1
|
Carvalheira LDR, Leite Albeny AC, Silva EBM, Borges ÁM. Heat shock on bovine embryos from day 2.5-3 selects the most competent for progression to the blastocyst stage. Theriogenology 2024; 230:21-27. [PMID: 39241577 DOI: 10.1016/j.theriogenology.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Heat shock can impair embryo formation, while growth factors, such as colony-stimulating factor 2 (CSF2), modulate embryonic development. This study evaluated the effect of heat shock between days 2.5 and 3, as well as the impact of CSF2 at day 5 on bovine embryos cultured in a serum-free in vitro medium. The focus was on blastocyst development, the number of blastomeres, DNA fragmentation (TUNEL-positive cells), and mitochondrial activity. Heat shock reduced the proportion of cleaved embryos that developed into blastocysts (P = 0.0603). The resultant blastocysts exhibited a reduced number and proportion of TUNEL-positive cells in the trophectoderm (P = 0.0270 and P = 0.0240, respectively) and in the entire embryo (P = 0.0029 and P = 0.0031, respectively). Additionally, mitochondrial activity was lower in blastocysts derived from heat-shocked embryos (P = 0.0150) and further reduced in embryos exposed to both heat shock and CSF2 (P = 0.0415). In conclusion, the exposure of cleaved embryos to heat shock reduced their development to the blastocyst stage. However, the resulting blastocysts showed decreased DNA fragmentation and mitochondrial activity.
Collapse
Affiliation(s)
- Luciano de Rezende Carvalheira
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| | - Ana Carolina Leite Albeny
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Eliane Beatriz Magalhães Silva
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Álan Maia Borges
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Do SQ, Nguyen HT, Wakai T, Funahashi H. Exogenous expression of PGC-1α during in vitro maturation impairs the developmental competence of porcine oocytes. Theriogenology 2024; 228:30-36. [PMID: 39089072 DOI: 10.1016/j.theriogenology.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
Objectives of the current study were to examine the effects of exogenous expression of PGC-1α, which is a transcription factor responsive for controlling mitochondrial DNA (mtDNA) replication, mitochondria quantity control, mitochondrial biogenesis, and reactive oxygen species (ROS) maintenance, in porcine oocytes during in-vitro maturation (IVM) on the developmental competence, as well as mitochondrial quantity and function. Exogenous over-expression of PGC-1α by injection of the mRNA construct into oocytes 20 h after the start of IVM culture significantly increased the copy number of mtDNA in the oocytes, but reduced the incidences of oocytes matured to the metaphase-II stage after the IVM culture for totally 44 h and completely suppressed the early development in vitro to the blastocyst stage following parthenogenetic activation. The exogenous expression of PGC-1α also significantly induced spindle defects and chromosome misalignments. Furthermore, markedly higher ROS levels were observed in the PGC-1α-overexpressed mature oocytes, whereas mRNA level of SOD1, encoded for a ROS scavenging enzyme, was decreased. These results conclude that forced expression of PGC-1α successfully increase mtDNA copy number but led to increased ROS production, evidently by downregulation of SOD1 gene expression, inducement of spindle aberration/chromosomal misalignment, and consequently reduction in the meiotic and developmental competences of porcine oocytes.
Collapse
Affiliation(s)
- Son Quang Do
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hai Thanh Nguyen
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Takuya Wakai
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hiroaki Funahashi
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| |
Collapse
|
3
|
Yildirim RM, Seli E. Mitochondria as determinants of reproductive senescence and competence: implications for diagnosis of embryo competence in assisted reproduction. Hum Reprod 2024; 39:2160-2170. [PMID: 39066612 DOI: 10.1093/humrep/deae171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondria are commonly recognized as the powerhouses of the cell, primarily responsible for energy production through oxidative phosphorylation. Alongside this vital function, they also play crucial roles in regulating calcium signaling, maintaining membrane potential, and modulating apoptosis. Their involvement in various cellular pathways becomes particularly evident during oogenesis and embryogenesis, where mitochondrial quantity, morphology, and distribution are tightly controlled. The efficiency of the mitochondrial network is maintained through multiple quality control mechanisms that are essential for reproductive success. These include mitochondrial unfolded protein response, mitochondrial dynamics, and mitophagy. Not surprisingly, mitochondrial dysfunction has been implicated in infertility and ovarian aging, prompting investigation into mitochondria as diagnostic and therapeutic targets in assisted reproduction. To date, mitochondrial DNA copy number in oocytes, cumulus cells, and trophectoderm biopsies, and fluorescent lifetime imaging microscopy-based assessment of NADH and flavin adenine dinucleotide content have been explored as potential predictors of embryo competence, yielding limited success. Despite challenges in the clinical application of mitochondrial diagnostic strategies, these enigmatic organelles have a significant impact on reproduction, and their potential role as diagnostic targets in assisted reproduction is likely to remain an active area of investigation in the foreseeable future.
Collapse
Affiliation(s)
- Raziye Melike Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Ding Y, Yu XJ, Guo QX, Leng JH. Functional analysis of the novel mitochondrial tRNA Trp and tRNA Ser(AGY) variants associated with type 2 diabetes mellitus. World J Diabetes 2024; 15:1753-1763. [PMID: 39192858 PMCID: PMC11346085 DOI: 10.4239/wjd.v15.i8.1753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/09/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Mutations in mitochondrial tRNA (mt-tRNA) genes that result in mitochondrial dysfunction play important roles in type 2 diabetes mellitus (T2DM). We pre-viously reported a large Chinese pedigree with maternally inherited T2DM that harbors novel mt-tRNA Trp A5514G and tRNA Ser(AGY) C12237T variants, however, the effects of these mt-tRNA variants on T2DM progression are largely unknown. AIM To assess the potential pathogenicity of T2DM-associated m.A5514G and m.C12237T variants at genetic, molecular, and biochemical levels. METHODS Cytoplasmic hybrid (cybrid) cells carrying both m.A5514G and m.C12237T variants, and healthy control cells without these mitochondrial DNA (mtDNA) variants were generated using trans-mitochondrial technology. Mitochondrial features, including mt-tRNA steady-state level, levels of adenosine triphosphate (ATP), mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mtDNA copy number, nicotinamide adenine dinucleotide (NAD+)/NADH ratio, enzymatic activities of respiratory chain complexes (RCCs), 8-hydroxy-deo-xyguanine (8-OhdG), malondialdehyde (MDA), and superoxide dismutase (SOD) were examined in cell lines with and without these mt-tRNA variants. RESULTS Compared with control cells, the m.A5514G variant caused an approximately 35% reduction in the steady-state level of mt-tRNA Trp (P < 0.0001); however, the m.C12237T variant did not affect the mt-tRNA Ser(AGY) steady-state level (P = 0.5849). Biochemical analysis revealed that cells with both m.A5514G and m.C12237T variants exhibited more severe mitochondrial dysfunctions and elevated oxidative stress than control cells: ATP, MMP, NAD+/NADH ratio, enzyme activities of RCCs and SOD levels were markedly decreased in mutant cells (P < 0.05 for all measures). By contrast, the levels of ROS, 8-OhdG and MDA were significantly increased (P < 0.05 for all measures), but mtDNA copy number was not affected by m.A5514G and m.C12237T variants (P = 0.5942). CONCLUSION The m.A5514G variant impaired mt-tRNA Trp metabolism, which subsequently caused mitochondrial dysfunction. The m.C12237T variant did not alter the steady-state level of mt-tRNA Ser(AGY), indicating that it may be a modifier of the m.A5514G variant. The m.A5514G variant may exacerbate the pathogenesis and progression of T2DM in this Chinese pedigree.
Collapse
Affiliation(s)
- Yu Ding
- Central Laboratory, Hangzhou First People’s Hospital, Hangzhou 310006, Zhejiang Province, China
| | - Xue-Jiao Yu
- Clinical Laboratory, Quzhou People’s Hospital, Quzhou 324000, Zhejiang Province, China
| | - Qin-Xian Guo
- Central Laboratory, Hangzhou First People’s Hospital, Hangzhou 310006, Zhejiang Province, China
| | - Jian-Hang Leng
- Central Laboratory, Hangzhou First People’s Hospital, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
5
|
Lee CI, Su CY, Chen HH, Huang CC, Cheng EH, Lee TH, Lin PY, Yu TN, Chen CI, Chen MJ, Lee MS, Chen CH. Investigating developmental characteristics of biopsied blastocysts stratified by mitochondrial copy numbers using time-lapse monitoring. Reprod Biol Endocrinol 2024; 22:89. [PMID: 39080754 PMCID: PMC11290074 DOI: 10.1186/s12958-024-01262-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND For in vitro fertilization (IVF), mitochondrial DNA (mtDNA) levels in the trophectodermal (TE) cells of biopsied blastocysts have been suggested to be associated with the cells' developmental potential. However, scholars have reached differing opinions regarding the use of mtDNA levels as a reliable biomarker for predicting IVF outcomes. Therefore, this study aims to assess the association of mitochondrial copy number measured by mitoscore associated with embryonic developmental characteristics and ploidy. METHODS This retrospective study analyzed the developmental characteristics of embryos and mtDNA levels in biopsied trophectodermal cells. The analysis was carried out using time-lapse monitoring and next-generation sequencing from September 2021 to September 2022. Five hundred and fifteen blastocysts were biopsied from 88 patients undergoing IVF who met the inclusion criteria. Embryonic morphokinetics and morphology were evaluated at 118 h after insemination using all recorded images. Blastocysts with appropriate morphology on day 5 or 6 underwent TE biopsy and preimplantation genetic testing for aneuploidy (PGT-A). Statistical analysis involved generalized estimating equations, Pearson's chi-squared test, Fisher's exact test, and Kruskal-Wallis test, with a significance level set at P < 0.05. RESULTS To examine differences in embryonic characteristics between blastocysts with low versus high mitoscores, the blastocysts were divided into quartiles based on their mitoscore. Regarding morphokinetic characteristics, no significant differences in most developmental kinetics and observed cleavage dysmorphisms were discovered. However, blastocysts in mitoscore group 1 had a longer time for reaching 3-cell stage after tPNf (t3; median: 14.4 h) than did those in mitoscore group 2 (median: 13.8 h) and a longer second cell cycle (CC2; median: 11.7 h) than did blastocysts in mitoscore groups 2 (median: 11.3 h) and 4 (median: 11.4 h; P < 0.05). Moreover, blastocysts in mitoscore group 4 had a lower euploid rate (22.6%) and a higher aneuploid rate (59.1%) than did those in the other mitoscore groups (39.6-49.3% and 30.3-43.2%; P < 0.05). The rate of whole-chromosomal alterations in mitoscore group 4 (63.4%) was higher than that in mitoscore groups 1 (47.3%) and 2 (40.1%; P < 0.05). A multivariate logistic regression model was used to analyze associations between the mitoscore and euploidy of elective blastocysts. After accounting for factors that could potentially affect the outcome, the mitoscore still exhibited a negative association with the likelihood of euploidy (adjusted OR = 0.581, 95% CI: 0.396-0.854; P = 0.006). CONCLUSIONS Blastocysts with varying levels of mitochondrial DNA, identified through biopsies, displayed similar characteristics in their early preimplantation development as observed through time-lapse imaging. However, the mitochondrial DNA level determined by the mitoscore can be used as a standalone predictor of euploidy.
Collapse
Affiliation(s)
- Chun-I Lee
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Ya Su
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
| | - Hsiu-Hui Chen
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Chia Huang
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - En-Hui Cheng
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Hsien Lee
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pin-Yao Lin
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tzu-Ning Yu
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
| | - Chung-I Chen
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
| | - Ming-Jer Chen
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology and Women's Health, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Maw-Sheng Lee
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan.
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan.
| | - Chien-Hong Chen
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan.
