogenesis when expressed in V. carteri females and, unexpectedly, that GpMID from the isogamous species Gonium pectorale was also able to induce V. carteri spermatogenesis. Neither VcMID nor GpMID could complement a C. reinhardtii mid mutant, at least partly owing to instability of heterologous Mid proteins. Our data show that Mid divergence was not a major contributor to the transition between isogamy and anisogamy/oogamy in volvocine algae, and instead implicate changes in cis-regulatory interactions and/or trans-acting factors of the Mid network in the evolution of sexual dimorphism.
Collapse
Affiliation(s)
- Sa Geng
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, MO 63132, USA
| | - Ayano Miyagi
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, MO 63132, USA
| | - James G Umen
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, MO 63132, USA
| |
Collapse
|
12
|
Friedlander T, Prizak R, Barton NH, Tkačik G. Evolution of new regulatory functions on biophysically realistic fitness landscapes. Nat Commun 2017; 8:216. [PMID: 28790313 PMCID: PMC5548793 DOI: 10.1038/s41467-017-00238-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 06/13/2017] [Indexed: 12/12/2022] Open
Abstract
Gene expression is controlled by networks of regulatory proteins that interact specifically with external signals and DNA regulatory sequences. These interactions force the network components to co-evolve so as to continually maintain function. Yet, existing models of evolution mostly focus on isolated genetic elements. In contrast, we study the essential process by which regulatory networks grow: the duplication and subsequent specialization of network components. We synthesize a biophysical model of molecular interactions with the evolutionary framework to find the conditions and pathways by which new regulatory functions emerge. We show that specialization of new network components is usually slow, but can be drastically accelerated in the presence of regulatory crosstalk and mutations that promote promiscuous interactions between network components.Gene networks evolve by transcription factor (TF) duplication and divergence of their binding site specificities, but little is known about the global constraints at play. Here, the authors study the coevolution of TFs and binding sites using a biophysical-evolutionary approach, and show that the emerging complex fitness landscapes strongly influence regulatory evolution with a role for crosstalk.
Collapse
Affiliation(s)
- Tamar Friedlander
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 7610001, Israel
| | - Roshan Prizak
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria
| | - Nicholas H Barton
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria
| | - Gašper Tkačik
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria.
| |
Collapse
|
13
|
Hashimoto H, Zhang X, Zheng Y, Wilson GG, Cheng X. Denys-Drash syndrome associated WT1 glutamine 369 mutants have altered sequence-preferences and altered responses to epigenetic modifications. Nucleic Acids Res 2016; 44:10165-10176. [PMID: 27596598 PMCID: PMC5137435 DOI: 10.1093/nar/gkw766] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 01/10/2023] Open
Abstract
Mutations in human zinc-finger transcription factor WT1 result in abnormal development of the kidneys and genitalia and an array of pediatric problems including nephropathy, blastoma, gonadal dysgenesis and genital discordance. Several overlapping phenotypes are associated with WT1 mutations, including Wilms tumors, Denys-Drash syndrome (DDS), Frasier syndrome (FS) and WAGR syndrome (Wilms tumor, aniridia, genitourinary malformations, and mental retardation). These conditions vary in severity from individual to individual; they can be fatal in early childhood, or relatively benign into adulthood. DDS mutations cluster predominantly in zinc fingers (ZF) 2 and 3 at the C-terminus of WT1, which together with ZF4 determine the sequence-specificity of DNA binding. We examined three DDS associated mutations in ZF2 of human WT1 where the normal glutamine at position 369 is replaced by arginine (Q369R), lysine (Q369K) or histidine (Q369H). These mutations alter the sequence-specificity of ZF2, we find, changing its affinity for certain bases and certain epigenetic forms of cytosine. X-ray crystallography of the DNA binding domains of normal WT1, Q369R and Q369H in complex with preferred sequences revealed the molecular interactions responsible for these affinity changes. DDS is inherited in an autosomal dominant fashion, implying a gain of function by mutant WT1 proteins. This gain, we speculate, might derive from the ability of the mutant proteins to sequester WT1 into unproductive oligomers, or to erroneously bind to variant target sequences.
Collapse
Affiliation(s)
- Hideharu Hashimoto
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yu Zheng
- RGENE, Inc., 953 Indiana Street, San Francisco, CA 94107, USA
| | | | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Read T, Richmond PA, Dowell RD. A trans-acting Variant within the Transcription Factor RIM101 Interacts with Genetic Background to Determine its Regulatory Capacity. PLoS Genet 2016; 12:e1005746. [PMID: 26751950 PMCID: PMC4709078 DOI: 10.1371/journal.pgen.1005746] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/25/2015] [Indexed: 11/19/2022] Open
Abstract
Most genetic variants associated with disease occur within regulatory regions of the genome, underscoring the importance of defining the mechanisms underlying differences in regulation of gene expression between individuals. We discovered a pair of co-regulated, divergently oriented transcripts, AQY2 and ncFRE6, that are expressed in one strain of Saccharomyces cerevisiae, ∑1278b, but not in another, S288c. By combining classical genetics techniques with high-throughput sequencing, we identified a trans-acting single nucleotide polymorphism within the transcription factor RIM101 that causes the background-dependent expression of both transcripts. Subsequent RNA-seq experiments revealed that RIM101 regulates many more targets in S288c than in ∑1278b and that deletion of RIM101 in both backgrounds abrogates the majority of differential expression between the strains. Strikingly, only three transcripts undergo a significant change in expression after swapping RIM101 alleles between backgrounds, implying that the differences in the RIM101 allele lead to a remarkably focused transcriptional response. However, hundreds of RIM101-dependent targets undergo a subtle but consistent shift in expression in the S288c RIM101-swapped strain, but not its ∑1278b counterpart. We conclude that ∑1278b may harbor a variant(s) that buffers against widespread transcriptional dysregulation upon introduction of a non-native RIM101 allele, emphasizing the importance of accounting for genetic background when assessing the impact of a regulatory variant.
Collapse
Affiliation(s)
- Timothy Read
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado, United States of America
| | - Phillip A. Richmond
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado, United States of America
- BioFrontiers Institute, University of Colorado, Boulder, Boulder, Colorado, United States of America
| | - Robin D. Dowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado, United States of America
- BioFrontiers Institute, University of Colorado, Boulder, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|