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
6
|
Chuang TH, Chou HH, Kuan CS, Liu SC, Kao CW, Wu YH, Lai HH, Hsieh CL, Liang YT, Chen CY, Chen SU. Dependency of mitochondrial quantity on blastocyst timeline obscures its actual effect to pregnancy outcomes. Front Endocrinol (Lausanne) 2024; 15:1415865. [PMID: 38894739 PMCID: PMC11182983 DOI: 10.3389/fendo.2024.1415865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
Objectives To explore the correlation between mitochondrial quantity and the blastocyst development timeline as well as their respective contributions to early pregnancy. Methods A retrospective study was conducted using a dataset comprising 2,633 embryos that underwent preimplantation genetic testing for aneuploidy (PGT-A) between January 2016 and December 2023. The study was divided into three subsets to address distinct aspects: the representativeness of a single trophectoderm (TE) biopsy for mitochondrial quantity (n=43), the correlation between morphokinetic features and mitochondrial quantity (n=307), and the association analysis among mitochondrial quantity, blastocyst timeline factor, and reproductive outcomes (n=2,283). Distribution assessment of mitochondrial quantity across an individual blastocyst involved the identification within multiple biopsies and spent culture media. Timeline evaluation included correlating mitochondrial quantity with time-lapse datasets. Finally, multivariate logistic regression models, incorporating potential effectors alongside mitochondrial quantity, were employed to analyze their respective contributions to early pregnancy endpoints. Results Of distribution assessment, mitochondrial quantity exhibited an even distribution across the entire trophectoderm (Spearman's ρ=0.82), while no detectable mtDNAs in the corresponding spent culture media. Then the timeline correlation study revealed significant association between mitochondrial quantity and blastocyst features of both the day of expanded blastocyst formation (95% Confidence intervals, CIs: 0.27~4.89, p=0.03) and the timing of expanded blastocyst formation (tEB) (95% CIs: -0.24~-0.01, p=0.04) in the regression model, indicating a strong dependency between mitochondrial quantity and the blastocyst development timeline. For the contribution to early pregnancy, multivariate logistic regression models showed that the day of expanded blastocyst formation contributed to four endpoints persistently: positive for HCG (odd ratio, OR: 0.71, p=0.006), gestational sac (OR: 0.78, p=0.04), fetal heartbeat (OR: 0.71, p=0.004), and progression to 14 weeks (OR: 0.69, p=0.002). Contrastingly, no notable correlation was observed between the mitochondrial quantity and these endpoints. Conclusions Strong interaction was observed between mitochondrial quantity and the blastocyst timeline, particularly the timing of expanded blastocyst formation. It suggests that the primary determinant influencing pregnancy outcomes lies in the time-dependent parameter of blastocyst rather than in the specific mitochondrial quantity.
Collapse
Affiliation(s)
- Tzu-Hsuan Chuang
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University and College of Medicine, Taipei, Taiwan
| | - Hsin-Hua Chou
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Chin-Sheng Kuan
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Shu-Cheng Liu
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Chia-Wei Kao
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Yi-Hsin Wu
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Hsing-Hua Lai
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Chia-Lin Hsieh
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Yi-Ting Liang
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Chien-Yu Chen
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Shee-Uan Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
7
|
Yildirim RM, Seli E. The role of mitochondrial dynamics in oocyte and early embryo development. Semin Cell Dev Biol 2024; 159-160:52-61. [PMID: 38330625 DOI: 10.1016/j.semcdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Mitochondrial dysfunction is widely implicated in various human diseases, through mechanisms that go beyond mitochondria's well-established role in energy generation. These dynamic organelles exert vital control over numerous cellular processes, including calcium regulation, phospholipid synthesis, innate immunity, and apoptosis. While mitochondria's importance is acknowledged in all cell types, research has revealed the exceptionally dynamic nature of the mitochondrial network in oocytes and embryos, finely tuned to meet unique needs during gamete and pre-implantation embryo development. Within oocytes, both the quantity and morphology of mitochondria can significantly change during maturation and post-fertilization. These changes are orchestrated by fusion and fission processes (collectively known as mitochondrial dynamics), crucial for energy production, content exchange, and quality control as mitochondria adjust to the shifting energy demands of oocytes and embryos. The roles of proteins that regulate mitochondrial dynamics in reproductive processes have been primarily elucidated through targeted deletion studies in animal models. Notably, impaired mitochondrial dynamics have been linked to female reproductive health, affecting oocyte quality, fertilization, and embryo development. Dysfunctional mitochondria can lead to fertility problems and can have an impact on the success of pregnancy, particularly in older reproductive age women.
Collapse
Affiliation(s)
- Raziye Melike Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Ju W, Zhao Y, Yu Y, Zhao S, Xiang S, Lian F. Mechanisms of mitochondrial dysfunction in ovarian aging and potential interventions. Front Endocrinol (Lausanne) 2024; 15:1361289. [PMID: 38694941 PMCID: PMC11061492 DOI: 10.3389/fendo.2024.1361289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024] Open
Abstract
Mitochondria plays an essential role in regulating cellular metabolic homeostasis, proliferation/differentiation, and cell death. Mitochondrial dysfunction is implicated in many age-related pathologies. Evidence supports that the dysfunction of mitochondria and the decline of mitochondrial DNA copy number negatively affect ovarian aging. However, the mechanism of ovarian aging is still unclear. Treatment methods, including antioxidant applications, mitochondrial transplantation, emerging biomaterials, and advanced technologies, are being used to improve mitochondrial function and restore oocyte quality. This article reviews key evidence and research updates on mitochondrial damage in the pathogenesis of ovarian aging, emphasizing that mitochondrial damage may accelerate and lead to cellular senescence and ovarian aging, as well as exploring potential methods for using mitochondrial mechanisms to slow down aging and improve oocyte quality.
Collapse
Affiliation(s)
- Wenhan Ju
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuewen Zhao
- CReATe Fertility Centre, Toronto, ON, Canada
| | - Yi Yu
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuai Zhao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shan Xiang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fang Lian
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Cimadomo D, Innocenti F, Taggi M, Saturno G, Campitiello MR, Guido M, Vaiarelli A, Ubaldi FM, Rienzi L. How should the best human embryo in vitro be? Current and future challenges for embryo selection. Minerva Obstet Gynecol 2024; 76:159-173. [PMID: 37326354 DOI: 10.23736/s2724-606x.23.05296-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In-vitro fertilization (IVF) aims at overcoming the causes of infertility and lead to a healthy live birth. To maximize IVF efficiency, it is critical to identify and transfer the most competent embryo within a cohort produced by a couple during a cycle. Conventional static embryo morphological assessment involves sequential observations under a light microscope at specific timepoints. The introduction of time-lapse technology enhanced morphological evaluation via the continuous monitoring of embryo preimplantation in vitro development, thereby unveiling features otherwise undetectable via multiple static assessments. Although an association exists, blastocyst morphology poorly predicts chromosomal competence. In fact, the only reliable approach currently available to diagnose the embryonic karyotype is trophectoderm biopsy and comprehensive chromosome testing to assess non-mosaic aneuploidies, namely preimplantation genetic testing for aneuploidies (PGT-A). Lately, the focus is shifting towards the fine-tuning of non-invasive technologies, such as "omic" analyses of waste products of IVF (e.g., spent culture media) and/or artificial intelligence-powered morphologic/morphodynamic evaluations. This review summarizes the main tools currently available to assess (or predict) embryo developmental, chromosomal, and reproductive competence, their strengths, the limitations, and the most probable future challenges.
Collapse
Affiliation(s)
- Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy -
| | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Marilena Taggi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Lazzaro Spallanzani Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Gaia Saturno
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Lazzaro Spallanzani Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Maria R Campitiello
- Department of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, Salerno, Italy
| | - Maurizio Guido
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Filippo M Ubaldi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, Carlo Bo University of Urbino, Urbino, Italy
| |
Collapse
|
10
|
Winstanley YE, Liu J, Adhikari D, Gonzalez MB, Russell DL, Carroll J, Robker RL. Dynamics of Mitochondrial DNA Copy Number and Membrane Potential in Mouse Pre-Implantation Embryos: Responses to Diverse Types of Oxidative Stress. Genes (Basel) 2024; 15:367. [PMID: 38540426 PMCID: PMC10970549 DOI: 10.3390/genes15030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024] Open
Abstract
Mitochondria undergo a myriad of changes during pre-implantation embryo development, including shifts in activity levels and mitochondrial DNA (mtDNA) replication. However, how these distinct aspects of mitochondrial function are linked and their responsiveness to diverse stressors is not well understood. Here, we show that mtDNA content increased between 8-cell embryos and the blastocyst stage, with similar copy numbers per cell in the inner cell mass (ICM) and trophectoderm (TE). In contrast, mitochondrial membrane potential (MMP) was higher in TE than ICM. Culture in ambient oxygen (20% O2) altered both aspects of mitochondrial function: the mtDNA copy number was upregulated in ICM, while MMP was diminished in TE. Embryos cultured in 20% O2 also exhibited delayed development kinetics, impaired implantation, and reduced mtDNA levels in E18 fetal liver. A model of oocyte mitochondrial stress using rotenone showed only a modest effect on on-time development and did not alter the mtDNA copy number in ICM; however, following embryo transfer, mtDNA was higher in the fetal heart. Lastly, endogenous mitochondrial dysfunction, induced by maternal age and obesity, altered the blastocyst mtDNA copy number, but not within the ICM. These results demonstrate that mitochondrial activity and mtDNA content exhibit cell-specific changes and are differentially responsive to diverse types of oxidative stress during pre-implantation embryogenesis.
Collapse
Affiliation(s)
- Yasmyn E. Winstanley
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
| | - Jun Liu
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Deepak Adhikari
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Macarena B. Gonzalez
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
| | - Darryl L. Russell
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
| | - John Carroll
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Rebecca L. Robker
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (Y.E.W.)
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
11
|
Sakkas D, Gulliford C, Ardestani G, Ocali O, Martins M, Talasila N, Shah JS, Penzias AS, Seidler EA, Sanchez T. Metabolic imaging of human embryos is predictive of ploidy status but is not associated with clinical pregnancy outcomes: a pilot trial. Hum Reprod 2024; 39:516-525. [PMID: 38195766 DOI: 10.1093/humrep/dead268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/28/2023] [Indexed: 01/11/2024] Open
Abstract
STUDY QUESTION Does fluorescence lifetime imaging microscopy (FLIM)-based metabolic imaging assessment of human blastocysts prior to frozen transfer correlate with pregnancy outcomes? SUMMARY ANSWER FLIM failed to distinguish consistent patterns in mitochondrial metabolism between blastocysts leading to pregnancy compared to those that did not. WHAT IS KNOWN ALREADY FLIM measurements provide quantitative information on NAD(P)H and flavin adenine dinucleotide (FAD+) concentrations. The metabolism of embryos has long been linked to their viability, suggesting the potential utility of metabolic measurements to aid in selection. STUDY DESIGN, SIZE, DURATION This was a pilot trial enrolling 121 IVF couples who consented to have their frozen blastocyst measured using non-invasive metabolic imaging. After being warmed, 105 couples' good-quality blastocysts underwent a 6-min scan in a controlled temperature and gas environment. FLIM-assessed blastocysts were then transferred without any intervention in management. PARTICIPANTS/MATERIALS, SETTING, METHODS Eight metabolic parameters were obtained from each blastocyst (4 for NAD(P)H and 4 for FAD): short and long fluorescence lifetime, fluorescence intensity, and fraction of the molecule engaged with enzyme. The redox ratio (intensity of NAD(P)H)/(intensity of FAD) was also calculated. FLIM data were combined with known metadata and analyzed to quantify the ability of metabolic imaging to differentiate embryos that resulted in pregnancy from embryos that did not. De-identified discarded aneuploid human embryos (n = 158) were also measured to quantify correlations with ploidy status and other factors. Statistical comparisons were performed using logistic regression and receiver operating characteristic (ROC) curves with 5-fold cross-validation averaged over 100 repeats with random sampling. AUC values were used to quantify the ability to distinguish between classes. MAIN RESULTS AND THE ROLE OF CHANCE No metabolic imaging parameters showed significant differences between good-quality blastocysts resulting in pregnancy versus those that did not. A logistic regression using metabolic data and metadata produced an ROC AUC of 0.58. In contrast, robust AUCs were obtained when classifying other factors such as comparison of Day 5 (n = 64) versus Day 6 (n = 41) blastocysts (AUC = 0.78), inner cell mass versus trophectoderm (n = 105: AUC = 0.88) and aneuploid (n = 158) versus euploid and positive pregnancy embryos (n = 108) (AUC = 0.82). LIMITATIONS, REASONS FOR CAUTION The study protocol did not select which embryo to transfer and the cohort of 105 included blastocysts were all high quality. The study was also limited in number of participants and study sites. Increased power and performing the trial in more sites may have provided a stronger conclusion regarding the merits of the use of FLIM clinically. WIDER IMPLICATIONS OF THE FINDINGS FLIM failed to distinguish consistent patterns in mitochondrial metabolism between good-quality blastocysts leading to pregnancy compared to those that did not. Blastocyst ploidy status was, however, highly distinguishable. In addition, embryo regions and embryo day were consistently revealed by FLIM. While metabolic imaging detects mitochondrial metabolic features in human blastocysts, this pilot trial indicates it does not have the potential to serve as an effective embryo viability detection tool. This may be because mitochondrial metabolism plays an alternative role post-implantation. STUDY FUNDING/COMPETING INTEREST(S) This study was sponsored by Optiva Fertility, Inc. Boston IVF contributed to the clinical site and services. Becker Hickl, GmbH, provided the FLIM system on loan. T.S. was the founder and held stock in Optiva Fertility, Inc., and D.S. and E.S. had options with Optiva Fertility, Inc., during this study. TRIAL REGISTRATION NUMBER The study was approved by WCG Connexus IRB (Study Number 1298156).
Collapse
Affiliation(s)
- Denny Sakkas
- Boston IVF, Research Department, Waltham, MA, USA
| | | | | | - Olcay Ocali
- Boston IVF, Research Department, Waltham, MA, USA
| | | | | | - Jaimin S Shah
- Boston IVF, Research Department, Waltham, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Alan S Penzias
- Boston IVF, Research Department, Waltham, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Emily A Seidler
- Boston IVF, Research Department, Waltham, MA, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
12
|
Raad G, Tanios J, Serdarogullari M, Bazzi M, Mourad Y, Azoury J, Yarkiner Z, Liperis G, Fakih F, Fakih C. Mature oocyte dysmorphisms may be associated with progesterone levels, mitochondrial DNA content, and vitality in luteal granulosa cells. J Assist Reprod Genet 2024; 41:795-813. [PMID: 38363455 PMCID: PMC10957819 DOI: 10.1007/s10815-024-03053-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
PURPOSE To identify whether follicular environment parameters are associated with mature oocyte quality, embryological and clinical outcomes. METHODS This retrospective study examined 303 mature oocytes from 51 infertile women undergoing ICSI cycles between May 2018 and June 2021. Exclusion criteria consisted of advanced maternal age (> 36 years old), premature ovarian failure, obesity in women, or use of frozen gametes. Luteal granulosa cells (LGCs) were analyzed for mitochondrial DNA/genomic (g) DNA ratio and vitality. The relationships between hormone levels in the follicular fluid and oocyte features were assessed. Quantitative morphometric measurements of mature oocytes were assessed, and the association of LGC parameters and oocyte features on live birth rate after single embryo transfer was examined. RESULTS Results indicated an inverse correlation between the mtDNA/gDNA ratio of LGCs and the size of polar body I (PBI). A 4.0% decrease in PBI size was observed with each one-unit increase in the ratio (p = 0.04). Furthermore, a 1% increase in LGC vitality was linked to a 1.3% decrease in fragmented PBI (p = 0.03), and a 1 ng/mL increase in progesterone levels was associated with a 0.1% rise in oocytes with small inclusions (p = 0.015). Associations were drawn among LGC characteristics, perivitelline space (PVS) debris, cytoplasmic inclusions, PBI integrity, and progesterone levels. Certain dysmorphisms in mature oocytes were associated with embryo morphokinetics; however, live birth rates were not associated with follicular parameters and oocyte quality characteristics. CONCLUSION Follicular markers may be associated with mature oocyte quality features.
Collapse
Affiliation(s)
- Georges Raad
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
- Faculty of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Jounieh, Lebanon
| | | | - Munevver Serdarogullari
- Department of Histology and Embryology, Faculty of Medicine, Cyprus International University, Northern Cyprus Via Mersin 10, Mersin, Turkey
| | - Marwa Bazzi
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Youmna Mourad
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Joseph Azoury
- Azoury IVF Clinic, ObGyn and Infertility, Beirut, Lebanon
| | - Zalihe Yarkiner
- Faculty of Arts and Sciences-Department of Basic Sciences and Humanities, Cyprus International University, Northern Cyprus Via Mersin 10, Mersin, Turkey
| | - Georgios Liperis
- Westmead Fertility Centre, Institute of Reproductive Medicine, University of Sydney, Westmead, NSW, Australia.
| | - Fadi Fakih
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Chadi Fakih
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
- Faculty of Medicine, Lebanese University, Beirut, Lebanon
| |
Collapse
|
13
|
Lacconi V, Massimiani M, Carriero I, Bianco C, Ticconi C, Pavone V, Alteri A, Muzii L, Rago R, Pisaturo V, Campagnolo L. When the Embryo Meets the Endometrium: Identifying the Features Required for Successful Embryo Implantation. Int J Mol Sci 2024; 25:2834. [PMID: 38474081 DOI: 10.3390/ijms25052834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Evaluation of the optimal number of embryos, their quality, and the precise timing for transfer are critical determinants in reproductive success, although still remaining one of the main challenges in assisted reproduction technologies (ART). Indeed, the success of in vitro fertilization (IVF) treatments relies on a multitude of events and factors involving both the endometrium and the embryo. Despite concerted efforts on both fronts, the overall success rates of IVF techniques continue to range between 25% and 30%. The role of the endometrium in implantation has been recently recognized, leading to the hypothesis that both the "soil" and the "seed" play a central role in a successful pregnancy. In this respect, identification of the molecular signature of endometrial receptivity together with the selection of the best embryo for transfer become crucial in ART. Currently, efforts have been made to develop accurate, predictive, and personalized tests to identify the window of implantation and the best quality embryo. However, the value of these tests is still debated, as conflicting results are reported in the literature. The purpose of this review is to summarize and critically report the available criteria to optimize the success of embryo transfer and to better understand current limitations and potential areas for improvement.
Collapse
Affiliation(s)
- Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Micol Massimiani
- Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Ilenia Carriero
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Claudia Bianco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Carlo Ticconi
- Department of Surgical Sciences, Section of Gynaecology and Obstetrics, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Valentina Pavone
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Alteri
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Rocco Rago
- Physiopathology of Reproduction and Andrology Unit, Sandro Pertini Hospital, Via dei Monti Tiburtini 385/389, 00157 Rome, Italy
| | - Valerio Pisaturo
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
14
|
Chien CW, Tang YA, Jeng SL, Pan HA, Sun HS. Blastocyst telomere length predicts successful implantation after frozen-thawed embryo transfer. Hum Reprod Open 2024; 2024:hoae012. [PMID: 38515829 PMCID: PMC10955253 DOI: 10.1093/hropen/hoae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/04/2024] [Indexed: 03/23/2024] Open
Abstract
STUDY QUESTION Do embryos with longer telomere length (TL) at the blastocyst stage have a higher capacity to survive after frozen-thawed embryo transfer (FET)? SUMMARY ANSWER Digitally estimated TL using low-pass whole genome sequencing (WGS) data from the preimplantation genetic testing for aneuploidy (PGT-A) process demonstrates that blastocyst TL is the most essential factor associated with likelihood of implantation. WHAT IS KNOWN ALREADY The lifetime TL is established in the early cleavage cycles following fertilization through a recombination-based lengthening mechanism and starts erosion beyond the blastocyst stage. In addition, a telomerase-mediated slow erosion of TL in human fetuses has been observed from a gestational age of 6-11 weeks. Finally, an abnormal shortening of telomeres is likely involved in embryo loss during early development. STUDY DESIGN SIZE DURATION Blastocyst samples were obtained from patients who underwent PGT-A and FET in an IVF center from March 2015 to May 2018. Digitally estimated mitochondrial copy number (mtCN) and TL were used to study associations with the implantation potential of each embryo. PARTICIPANTS/MATERIALS SETTING AND METHODS In total, 965 blastocysts from 232 cycles (164 patients) were available to investigate the biological and clinical relevance of TL. A WGS-based workflow was applied to determine the ploidy of each embryo. Data from low-pass WGS-PGT-A were used to estimate the mtCN and TL for each embryo. Single-variant and multi-variant logistic regression, decision tree, and random forest models were applied to study various factors in association with the implantation potential of each embryo. MAIN RESULTS AND THE ROLE OF CHANCE Of the 965 blastocysts originally available, only 216 underwent FET. While mtCN from the transferred embryos is significantly associated with the ploidy call of each embryo, mtCN has no role in impacting IVF outcomes after an embryo transfer in these women. The results indicate that mtCN is a marker of embryo aneuploidy. On the other hand, digitally estimated TL is the most prominent univariant factor and showed a significant positive association with pregnancy outcomes (P < 0.01, odds ratio 79.1). We combined several maternal and embryo parameters to study the joint effects on successful implantation. The machine learning models, namely decision tree and random forest, were trained and yielded classification accuracy of 0.82 and 0.91, respectively. Taken together, these results support the vital role of TL in governing implantation potential, perhaps through the ability to control embryo survival after transfer. LIMITATIONS REASONS FOR CAUTION The small sample size limits our study as only 216 blastocysts were transferred. The number was further reduced to 153 blastocysts, where pregnancy outcomes could be accurately traced. The other limitation of this study is that all data were collected from a single IVF center. The uniform and controlled operation of IVF cycles in a single center may cause selection bias. WIDER IMPLICATIONS OF THE FINDINGS We present novel findings to show that digitally estimated TL at the blastocyst stage is a predictor of pregnancy capacity after a FET cycle. As elective single-embryo transfer has become the mainstream direction in reproductive medicine, prioritizing embryos based on their implantation potential is crucial for clinical infertility treatment in order to reduce twin pregnancy rate and the time to pregnancy in an IVF center. The AI-powered, random forest prediction model established in this study thus provides a way to improve clinical practice and optimize the chances for people with fertility problems to achieve parenthood. STUDY FUNDING/COMPETING INTERESTS This study was supported by a grant from the National Science and Technology Council, Taiwan (MOST 108-2321-B-006-013 -). There were no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Chun-Wei Chien
- Center for Genomic Medicine, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan
| | - Yen-An Tang
- Center for Genomic Medicine, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuen-Lin Jeng
- Department of Statistics, Institute of Data Science, National Cheng Kung University, Tainan, Taiwan
- Center for Innovative FinTech Business Models, National Cheng Kung University, Tainan, Taiwan
| | - Hsien-An Pan
- IVF center, An-An Women and Children Clinic, Tainan, Taiwan
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H Sunny Sun
- Center for Genomic Medicine, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
15
|
Lundin K, Bentzen JG, Bozdag G, Ebner T, Harper J, Le Clef N, Moffett A, Norcross S, Polyzos NP, Rautakallio-Hokkanen S, Sfontouris I, Sermon K, Vermeulen N, Pinborg A. Good practice recommendations on add-ons in reproductive medicine†. Hum Reprod 2023; 38:2062-2104. [PMID: 37747409 PMCID: PMC10628516 DOI: 10.1093/humrep/dead184] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
STUDY QUESTION Which add-ons are safe and effective to be used in ART treatment? SUMMARY ANSWER Forty-two recommendations were formulated on the use of add-ons in the diagnosis of fertility problems, the IVF laboratory and clinical management of IVF treatment. WHAT IS KNOWN ALREADY The innovative nature of ART combined with the extremely high motivation of the patients has opened the door to the wide application of what has become known as 'add-ons' in reproductive medicine. These supplementary options are available to patients in addition to standard fertility procedures, typically incurring an additional cost. A diverse array of supplementary options is made available, encompassing tests, drugs, equipment, complementary or alternative therapies, laboratory procedures, and surgical interventions. These options share the common aim of stating to enhance pregnancy or live birth rates, mitigate the risk of miscarriage, or expedite the time to achieving pregnancy. STUDY DESIGN, SIZE, DURATION ESHRE aimed to develop clinically relevant and evidence-based recommendations focusing on the safety and efficacy of add-ons currently used in fertility procedures in order to improve the quality of care for patients with infertility. PARTICIPANTS/MATERIALS, SETTING, METHODS ESHRE appointed a European multidisciplinary working group consisting of practising clinicians, embryologists, and researchers who have demonstrated leadership and expertise in the care and research of infertility. Patient representatives were included in the working group. To ensure that the guidelines are evidence-based, the literature identified from a systematic search was reviewed and critically appraised. In the absence of any clear scientific evidence, recommendations were based on the professional experience and consensus of the working group. The guidelines are thus based on the best available evidence and expert agreement. Prior to publication, the guidelines were reviewed by 46 independent international reviewers. A total of 272 comments were received and incorporated where relevant. MAIN RESULTS AND THE ROLE OF CHANCE The multidisciplinary working group formulated 42 recommendations in three sections; diagnosis and diagnostic tests, laboratory tests and interventions, and clinical management. LIMITATIONS, REASONS FOR CAUTION Of the 42 recommendations, none could be based on high-quality evidence and only four could be based on moderate-quality evidence, implicating that 95% of the recommendations are supported only by low-quality randomized controlled trials, observational data, professional experience, or consensus of the development group. WIDER IMPLICATIONS OF THE FINDINGS These guidelines offer valuable direction for healthcare professionals who are responsible for the care of patients undergoing ART treatment for infertility. Their purpose is to promote safe and effective ART treatment, enabling patients to make informed decisions based on realistic expectations. The guidelines aim to ensure that patients are fully informed about the various treatment options available to them and the likelihood of any additional treatment or test to improve the chance of achieving a live birth. STUDY FUNDING/COMPETING INTEREST(S) All costs relating to the development process were covered from ESHRE funds. There was no external funding of the development process or manuscript production. K.L. reports speakers fees from Merck and was part of a research study by Vitrolife (unpaid). T.E. reports consulting fees from Gynemed, speakers fees from Gynemed and is part of the scientific advisory board of Hamilton Thorne. N.P.P. reports grants from Merck Serono, Ferring Pharmaceutical, Theramex, Gedeon Richter, Organon, Roche, IBSA and Besins Healthcare, speakers fees from Merck Serono, Ferring Pharmaceutical, Theramex, Gedeon Richter, Organon, Roche, IBSA and Besins Healthcare. S.R.H. declares being managing director of Fertility Europe, a not-for-profit organization receiving financial support from ESHRE. I.S. is a scientific advisor for and has stock options from Alife Health, is co-founder of IVFvision LTD (unpaid) and received speakers' fee from the 2023 ART Young Leader Prestige workshop in China. A.P. reports grants from Gedeon Richter, Ferring Pharmaceuticals and Merck A/S, consulting fees from Preglem, Novo Nordisk, Ferring Pharmaceuticals, Gedeon Richter, Cryos and Merck A/S, speakers fees from Gedeon Richter, Ferring Pharmaceuticals, Merck A/S, Theramex and Organon, travel fees from Gedeon Richter. The other authors disclosed no conflicts of interest. DISCLAIMER This Good Practice Recommendations (GPRs) document represents the views of ESHRE, which are the result of consensus between the relevant ESHRE stakeholders and are based on the scientific evidence available at the time of preparation.ESHRE GPRs should be used for information and educational purposes. They should not be interpreted as setting a standard of care or bedeemedinclusive of all proper methods of care, or be exclusive of other methods of care reasonably directed to obtaining the same results.Theydo not replace the need for application of clinical judgement to each individual presentation, or variations based on locality and facility type.Furthermore, ESHRE GPRs do not constitute or imply the endorsement, or favouring, of any of the included technologies by ESHRE.
Collapse
Affiliation(s)
| | - K Lundin
- Department Reproductive Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - J G Bentzen
- The Fertility Department, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - G Bozdag
- Department Obstetrics and Gynecology, Koc University School of Medicine, Istanbul, Turkey
| | - T Ebner
- Department of Gynecology, Obstetrics, and Gynecological Endocrinology, Kepler University, MedCampus IV, Linz, Austria
| | - J Harper
- Institute for Women’s Health, London, UK
| | - N Le Clef
- European Society of Human Reproduction and Embryology, Brussels, Belgium
| | - A Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - N P Polyzos
- Department Reproductive Medicine, Dexeus University Hospital, Barcelona, Spain
| | | | | | - K Sermon
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - N Vermeulen
- European Society of Human Reproduction and Embryology, Brussels, Belgium
| | - A Pinborg
- The Fertility Department, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
16
|
Feng Y, Wu Z, Zhao X, Chen M, Li S, Lu C, Shi D, Lu F. Epicatechin promotes oocyte quality in mice during repeated superovulation. Theriogenology 2023; 209:40-49. [PMID: 37354759 DOI: 10.1016/j.theriogenology.2023.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
The negative impacts of repeated superovulation on mitochondrial function and oocyte quality remain unresolved. Epicatechin (EC), a polyphenolic compound found in the human diet with strong antioxidant activity, was investigated for its effects and underlying mechanism on embryonic development after repeated superovulation. The results showed that as the number of superovulation cycles increased, the number of 2-cell embryos decreased, the development of embryos in subsequent in vitro culture was delayed, the apoptosis rate of blastocyst cells increased and the number of blastocyst cells decreased. However, intraperitoneal injection of EC (10 mg/kg body-weight) for two consecutive days during repeated superovulation increased mitochondrial DNA copies in 2-cell embryos of mice. It also promoted the expression of antioxidant enzyme genes in ovaries, increased the content of glutathione (GSH) content and improved the antioxidant capacity of ovaries. Altogether, these results revealed that intraperitoneal injection of EC could increase the embryonic mitochondrial DNA copy number (mtDNA-CN) and enhance the ovary's antioxidant capacity and GSH content, ultimately promoting the quality of mouse embryos in the process of repeated superovulation.
Collapse
Affiliation(s)
- Yun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Zhulian Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China; Reproductive Medicine Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China
| | - Xin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China; Reproductive Medicine Center, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, China
| | - Mosinan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Sijia Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Canqiang Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China.
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
17
|
Cimadomo D, Rienzi L, Conforti A, Forman E, Canosa S, Innocenti F, Poli M, Hynes J, Gemmell L, Vaiarelli A, Alviggi C, Ubaldi FM, Capalbo A. Opening the black box: why do euploid blastocysts fail to implant? A systematic review and meta-analysis. Hum Reprod Update 2023; 29:570-633. [PMID: 37192834 DOI: 10.1093/humupd/dmad010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/22/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND A normal chromosomal constitution defined through PGT-A assessing all chromosomes on trophectoderm (TE) biopsies represents the strongest predictor of embryo implantation. Yet, its positive predictive value is not higher than 50-60%. This gap of knowledge on the causes of euploid blastocysts' reproductive failure is known as 'the black box of implantation'. OBJECTIVE AND RATIONALE Several embryonic, maternal, paternal, clinical, and IVF laboratory features were scrutinized for their putative association with reproductive success or implantation failure of euploid blastocysts. SEARCH METHODS A systematic bibliographical search was conducted without temporal limits up to August 2021. The keywords were '(blastocyst OR day5 embryo OR day6 embryo OR day7 embryo) AND (euploid OR chromosomally normal OR preimplantation genetic testing) AND (implantation OR implantation failure OR miscarriage OR abortion OR live birth OR biochemical pregnancy OR recurrent implantation failure)'. Overall, 1608 items were identified and screened. We included all prospective or retrospective clinical studies and randomized-controlled-trials (RCTs) that assessed any feature associated with live-birth rates (LBR) and/or miscarriage rates (MR) among non-mosaic euploid blastocyst transfer after TE biopsy and PGT-A. In total, 41 reviews and 372 papers were selected, clustered according to a common focus, and thoroughly reviewed. The PRISMA guideline was followed, the PICO model was adopted, and ROBINS-I and ROB 2.0 scoring were used to assess putative bias. Bias across studies regarding the LBR was also assessed using visual inspection of funnel plots and the trim and fill method. Categorical data were combined with a pooled-OR. The random-effect model was used to conduct the meta-analysis. Between-study heterogeneity was addressed using I2. Whenever not suitable for the meta-analysis, the included studies were simply described for their results. The study protocol was registered at http://www.crd.york.ac.uk/PROSPERO/ (registration number CRD42021275329). OUTCOMES We included 372 original papers (335 retrospective studies, 30 prospective studies and 7 RCTs) and 41 reviews. However, most of the studies were retrospective, or characterized by small sample sizes, thus prone to bias, which reduces the quality of the evidence to low or very low. Reduced inner cell mass (7 studies, OR: 0.37, 95% CI: 0.27-0.52, I2 = 53%), or TE quality (9 studies, OR: 0.53, 95% CI: 0.43-0.67, I2 = 70%), overall blastocyst quality worse than Gardner's BB-grade (8 studies, OR: 0.40, 95% CI: 0.24-0.67, I2 = 83%), developmental delay (18 studies, OR: 0.56, 95% CI: 0.49-0.63, I2 = 47%), and (by qualitative analysis) some morphodynamic abnormalities pinpointed through time-lapse microscopy (abnormal cleavage patterns, spontaneous blastocyst collapse, longer time of morula formation I, time of blastulation (tB), and duration of blastulation) were all associated with poorer reproductive outcomes. Slightly lower LBR, even in the context of PGT-A, was reported among women ≥38 years (7 studies, OR: 0.87, 95% CI: 0.75-1.00, I2 = 31%), while obesity was associated with both lower LBR (2 studies, OR: 0.66, 95% CI: 0.55-0.79, I2 = 0%) and higher MR (2 studies, OR: 1.8, 95% CI: 1.08-2.99, I2 = 52%). The experience of previous repeated implantation failures (RIF) was also associated with lower LBR (3 studies, OR: 0.72, 95% CI: 0.55-0.93, I2 = 0%). By qualitative analysis, among hormonal assessments, only abnormal progesterone levels prior to transfer were associated with LBR and MR after PGT-A. Among the clinical protocols used, vitrified-warmed embryo transfer was more effective than fresh transfer (2 studies, OR: 1.56, 95% CI: 1.05-2.33, I2 = 23%) after PGT-A. Lastly, multiple vitrification-warming cycles (2 studies, OR: 0.41, 95% CI: 0.22-0.77, I2 = 50%) or (by qualitative analysis) a high number of cells biopsied may slightly reduce the LBR, while simultaneous zona-pellucida opening and TE biopsy allowed better results than the Day 3 hatching-based protocol (3 studies, OR: 1.41, 95% CI: 1.18-1.69, I2 = 0%). WIDER IMPLICATIONS Embryo selection aims at shortening the time-to-pregnancy, while minimizing the reproductive risks. Knowing which features are associated with the reproductive competence of euploid blastocysts is therefore critical to define, implement, and validate safer and more efficient clinical workflows. Future research should be directed towards: (i) systematic investigations of the mechanisms involved in reproductive aging beyond de novo chromosomal abnormalities, and how lifestyle and nutrition may accelerate or exacerbate their consequences; (ii) improved evaluation of the uterine and blastocyst-endometrial dialogue, both of which represent black boxes themselves; (iii) standardization/automation of embryo assessment and IVF protocols; (iv) additional invasive or preferably non-invasive tools for embryo selection. Only by filling these gaps we may finally crack the riddle behind 'the black box of implantation'.
Collapse
Affiliation(s)
- Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| | - Eric Forman
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University Irving Medical Centre, New York, NY, USA
| | | | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Maurizio Poli
- Centrum voor Kinderwens, Dijklander Hospital, Purmerend, The Netherlands
- Juno Genetics, Rome, Italy
| | - Jenna Hynes
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University Irving Medical Centre, New York, NY, USA
| | - Laura Gemmell
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University Irving Medical Centre, New York, NY, USA
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Carlo Alviggi
- Department of Public Health, Federico II University, Naples, Italy
| | | | | |
Collapse
|
18
|
Ferreira AF, Soares M, Almeida-Santos T, Ramalho-Santos J, Sousa AP. Aging and oocyte competence: A molecular cell perspective. WIREs Mech Dis 2023; 15:e1613. [PMID: 37248206 DOI: 10.1002/wsbm.1613] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/30/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
Follicular microenvironment is paramount in the acquisition of oocyte competence, which is dependent on two interconnected and interdependent processes: nuclear and cytoplasmic maturation. Extensive research conducted in human and model systems has provided evidence that those processes are disturbed with female aging. In fact, advanced maternal age (AMA) is associated with a lower chance of pregnancy and live birth, explained by the age-related decline in oocyte quality/competence. This decline has largely been attributed to mitochondria, essential for oocyte maturation, fertilization, and embryo development; with mitochondrial dysfunction leading to oxidative stress, responsible for nuclear and mitochondrial damage, suboptimal intracellular energy levels, calcium disturbance, and meiotic spindle alterations, that may result in oocyte aneuploidy. Nuclear-related mechanisms that justify increased oocyte aneuploidy include deoxyribonucleic acid (DNA) damage, loss of chromosomal cohesion, spindle assembly checkpoint dysfunction, meiotic recombination errors, and telomere attrition. On the other hand, age-dependent cytoplasmic maturation failure is related to mitochondrial dysfunction, altered mitochondrial biogenesis, altered mitochondrial morphology, distribution, activity, and dynamics, dysmorphic smooth endoplasmic reticulum and calcium disturbance, and alterations in the cytoskeleton. Furthermore, reproductive somatic cells also experience the effects of aging, including mitochondrial dysfunction and DNA damage, compromising the crosstalk between granulosa/cumulus cells and oocytes, also affected by a loss of gap junctions. Old oocytes seem therefore to mature in an altered microenvironment, with changes in metabolites, ribonucleic acid (RNA), proteins, and lipids. Overall, understanding the mechanisms implicated in the loss of oocyte quality will allow the establishment of emerging biomarkers and potential therapeutic anti-aging strategies. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ana Filipa Ferreira
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| | - Maria Soares
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Teresa Almeida-Santos
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, Coimbra, Portugal
| | - Ana Paula Sousa
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
19
|
Tsirka G, Zikopoulos A, Papageorgiou K, Kostoulas C, Tsigkas I, Moustakli E, Kaltsas A, Sarafi E, Michaelidis TM, Georgiou I. The Ratio of cf-mtDNA vs. cf-nDNA in the Follicular Fluid of Women Undergoing IVF Is Positively Correlated with Age. Genes (Basel) 2023; 14:1504. [PMID: 37510407 PMCID: PMC10379089 DOI: 10.3390/genes14071504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Age-related mitochondrial markers may facilitate the prognosis of artificial reproductive technology outcomes. In this report, we present our study concerning the ratio of cf-mtDNA/cf-nDNA, namely the amount of cell-free mitochondrial DNA relative to cell-free nuclear DNA, in the follicular fluid (FF) of women undergoing IVF, aiming to generate a molecular fingerprint of oocyte quality. The values of this ratio were measured and compared among three groups of women (101 in total): (A) 31 women with polycystic ovary syndrome (PCOS), (B) 34 women younger than 36 years, and (C) 36 women older than 35 years of age. Real-time quantitative PCR (qPCR) was performed to quantify the ratio by using nuclear- and mitochondrial-specific primers and analyzed for potential correlation with age and pregnancy rate. Our analysis showed that the level of FF-cf-mtDNA was lower in the group of advanced-age women than in the groups of PCOS and non-PCOS women. Moreover, a significant positive correlation between FF-cf-mtDNA and the number of mature (MII) oocytes was observed. Collectively, the data show that the relative ratio of cf- mtDNA to cf-nDNA content in human FF can be an effective predictor for assessing the corresponding oocyte's age-related performance in IVF.
Collapse
Affiliation(s)
- Georgia Tsirka
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | | | - Kyriaki Papageorgiou
- Department of Biological Applications & Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45115 Ioannina, Greece
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Ioannis Tsigkas
- Department of Biological Applications & Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45115 Ioannina, Greece
| | - Efthalia Moustakli
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Aris Kaltsas
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Eleftheria Sarafi
- Department of Biological Applications & Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45115 Ioannina, Greece
| | - Theologos M Michaelidis
- Department of Biological Applications & Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45115 Ioannina, Greece
| | - Ioannis Georgiou
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
20
|
St John JC, Okada T, Andreas E, Penn A. The role of mtDNA in oocyte quality and embryo development. Mol Reprod Dev 2023; 90:621-633. [PMID: 35986715 PMCID: PMC10952685 DOI: 10.1002/mrd.23640] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 09/02/2023]
Abstract
The mitochondrial genome resides in the mitochondria present in nearly all cell types. The porcine (Sus scrofa) mitochondrial genome is circa 16.7 kb in size and exists in the multimeric format in cells. Individual cell types have different numbers of mitochondrial DNA (mtDNA) copy number based on their requirements for ATP produced by oxidative phosphorylation. The oocyte has the largest number of mtDNA of any cell type. During oogenesis, the oocyte sets mtDNA copy number in order that sufficient copies are available to support subsequent developmental events. It also initiates a program of epigenetic patterning that regulates, for example, DNA methylation levels of the nuclear genome. Once fertilized, the nuclear and mitochondrial genomes establish synchrony to ensure that the embryo and fetus can complete each developmental milestone. However, altering the oocyte's mtDNA copy number by mitochondrial supplementation can affect the programming and gene expression profiles of the developing embryo and, in oocytes deficient of mtDNA, it appears to have a positive impact on the embryo development rates and gene expression profiles. Furthermore, mtDNA haplotypes, which define common maternal origins, appear to affect developmental outcomes and certain reproductive traits. Nevertheless, the manipulation of the mitochondrial content of an oocyte might have a developmental advantage.
Collapse
Affiliation(s)
- Justin C. St John
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Takashi Okada
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Eryk Andreas
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Alexander Penn
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
21
|
Smith AR, Hinojosa Briseño A, Picard M, Cardenas A. The prenatal environment and its influence on maternal and child mitochondrial DNA copy number and methylation: A review of the literature. ENVIRONMENTAL RESEARCH 2023; 227:115798. [PMID: 37001851 PMCID: PMC10164709 DOI: 10.1016/j.envres.2023.115798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 05/08/2023]
Abstract
Mitochondrial DNA (mtDNA) is sensitive to environmental stressors and associated with human health. We reviewed epidemiological literature examining associations between prenatal environmental, dietary, and social exposures and alterations in maternal/child mtDNA copy number (mtDNAcn) and mtDNA methylation. Evidence exists that prenatal maternal exposures are associated with alterations in mtDNAcn for air pollution, chemicals (e.g. metals), cigarette smoke, human immunodeficiency virus (HIV) infection and treatment. Evidence for their associations with mtDNA methylation was limited. Given its potential implications as a disease pathway biomarker, studies with sufficient biological specificity should examine the long-term implications of prenatal and early-life mtDNA alterations in response to prenatal exposures.
Collapse
Affiliation(s)
- Anna R Smith
- Department of Epidemiology and Population Health, Stanford Medicine, Stanford, CA, USA
| | - Alejandra Hinojosa Briseño
- Department of Environmental and Occupational Health, California State University, Northridge, Northridge, CA, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York City, New York, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford Medicine, Stanford, CA, USA.
| |
Collapse
|
22
|
Luo W, Zheng YM, Hao Y, Zhang Y, Zhou P, Wei Z, Cao Y, Chen D. Mitochondrial DNA quantification correlates with the developmental potential of human euploid blastocysts but not with that of mosaic blastocysts. BMC Pregnancy Childbirth 2023; 23:447. [PMID: 37322435 DOI: 10.1186/s12884-023-05760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE We aimed to study the association between adjusted mtDNA levels in human trophectoderm biopsy samples and the developmental potential of euploid and mosaic blastocysts. METHODS We analyzed relative mtDNA levels in 2,814 blastocysts obtained from 576 couples undergoing preimplantation genetic testing for aneuploidy from June 2018 to June 2021. All patients underwent in vitro fertilization in a single clinic; the study was blinded-mtDNA content was unknown at the time of single embryo transfer. The fate of the euploid or mosaic embryos transferred was compared with mtDNA levels. RESULTS Euploid embryos had lower mtDNA than aneuploid and mosaic embryos. Embryos biopsied on Day 5 had higher mtDNA than those biopsied on Day 6. No difference was detected in mtDNA scores between embryos derived from oocytes of different maternal ages. Linear mixed model suggested that blastulation rate was associated with mtDNA score. Moreover, the specific next-generation sequencing platform used have a significant effect on the observed mtDNA content. Euploid embryos with higher mtDNA content presented significantly higher miscarriage rates and lower live birth rates, while no significant difference was observed in the mosaic cohort. CONCLUSION Our results will aid in improving methods for analyzing the association between mtDNA level and blastocyst viability.
Collapse
Affiliation(s)
- Wen Luo
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yi-Min Zheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yan Hao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dawei Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
23
|
Cimadomo D, de los Santos MJ, Griesinger G, Lainas G, Le Clef N, McLernon DJ, Montjean D, Toth B, Vermeulen N, Macklon N. ESHRE good practice recommendations on recurrent implantation failure. Hum Reprod Open 2023; 2023:hoad023. [PMID: 37332387 PMCID: PMC10270320 DOI: 10.1093/hropen/hoad023] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 06/20/2023] Open
Abstract
STUDY QUESTION How should recurrent implantation failure (RIF) in patients undergoing ART be defined and managed? SUMMARY ANSWER This is the first ESHRE good practice recommendations paper providing a definition for RIF together with recommendations on how to investigate causes and contributing factors, and how to improve the chances of a pregnancy. WHAT IS KNOWN ALREADY RIF is a challenge in the ART clinic, with a multitude of investigations and interventions offered and applied in clinical practice, often without biological rationale or with unequivocal evidence of benefit. STUDY DESIGN SIZE DURATION This document was developed according to a predefined methodology for ESHRE good practice recommendations. Recommendations are supported by data from the literature, if available, and the results of a previously published survey on clinical practice in RIF and the expertise of the working group. A literature search was performed in PubMed and Cochrane focussing on 'recurrent reproductive failure', 'recurrent implantation failure', and 'repeated implantation failure'. PARTICIPANTS/MATERIALS SETTING METHODS The ESHRE Working Group on Recurrent Implantation Failure included eight members representing the ESHRE Special Interest Groups for Implantation and Early Pregnancy, Reproductive Endocrinology, and Embryology, with an independent chair and an expert in statistics. The recommendations for clinical practice were formulated based on the expert opinion of the working group, while taking into consideration the published data and results of the survey on uptake in clinical practice. The draft document was then open to ESHRE members for online peer review and was revised in light of the comments received. MAIN RESULTS AND THE ROLE OF CHANCE The working group recommends considering RIF as a secondary phenomenon of ART, as it can only be observed in patients undergoing IVF, and that the following description of RIF be adopted: 'RIF describes the scenario in which the transfer of embryos considered to be viable has failed to result in a positive pregnancy test sufficiently often in a specific patient to warrant consideration of further investigations and/or interventions'. It was agreed that the recommended threshold for the cumulative predicted chance of implantation to identify RIF for the purposes of initiating further investigation is 60%. When a couple have not had a successful implantation by a certain number of embryo transfers and the cumulative predicted chance of implantation associated with that number is greater than 60%, then they should be counselled on further investigation and/or treatment options. This term defines clinical RIF for which further actions should be considered. Nineteen recommendations were formulated on investigations when RIF is suspected, and 13 on interventions. Recommendations were colour-coded based on whether the investigations/interventions were recommended (green), to be considered (orange), or not recommended, i.e. not to be offered routinely (red). LIMITATIONS REASONS FOR CAUTION While awaiting the results of further studies and trials, the ESHRE Working Group on Recurrent Implantation Failure recommends identifying RIF based on the chance of successful implantation for the individual patient or couple and to restrict investigations and treatments to those supported by a clear rationale and data indicating their likely benefit. WIDER IMPLICATIONS OF THE FINDINGS This article provides not only good practice advice but also highlights the investigations and interventions that need further research. This research, when well-conducted, will be key to making progress in the clinical management of RIF. STUDY FUNDING/COMPETING INTERESTS The meetings and technical support for this project were funded by ESHRE. N.M. declared consulting fees from ArtPRED (The Netherlands) and Freya Biosciences (Denmark); Honoraria for lectures from Gedeon Richter, Merck, Abbott, and IBSA; being co-founder of Verso Biosense. He is Co-Chief Editor of Reproductive Biomedicine Online (RBMO). D.C. declared being an Associate Editor of Human Reproduction Update, and declared honoraria for lectures from Merck, Organon, IBSA, and Fairtility; support for attending meetings from Cooper Surgical, Fujifilm Irvine Scientific. G.G. declared that he or his institution received financial or non-financial support for research, lectures, workshops, advisory roles, or travelling from Ferring, Merck, Gedeon-Richter, PregLem, Abbott, Vifor, Organon, MSD, Coopersurgical, ObsEVA, and ReprodWissen. He is an Editor of the journals Archives of Obstetrics and Gynecology and Reproductive Biomedicine Online, and Editor in Chief of Journal Gynäkologische Endokrinologie. He is involved in guideline developments and quality control on national and international level. G.L. declared he or his institution received honoraria for lectures from Merck, Ferring, Vianex/Organon, and MSD. He is an Associate Editor of Human Reproduction Update, immediate past Coordinator of Special Interest Group for Reproductive Endocrinology of ESHRE and has been involved in Guideline Development Groups of ESHRE and national fertility authorities. D.J.M. declared being an Associate Editor for Human Reproduction Open and statistical Advisor for Reproductive Biomedicine Online. B.T. declared being shareholder of Reprognostics and she or her institution received financial or non-financial support for research, clinical trials, lectures, workshops, advisory roles or travelling from support for attending meetings from Ferring, MSD, Exeltis, Merck Serono, Bayer, Teva, Theramex and Novartis, Astropharm, Ferring. The other authors had nothing to disclose. DISCLAIMER This Good Practice Recommendations (GPR) document represents the views of ESHRE, which are the result of consensus between the relevant ESHRE stakeholders and are based on the scientific evidence available at the time of preparation. ESHRE GPRs should be used for information and educational purposes. They should not be interpreted as setting a standard of care or be deemed inclusive of all proper methods of care, or be exclusive of other methods of care reasonably directed to obtaining the same results. They do not replace the need for application of clinical judgement to each individual presentation, or variations based on locality and facility type. Furthermore, ESHRE GPRs do not constitute or imply the endorsement, or favouring, of any of the included technologies by ESHRE.
Collapse
Affiliation(s)
| | - D Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | | | - G Griesinger
- Department of Reproductive Medicine and Gynecological Endocrinology, University Hospital of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
- University of Luebeck, Luebeck, Germany
| | - G Lainas
- Eugonia IVF, Unit of Human Reproduction, Athens, Greece
| | - N Le Clef
- ESHRE Central Office, Strombeek-Bever, Belgium
| | - D J McLernon
- School of Medicine Medical Sciences and Nutrition, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - D Montjean
- Fertilys Fertility Centers, Laval & Brossard, Canada
| | - B Toth
- Gynecological Endocrinology and Reproductive Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - N Vermeulen
- ESHRE Central Office, Strombeek-Bever, Belgium
| | - N Macklon
- Correspondence address. ESHRE Central Office, BXL7—Building 1, Nijverheidslaan 3, B-1853 Strombeek-Bever, Belgium. E-mail:
| |
Collapse
|
24
|
Kobayashi H, Yoshimoto C, Matsubara S, Shigetomi H, Imanaka S. Current Understanding of and Future Directions for Endometriosis-Related Infertility Research with a Focus on Ferroptosis. Diagnostics (Basel) 2023; 13:diagnostics13111926. [PMID: 37296777 DOI: 10.3390/diagnostics13111926] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND To date, the development of therapy for endometriosis and disease-related infertility remains a major challenge. Iron overload caused by periodic bleeding is a hallmark of endometriosis. Ferroptosis is an iron- and lipid-reactive oxygen species-dependent type of programmed cell death that is distinct from apoptosis, necrosis, and autophagy. This review summarizes the current understanding of and future directions for the research and treatment of endometriosis and disease-related infertility, with the main focus on the molecular basis of ferroptosis in endometriotic and granulosa cells. METHODS Papers published between 2000 and 2022 in the PubMed and Google Scholar databases were included in this review. RESULTS Emerging evidence suggests that ferroptosis is closely linked to the pathophysiology of endometriosis. Endometriotic cells are characterized by ferroptosis resistance, whereas granulosa cells remain highly susceptible to ferroptosis, suggesting that the regulation of ferroptosis is utilized as an interventional target for research into the treatment of endometriosis and disease-related infertility. New therapeutic strategies are urgently needed to efficiently kill endometriotic cells while protecting granulosa cells. CONCLUSIONS An analysis of the ferroptosis pathway in in vitro, in vivo, and animal research enhances our understanding of the pathogenesis of this disease. Here, we discuss the role of ferroptosis modulators as a research approach and potential novel treatment for endometriosis and disease-related infertility.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, 2-897-5 Shichijyonishi-machi, Nara 630-8581, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
- Department of Medicine, Kei Oushin Clinic, 5-2-6 Naruo-cho, Nishinomiya 663-8184, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, 3-3-17 Kitatomigaoka-cho, Nara 634-0001, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| |
Collapse
|
25
|
Wang X, Wang L, Xiang W. Mechanisms of ovarian aging in women: a review. J Ovarian Res 2023; 16:67. [PMID: 37024976 PMCID: PMC10080932 DOI: 10.1186/s13048-023-01151-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Ovarian aging is a natural and physiological aging process characterized by loss of quantity and quality of oocyte or follicular pool. As it is generally accepted that women are born with a finite follicle pool that will go through constant decline without renewing, which, together with decreased oocyte quality, makes a severe situation for women who is of advanced age but desperate for a healthy baby. The aim of our review was to investigate mechanisms leading to ovarian aging by discussing both extra- and intra- ovarian factors and to identify genetic characteristics of ovarian aging. The mechanisms were identified as both extra-ovarian alternation of hypothalamic-pituitary-ovarian axis and intra-ovarian alternation of ovary itself, including telomere, mitochondria, oxidative stress, DNA damage, protein homeostasis, aneuploidy, apoptosis and autophagy. Moreover, here we reviewed related Genome-wide association studies (GWAS studies) from 2009 to 2021 and next generation sequencing (NGS) studies of primary ovarian insufficiency (POI) in order to describe genetic characteristics of ovarian aging. It is reasonable to wish more reliable anti-aging interventions for ovarian aging as the exploration of mechanisms and genetics being progressing.
Collapse
Affiliation(s)
- Xiangfei Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingjuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
26
|
State of the art in assisted reproductive technologies for patients with advanced maternal age. ZYGOTE 2023; 31:149-156. [PMID: 36810125 DOI: 10.1017/s0967199422000624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
According to the World Health Organization, the female reproductive age lasts up to 49 years, but problems with the realization of women's reproductive rights may arise much earlier. Significant numbers of factors affect the state of reproductive health: socioeconomic, ecological, lifestyle features, the level of medical literacy, and the state of the organization and medical care quality. Among the reasons for fertility decline in advanced reproductive age are the loss of cellular receptors for gonadotropins, an increase in the threshold of sensitivity of the hypothalamic-pituitary system to the action of hormones and their metabolites, and many others. Furthermore, negative changes accumulate in the oocyte genome, reducing the possibility of fertilization, normal development and implantation of the embryo and healthy offspring birth. Another theory of ageing causing changes in oocytes is the mitochondrial free radical theory of ageing. Taking into account all these age-related changes in gametogenesis, this review considers modern technologies aimed at the preservation and realization of female fertility. Among the existing approaches, two main ones can be distinguished: methods allowing the preservation of reproductive cells at a younger age using ART intervention and cryobanking, as well as methods aimed at improving the basic functional state of advanced-age women's oocytes and embryos.
Collapse
|
27
|
Abstract
Mitochondrial diseases require customized approaches for reproductive counseling, addressing differences in recurrence risks and reproductive options. The majority of mitochondrial diseases is caused by mutations in nuclear genes and segregate in a Mendelian way. Prenatal diagnosis (PND) or preimplantation genetic testing (PGT) are available to prevent the birth of another severely affected child. In at least 15%-25% of cases, mitochondrial diseases are caused by mitochondrial DNA (mtDNA) mutations, which can occur de novo (25%) or be maternally inherited. For de novo mtDNA mutations, the recurrence risk is low and PND can be offered for reassurance. For maternally inherited, heteroplasmic mtDNA mutations, the recurrence risk is often unpredictable, due to the mitochondrial bottleneck. PND for mtDNA mutations is technically possible, but often not applicable given limitations in predicting the phenotype. Another option for preventing the transmission of mtDNA diseases is PGT. Embryos with mutant load below the expression threshold are being transferred. Oocyte donation is another safe option to prevent the transmission of mtDNA disease to a future child for couples who reject PGT. Recently, mitochondrial replacement therapy (MRT) became available for clinical application as an alternative to prevent the transmission of heteroplasmic and homoplasmic mtDNA mutations.
Collapse
|
28
|
Targeted Deletion of Mitofusin 1 and Mitofusin 2 Causes Female Infertility and Loss of Follicular Reserve. Reprod Sci 2023; 30:560-568. [PMID: 35739352 DOI: 10.1007/s43032-022-01014-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
Mitochondria are dynamic organelles that regulate their size, shape, and morphology through mechanisms called fusion and fission, to continually adapt themselves to their bioenergetic environment. These mechanisms play a critical role to maintain the mitochondrial function under metabolic and environmental stress. Mitofusin 1 (MFN1) and mitofusin 2 (MFN2) are transmembrane GTPases that regulate mitochondrial fusion mechanism and are required for the maintenance of cellular homeostasis. In this study, we aimed to determine the role of mitofusins in female reproductive competence and senescence using a mouse model with oocyte-specific double deletion of Mfn1 and Mfn2, eliminating the potential functional redundancy of these two proteins. Oocyte-specific targeted double deletion of Mfn1 and Mfn2 in mice resulted in female infertility associated with impaired follicular development and oocyte maturation. It also resulted in altered mitochondrial dynamics and mitochondrial dysfunction. Lack of Mfn1 and Mfn2 in oocytes resulted in accelerated follicular depletion and impaired oocyte quality which are consistent with phenotype of reproductive aging.
Collapse
|
29
|
Chuang TH, Chen CY, Kuan CS, Lai HH, Hsieh CL, Lee MJ, Liang YT, Chang YJ, Chen CY, Chen SU. Reduced mitochondrial DNA content correlate with poor clinical outcomes in cryotransfers with day 6 single euploid embryos. Front Endocrinol (Lausanne) 2023; 13:1066530. [PMID: 36686452 PMCID: PMC9846089 DOI: 10.3389/fendo.2022.1066530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
Objective To investigate whether the mitochondrial DNA (mtDNA) content of a single biopsy at trophoblast correlates with the developmental potential and reproductive outcomes of blastocyst. Methods A retrospective analysis applied the dataset of 1,675 embryos with preimplantation genetic testing for aneuploidy (PGT-A) from 1,305 individuals, and 1,383 embryos involved cryotransfers of single euploid embryo between January 2015 and December 2019. The studied cohort was divided for algorithm establishment on the NGS platform (n=40), correlation of biological features (n=1,635), and correlation of reproductive outcomes (n=1,340). Of the algorithm derived from the NGS platform, the reliability and repeatability were validated via qPCR assay and inter-run controls, respectively. Of the correlation across biological features, stratification analyses were applied to evaluate the effect from a single contributor. Eventually, the correlation between the mtDNA ratios and reproductive outcomes was adjusted according to the significant effector(s). Results The mtDNA ratios showed statistically different between embryos with different days of blastocyst formation ([Day 5]: 1.06 vs. [Day 6]: 0.66, p=0.021), and between embryos with different expansion stages ([Expansion 5]: 1.05 vs. [Expansion 6]: 0.49, p=0.012). None or weakly correlated with the maternal age, morphology, ploidy, and gender. Analyzed by the different days of blastocyst formation with fixed expansion score as 5 in the euploid single embryo transfers (eSET), the day 6 eSET showed significantly lower reduced mtDNA ratio (n=139) in failure groups of fetal heartbeat (p=0.004), ongoing pregnancy (p=0.007), and live birth (p=0.01); however, no correlation between mtDNA ratios and pregnancy outcomes was observed in the day 5 eSET (n=1,201). Conclusions The study first demonstrated that mtDNA ratio was dependent on the days of blastocyst formation while expansion stage was fixed. Lower mtDNA ratios were observed in the day 6 eSET with adverse outcomes. The present stratification analyses reveal that the timeline of embryo is an important covariate to the mtDNA content.
Collapse
Affiliation(s)
- Tzu-Hsuan Chuang
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University and College of Medicine, Taipei, Taiwan
| | - Chih-Yen Chen
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Chin-Sheng Kuan
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Hsing-Hua Lai
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Chia-Lin Hsieh
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Meng-Ju Lee
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Yi-Ting Liang
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Yu-Jen Chang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Chien-Yu Chen
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Shee-Uan Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
30
|
Li G, Gu J, Zhou X, Wu T, Li X, Hua R, Hai Z, Xiao Y, Su J, Yeung WSB, Liu K, Guo C, Wang T. Mitochondrial stress response gene Clpp deficiency impairs oocyte competence and deteriorate cyclophosphamide-induced ovarian damage in young mice. Front Endocrinol (Lausanne) 2023; 14:1122012. [PMID: 37033217 PMCID: PMC10081448 DOI: 10.3389/fendo.2023.1122012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Chemotherapy is extensively used to treat cancers and is often associated with ovarian damage and leads to premature ovarian insufficiency and infertility, while the role of mitochondria during ovarian damage with chemotherapy remains unknown. This study used a mouse model with oocyte-specific deletion of mitochondrial stress response gene Caseinolytic peptidase P (Clpp) to investigate mitochondrial homeostasis in oocytes from mice receiving a chemotherapeutic drug cyclophosphamide (CTX). We found that oocyte-specific deletion of Clpp reduced fecundity of the mice at advanced age. The deletion led to meiotic defects with elevated abnormal spindle rate and aneuploidy rate with impaired mitochondrial function in the MII oocytes from 8-week-old mice. Upon CTX treatment at 8-week-old, the oocyte competence and folliculogenesis from the oocyte-specific Clpp knockout mice was further deteriorated with dramatic impairment of mitochondrial distribution and function including elevated ROS level, decreased mitochondrial membrane potential, respiratory chain activity and ATP production. Taken together, the results indicate that that ClpP was required for oocyte competence during maturation and early folliculogenesis, and its deficiency deteriorate cyclophosphamide-induced ovarian damage.
Collapse
Affiliation(s)
- Guangxin Li
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jingkai Gu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiaomei Zhou
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ting Wu
- Department of Obstetrics and Gynaecology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Xian Li
- Department of Obstetrics and Gynaecology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Renwu Hua
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zhuo Hai
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuan Xiao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jiaping Su
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Willian S. B. Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Obstetrics and Gynaecology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Kui Liu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of HongKong, Hong Kong, Hong Kong SAR, China
| | - Chenxi Guo
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Tianren Wang, ; Chenxi Guo,
| | - Tianren Wang
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Tianren Wang, ; Chenxi Guo,
| |
Collapse
|
31
|
Zhang Q, Hao J, Liu B, Ouyang Y, Guo J, Dong M, Wang Z, Gao F, Yao Y. Supplementation of mitochondria from endometrial mesenchymal stem cells improves oocyte quality in aged mice. Cell Prolif 2022; 56:e13372. [PMID: 36480483 PMCID: PMC9977672 DOI: 10.1111/cpr.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Maternal ageing is one of the major causes of reduced ovarian reserve and low oocyte quality in elderly women. Decreased oocyte quality is the main cause of age-related infertility. Mitochondria are multifunctional energy stations that determine the oocyte quality. The mitochondria in aged oocytes display functional impairments with mtDNA damage, which leads to reduced competence and developmental potential of oocytes. To improve oocyte quality, mitochondrial supplementation is carried out as a potential therapeutic approach. However, the selection of suitable cells as the source of mitochondria remains controversial. We cultivated endometrial mesenchymal stem cells (EnMSCs) from aged mice and extracted mitochondria from EnMSCs. To improve the quality of oocytes, GV oocytes were supplemented with mitochondria via microinjection. And MII oocytes from aged mice were fertilized by intracytoplasmic sperm injection (ICSI), combining EnMSCs' mitochondrial microinjection. In this study, we found that the mitochondria derived from EnMSCs could significantly improve the quality of aged oocytes. Supplementation with EnMSC mitochondria significantly increased the blastocyst ratio of MII oocytes from aged mice after ICSI. We also found that the birth rate of mitochondria-injected ageing oocytes was significantly increased after embryo transplantation. Our study demonstrates that supplementation with EnMSC-derived mitochondria can improve the quality of oocytes and promote embryo development in ageing mice, which might provide a prospective strategy for clinical treatment.
Collapse
Affiliation(s)
- Qi Zhang
- Medical School of Chinese People's Liberation Army General HospitalBeijingChina,Department of Obstetrics and GynecologyThe First Medical Center of Chinese PLA General HospitalBeijingChina,State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Jian‐Xiu Hao
- Department of Clinical Biobank CenterThe Medical Innovation Research Division of Chinese PLA General HospitalBeijingChina
| | - Bo‐Wen Liu
- Department of Clinical Biobank CenterThe Medical Innovation Research Division of Chinese PLA General HospitalBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Ying‐Chun Ouyang
- Department of Clinical Biobank CenterThe Medical Innovation Research Division of Chinese PLA General HospitalBeijingChina
| | - Jia‐Ni Guo
- Department of Clinical Biobank CenterThe Medical Innovation Research Division of Chinese PLA General HospitalBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Ming‐Zhe Dong
- Department of Clinical Biobank CenterThe Medical Innovation Research Division of Chinese PLA General HospitalBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Zhen‐Bo Wang
- Department of Clinical Biobank CenterThe Medical Innovation Research Division of Chinese PLA General HospitalBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Fei Gao
- Department of Clinical Biobank CenterThe Medical Innovation Research Division of Chinese PLA General HospitalBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Yuan‐Qing Yao
- Department of Obstetrics and GynecologyThe First Medical Center of Chinese PLA General HospitalBeijingChina,Shenzhen Key Laboratory of Fertility RegulationThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| |
Collapse
|
32
|
Tan TCY, Dunning KR. Non-invasive assessment of oocyte developmental competence. Reprod Fertil Dev 2022; 35:39-50. [PMID: 36592982 DOI: 10.1071/rd22217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oocyte quality is a key factor influencing IVF success. The oocyte and surrounding cumulus cells, known collectively as the cumulus oocyte complex (COC), communicate bi-directionally and regulate each other's metabolic function to support oocyte growth and maturation. Many studies have attempted to associate metabolic markers with oocyte quality, including metabolites in follicular fluid or 'spent medium' following maturation, gene expression of cumulus cells and measuring oxygen consumption in medium surrounding COCs. However, these methods fail to provide spatial metabolic information on the separate oocyte and cumulus cell compartments. Optical imaging of the autofluorescent cofactors - reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] and flavin adenine dinucleotide (FAD) - has been put forward as an approach to generate spatially resolved measurements of metabolism within individual cells of the COC. The optical redox ratio (FAD/[NAD(P)H+FAD]), calculated from these cofactors, can act as an indicator of overall metabolic activity in the oocyte and cumulus cell compartments. Confocal microscopy, fluorescence lifetime imaging microscopy (FLIM) and hyperspectral microscopy may be used for this purpose. This review provides an overview of current optical imaging techniques that capture the inner biochemistry within cells of the COC and discusses the potential for such imaging to assess oocyte developmental competence.
Collapse
Affiliation(s)
- Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
33
|
Kakourou G, Mamas T, Vrettou C, Traeger-Synodinos J. An Update on Non-invasive Approaches for Genetic Testing of the Preimplantation Embryo. Curr Genomics 2022; 23:337-352. [PMID: 36778192 PMCID: PMC9878856 DOI: 10.2174/1389202923666220927111158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022] Open
Abstract
Preimplantation Genetic Testing (PGT) aims to reduce the chance of an affected pregnancy or improve success in an assisted reproduction cycle. Since the first established pregnancies in 1990, methodological approaches have greatly evolved, combined with significant advances in the embryological laboratory. The application of preimplantation testing has expanded, while the accuracy and reliability of monogenic and chromosomal analysis have improved. The procedure traditionally employs an invasive approach to assess the nucleic acid content of embryos. All biopsy procedures require high technical skill, and costly equipment, and may impact both the accuracy of genetic testing and embryo viability. To overcome these limitations, many researchers have focused on the analysis of cell-free DNA (cfDNA) at the preimplantation stage, sampled either from the blastocoel or embryo culture media, to determine the genetic status of the embryo non-invasively. Studies have assessed the origin of cfDNA and its application in non-invasive testing for monogenic disease and chromosomal aneuploidies. Herein, we discuss the state-of-the-art for modern non-invasive embryonic genetic material assessment in the context of PGT. The results are difficult to integrate due to numerous methodological differences between the studies, while further work is required to assess the suitability of cfDNA analysis for clinical application.
Collapse
Affiliation(s)
- Georgia Kakourou
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, 11527, Athens, Greece,Address correspondence to this author at the Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, 11527, Athens, Greece; Tel/Fax: +302107467467; E-mail:
| | - Thalia Mamas
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, 11527, Athens, Greece
| | - Christina Vrettou
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, 11527, Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, 11527, Athens, Greece
| |
Collapse
|
34
|
Esencan E, Beroukhim G, Seifer DB. Age-related changes in Folliculogenesis and potential modifiers to improve fertility outcomes - A narrative review. Reprod Biol Endocrinol 2022; 20:156. [PMID: 36397149 PMCID: PMC9670479 DOI: 10.1186/s12958-022-01033-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Reproductive aging is characterized by a decline in oocyte quantity and quality, which is directly associated with a decline in reproductive potential, as well as poorer reproductive success and obstetrical outcomes. As women delay childbearing, understanding the mechanisms of ovarian aging and follicular depletion have become increasingly more relevant. Age-related meiotic errors in oocytes are well established. In addition, it is also important to understand how intraovarian regulators change with aging and how certain treatments can mitigate the impact of aging. Individual studies have demonstrated that reproductive pathways involving antimullerian hormone (AMH), vascular endothelial growth factor (VEGF), neurotropins, insulin-like growth factor 1 (IGF1), and mitochondrial function are pivotal for healthy oocyte and cumulus cell development and are altered with increasing age. We provide a comprehensive review of these individual studies and explain how these factors change in oocytes, cumulus cells, and follicular fluid. We also summarize how modifiers of folliculogenesis, such as vitamin D, coenzyme Q, and dehydroepiandrosterone (DHEA) may be used to potentially overcome age-related changes and enhance fertility outcomes of aged follicles, as evidenced by human and rodent studies.
Collapse
Affiliation(s)
- Ecem Esencan
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA.
| | - Gabriela Beroukhim
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - David B Seifer
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| |
Collapse
|
35
|
Chiaratti MR, Chinnery PF. Modulating mitochondrial DNA mutations: factors shaping heteroplasmy in the germ line and somatic cells. Pharmacol Res 2022; 185:106466. [PMID: 36174964 DOI: 10.1016/j.phrs.2022.106466] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
Until recently it was thought that most humans only harbor one type of mitochondrial DNA (mtDNA), however, deep sequencing and single-cell analysis has shown the converse - that mixed populations of mtDNA (heteroplasmy) are the norm. This is important because heteroplasmy levels can change dramatically during transmission in the female germ line, leading to high levels causing severe mitochondrial diseases. There is also emerging evidence that low level mtDNA mutations contribute to common late onset diseases such as neurodegenerative disorders and cardiometabolic diseases because the inherited mutation levels can change within developing organs and non-dividing cells over time. Initial predictions suggested that the segregation of mtDNA heteroplasmy was largely stochastic, with an equal tendency for levels to increase or decrease. However, transgenic animal work and single-cell analysis have shown this not to be the case during germ-line transmission and in somatic tissues during life. Mutation levels in specific mtDNA regions can increase or decrease in different contexts and the underlying molecular mechanisms are starting to be unraveled. In this review we provide a synthesis of recent literature on the mechanisms of selection for and against mtDNA variants. We identify the most pertinent gaps in our understanding and suggest ways these could be addressed using state of the art techniques.
Collapse
Affiliation(s)
- Marcos R Chiaratti
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil.
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
36
|
Li X, Wang Z, Wang H, Xu H, Sheng Y, Lian F. Role of N-acetylcysteine treatment in women with advanced age undergoing IVF/ICSI cycles: A prospective study. Front Med (Lausanne) 2022; 9:917146. [PMID: 36267623 PMCID: PMC9577027 DOI: 10.3389/fmed.2022.917146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The main objective of this study was to explore the efficacy of a new antioxidant N-acetylcysteine (NAC) supplementation in reproductive outcomes of advanced age women undergoing in vitro fertilization/intracytoplasmic sperm injection-embryo transfer (IVF/ICSI-ET), and the effect on the expression of L-glutathione (GSH) in follicular fluid (FF) and mitochondrial DNA (mtDNA) copy number of granulosa cells. Methods The present prospective randomized controlled study was conducted in 200 patients with advanced age women undergoing GnRH antagonist protocol. The treatment group (group A) consisted of 100 women who received N-acetylcysteine treatment from the menstrual phase of the previous cycle for about 45 days using the GnRH antagonist protocol. The control group (group B) consisted of 100 women who received the same protocol without N-acetylcysteine. Total gonadotrophin dosage the number of oocyte received, high-quality blastocysts, and pregnancy outcomes were compared between two groups. Pregnancy outcomes included biochemical pregnancy rate, clinical pregnancy rate, embryo implantation rate, ectopic pregnancy rate, multiple pregnancy rate, and ongoing pregnancy rate. Follicular fluid (FF) was collected after oocytes were gathered. The GSH content in the FF was tested with enzyme linked immunosorbent assay (ELISA). The mtDNA copy number of the granulosa cells was measured using real-time PCR techniques. Results Total doses of Gn in the NAC treatment group were less than those in the control group (2385.50 ± 879.19 vs. 2527.63 ± 1170.33, P = 0.047). Compared with the control, the number of high-quality blastocysts in NAC treatment increased significantly (1.82 ± 2.12 vs. 1.43 ± 1.58, p = 0.014). Clinical pregnancy rates did not differ in both groups (all P > 0.05). At the same time, the GSH content in the FF differed significantly between the two groups (1.88 ± 1.23 vs. 1.07 ± 0.70, p = 0.001). There was no significant difference in the mtDNA copy number between the two groups (P = 0.157). Conclusion A combination of NAC and Gn treatment is capable of improving the ovarian response to superovulation drugs in assisted reproductive technologies (ARTs) and also in aged populations. The addition of NAC during IVF can improve the quality of blastocysts in advanced age female subjects. However, more clinical trials are required to be designed to confirm this conclusion in future. Ethics and dissemination The experiment solicited approval from the Institutional ethics committee of the Affiliated Reproductive Hospital of Shandong University. All the participants provided written informed consent. This survey was conducted as per the Declaration of Helsinki and relevant amendments. Trial registration number www.chictr.org.cn, identifier ChiCTR2100048297.
Collapse
Affiliation(s)
- Xiufang Li
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Center for Reproductive Medicine, Shandong University, Jinan, China
| | - Zhongqing Wang
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Traditional Chinese Medicine, Jinan Golden Time Health Nursing Hospital, Jinan, China
| | - Huidan Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China
| | - Haiyan Xu
- Center for Reproductive Medicine, Shandong University, Jinan, China
| | - Yan Sheng
- Center for Reproductive Medicine, Shandong University, Jinan, China
| | - Fang Lian
- Integrative Medicine Research Centre of Reproduction and Heredity, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
37
|
Traut M, Kowalczyk-Zieba I, Boruszewska D, Jaworska J, Lukaszuk K, Woclawek-Potocka I. Mitochondrial DNA content and developmental competence of blastocysts derived from pre-pubertal heifer oocytes. Theriogenology 2022; 191:207-220. [PMID: 35998404 DOI: 10.1016/j.theriogenology.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022]
Abstract
In the cattle-breeding industry, there is an increasing demand for in vitro embryo production from pre-pubertal heifers. In this study, we evaluated the differences in mitochondrial DNA content, oxidative stress, and developmental competence in blastocysts derived from pre-pubertal and pubertal heifers. We found higher mitochondrial DNA copy numbers in blastocysts produced from pre-pubertal heifers than from pubertal heifers. In the group of pre-pubertal animals, there was a significantly lower number of blastocysts produced in vitro from the same number of collected oocytes, and these blastocysts did not differ from those obtained from pubertal oocytes in terms of their morphological quality. The morphologically appropriate blastocysts derived from pre-pubertal heifers had higher concentrations of reactive oxygen species and glutathione. In blastocysts derived from pre-pubertal heifers, we found alterations in the expression of gene markers for developmental competence, which correlated with higher mitochondrial DNA content, suggesting a lower quality of blastocysts derived from pre-pubertal animals than from pubertal animals. The inadequate redox balance in blastocysts obtained from pre-pubertal females, along with higher mitochondrial DNA copy number, as well as differential gene expression of markers of developmental competence, elucidate the low quality of blastocysts derived from pre-pubertal animals, despite their unaltered morphology.
Collapse
Affiliation(s)
- Milena Traut
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Ilona Kowalczyk-Zieba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Dorota Boruszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Joanna Jaworska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Krzysztof Lukaszuk
- Department of Obstetrics and Gynecology Nursing, Medical University of Gdansk, 80-210, Gdansk, Poland; Invicta Research and Development Center, 81-740, Sopot, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland.
| |
Collapse
|
38
|
Yilmaz O, Jensen AM, Harboe T, Møgster M, Jensen RM, Mjaavatten O, Birkeland E, Spriet E, Sandven L, Furmanek T, Berven FS, Wargelius A, Norberg B. Quantitative proteome profiling reveals molecular hallmarks of egg quality in Atlantic halibut: impairments of transcription and protein folding impede protein and energy homeostasis during early development. BMC Genomics 2022; 23:635. [PMID: 36071374 PMCID: PMC9450261 DOI: 10.1186/s12864-022-08859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Background Tandem mass tag spectrometry (TMT labeling-LC-MS/MS) was utilized to examine the global proteomes of Atlantic halibut eggs at the 1-cell-stage post fertilization. Comparisons were made between eggs judged to be of good quality (GQ) versus poor quality (BQ) as evidenced by their subsequent rates of survival for 12 days. Altered abundance of selected proteins in BQ eggs was confirmed by parallel reaction monitoring spectrometry (PRM-LC-MS/MS). Correspondence of protein levels to expression of related gene transcripts was examined via qPCR. Potential mitochondrial differences between GQ and BQ eggs were assessed by transmission electron microscopy (TEM) and measurements of mitochondrial DNA (mtDNA) levels. Results A total of 115 proteins were found to be differentially abundant between GQ and BQ eggs. Frequency distributions of these proteins indicated higher protein folding activity in GQ eggs compared to higher transcription and protein degradation activities in BQ eggs. BQ eggs were also significantly enriched with proteins related to mitochondrial structure and biogenesis. Quantitative differences in abundance of several proteins with parallel differences in their transcript levels were confirmed in egg samples obtained over three consecutive reproductive seasons. The observed disparities in global proteome profiles suggest impairment of protein and energy homeostasis related to unfolded protein response and mitochondrial stress in BQ eggs. TEM revealed BQ eggs to contain significantly higher numbers of mitochondria, but differences in corresponding genomic mtDNA (mt-nd5 and mt-atp6) levels were not significant. Mitochondria from BQ eggs were significantly smaller with a more irregular shape and a higher number of cristae than those from GQ eggs. Conclusion The results of this study indicate that BQ Atlantic halibut eggs are impaired at both transcription and translation levels leading to endoplasmic reticulum and mitochondrial disorders. Observation of these irregularities over three consecutive reproductive seasons in BQ eggs from females of diverse background, age and reproductive experience indicates that they are a hallmark of poor egg quality. Additional research is needed to discover when in oogenesis and under what circumstances these defects may arise. The prevalence of this suite of markers in BQ eggs of diverse vertebrate species also begs investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08859-0.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- Institute of Marine Research, Austevoll Research Station, 5392, Storebø, Norway.
| | | | - Torstein Harboe
- Institute of Marine Research, Austevoll Research Station, 5392, Storebø, Norway
| | - Margareth Møgster
- Institute of Marine Research, Austevoll Research Station, 5392, Storebø, Norway
| | | | - Olav Mjaavatten
- Department of Biomedicine, The Proteomics Facility of the University of Bergen (PROBE), 5009, Bergen, Norway
| | - Even Birkeland
- Department of Biomedicine, The Proteomics Facility of the University of Bergen (PROBE), 5009, Bergen, Norway
| | - Endy Spriet
- Department of Biomedicine, The Molecular Imaging Center (MIC), University of Bergen, 5009, Bergen, Norway
| | - Linda Sandven
- Department of Biomedicine, The Molecular Imaging Center (MIC), University of Bergen, 5009, Bergen, Norway
| | - Tomasz Furmanek
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817, Bergen, Norway
| | - Frode S Berven
- Department of Biomedicine, The Proteomics Facility of the University of Bergen (PROBE), 5009, Bergen, Norway
| | - Anna Wargelius
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817, Bergen, Norway
| | - Birgitta Norberg
- Institute of Marine Research, Austevoll Research Station, 5392, Storebø, Norway
| |
Collapse
|
39
|
Arora H, Collazo I, Eisermann J, Hendon N, Kuchakulla M, Khodamoradi K, Bidhan J, Dullea A, Zucker I, Khosravizadeh Z, Shah P, Bustillo M. Association Between MitoScore, BMI, and Body Fat Percentage as a Predictive Marker for the Outcome of In-Vitro Fertilization (IVF). Cureus 2022; 14:e27367. [PMID: 36046274 PMCID: PMC9418516 DOI: 10.7759/cureus.27367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/27/2022] [Indexed: 11/06/2022] Open
Abstract
Background Infertility is defined as the inability to establish a pregnancy within 12 months of regular and unprotected sexual intercourse. In response to these problems, assisted reproductive techniques (ARTs) have made profound impacts on the therapeutic management of infertility. However, in-vitro fertilization (IVF) success rates are confounded by several internal and external factors. A relatively new approach to embryo assessment is known as MitoScore (Igenomix, Miami, USA). As a result, we sough to evaluate whether MitoScore can help in predicting in IVF outcomes, and to assess the relationship between MitoScore, BMI, and body fat percentage in determining the success of ARTs. Methods Using retrospective cohort, a study population consisting of 166 women aged 26-43 who were undergoing ART with pre-implantation genetic testing for aneuploidy (PGT-A) was assessed to determine if MitoScore, BMI, and body fat percentage impacted IVF outcomes. Results MitoScore, BMI, and body fat percentage were significantly lower in pregnant women as compared to non-pregnant women. Furthermore, MitoScore was correlated with subclasses of IVF outcomes (delivery, biochemical pregnancy, and spontaneous abortion) and was found to be positively correlated with BMI in patients with biochemical pregnancies. Conclusion Our findings suggest that MitoScore, BMI, and body fat percentage could act as critical parameters in determining the success of ART. However, the association between MitoScore, BMI, and body fat percentage does not appear to be a significant confounding factor to determine pregnancy outcome at this stage. Still, many factors need to be considered to establish the correlation reliably.
Collapse
|
40
|
Martínez-Moro Á, Lamas-Toranzo I, González-Brusi L, Pérez-Gómez A, Padilla-Ruiz E, García-Blanco J, Bermejo-Álvarez P. mtDNA content in cumulus cells does not predict development to blastocyst or implantation. Hum Reprod Open 2022; 2022:hoac029. [PMID: 35864920 PMCID: PMC9295767 DOI: 10.1093/hropen/hoac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/05/2022] [Indexed: 01/20/2023] Open
Abstract
STUDY QUESTION Is relative mitochondrial DNA (mtDNA) content in cumulus cells (CCs) related to embryo developmental competence in humans and/or the bovine model? SUMMARY ANSWER mtDNA content in CCs provides a poor predictive value of oocyte developmental potential, both in vitro and following embryo transfer. WHAT IS KNOWN ALREADY CCs are closely connected to the oocyte through transzonal projections, serving essential metabolic functions during folliculogenesis. These oocyte-supporting cells are removed and discarded prior to ICSI, thereby providing interesting biological material on which to perform molecular analyses designed to identify markers that predict oocyte developmental competence. Previous studies have positively associated oocyte mtDNA content with developmental potential in animal models and women. However, it remains debatable whether mtDNA content in CCs could be used as a proxy to infer oocyte developmental potential. STUDY DESIGN SIZE DURATION mtDNA content was analyzed in CCs obtained from 109 human oocytes unable to develop to blastocyst, able to develop to blastocyst but failing to establish pregnancy or able to develop to blastocyst and to establish pregnancy. mtDNA analysis was also performed on bovine cumulus samples collected from 120 oocytes unable to cleave, oocytes developing into cleaved embryos but arresting development prior to the blastocyst stage or oocytes developing to blastocysts. PARTICIPANTS/MATERIALS SETTING METHODS Human CCs samples were obtained from women undergoing IVF. Only unfrozen oocytes and embryos not submitted to preimplantation genetic testing were included in the analysis. Bovine samples were obtained from slaughtered cattle and individually matured, fertilized and cultured in vitro. Relative mtDNA was assessed by quantitative PCR analysis. MAIN RESULTS AND THE ROLE OF CHANCE mtDNA content in human and bovine CCs did not differ according to the developmental potential of their enclosed oocyte. Moreover, mtDNA content in bovine oocytes did not correlate with that of their corresponding CCs. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION The lack of correlation found between mtDNA content in human CCs and oocytes was also assessed in bovine samples. Although bovine folliculogenesis, mono-ovulatory ovulation and early embryo development exhibit considerable similarities with that of humans, they may not be fully comparable. WIDER IMPLICATIONS OF THE FINDINGS The use of molecular markers for oocyte developmental potential in CCs could be used to enhance success rates following single embryo transfer. However, our data indicate that mtDNA in CCs is not a good proxy for oocyte quality. STUDY FUNDING/COMPETING INTERESTS This research was supported by the Industrial Doctorate Project IND2017/BIO-7748 funded by the Madrid Region Government. The authors declare no competing interests.
Collapse
Affiliation(s)
- Álvaro Martínez-Moro
- Animal Reproduction Department, INIA, CSIC, Madrid, Spain,IVF Spain, Madrid, Spain
| | | | | | | | | | | | - Pablo Bermejo-Álvarez
- Correspondence address. Animal Reproduction Department, INIA, CSIC, Avda. Puerta de Hierro 18, 28040 Madrid, Spain. E-mail: https://orcid.org/0000-0001-9907-2626
| |
Collapse
|
41
|
Ou, Ni MengZhangDingZouZhengZhang, Li H, Huang Y. Improved pregnancy outcomes from mosaic embryos with lower mtDNA content: a single-center retrospective study. Eur J Obstet Gynecol Reprod Biol 2022; 275:110-114. [DOI: 10.1016/j.ejogrb.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
|
42
|
Lukaszuk K, Podolak A. Does Trophectoderm Mitochondrial DNA Content Affect Embryo Developmental and Implantation Potential? Int J Mol Sci 2022; 23:5976. [PMID: 35682656 PMCID: PMC9180963 DOI: 10.3390/ijms23115976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
A retrospective case control study was undertaken at the molecular biology department of a private center for reproductive medicine in order to determine whether any correlation exists between the mitochondrial DNA (mtDNA) content of trophectoderm and embryo developmental potential. A total of 275 couples underwent IVF treatment, producing a total of 716 embryos. The trophectoderm was biopsied from each embryo at the blastocyst stage (day 5 or day 6 post-fertilization) subjected to low-pass next-generation sequencing (NGS), for the purpose of detecting aneuploidy. For each sample, the number of mtDNA reads obtained after analysis using NGS was divided by the number of reads attributable to the nuclear genome. The mtDNA copy number was found to be higher in aneuploid embryos than in those that were euploid (mean mtDNA ratio ± SD: 1.13 ± 1.37 versus 1.45 ± 1.78, p = 0.02) and in day 5 biopsies compared to day 6 biopsies (1.41 ± 1.66 vs. 1.19 ± 1.27, p = 0.001), whereas no statistically significant differences in mtDNA content were seen in relation to embryo morphology (1.58 ± 2.44 vs. 2.19 ± 2.89, p = 0.12), genetic sex (1.27 ± 1.29 vs. 1.27 ± 1.18, p = 0.99), maternal age (1.31 ± 1.41 vs. 1.33 ± 1.29, p = 0.43), or its ability to implant (1.14 ± 0.88 vs. 1.21 ± 1.16, p = 0.39). mtDNA has small potential to serve as an additional, independent biomarker for embryo selection.
Collapse
Affiliation(s)
- Krzysztof Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland;
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Amira Podolak
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
43
|
Leese HJ, Brison DR, Sturmey RG. The Quiet Embryo Hypothesis: 20 years on. Front Physiol 2022; 13:899485. [PMID: 35634152 PMCID: PMC9131187 DOI: 10.3389/fphys.2022.899485] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
This article revisits the hypothesis, proposed in 2002, that the successful development of oocytes and preimplantation mammalian embryos is associated with a metabolism which is “quiet” rather than “active”, within limits which had yet to be defined. A distinction was drawn between Functional Quietness, Loss of quietness in response to stress and Inter-individual differences in embryo metabolism and here we document applications of the hypothesis to other areas of reproductive biology. In order to encompass the requirement for “limits” and replace the simple distinction between “quiet” and “active”, evidence is presented which led to a re-working of the hypothesis by proposing the existence of an optimal range of metabolic activity, termed a “Goldilocks zone”, within which oocytes and embryos with maximum developmental potential will be located. General and specific mechanisms which may underlie the Goldilocks phenomenon are proposed and the added value that may be derived by expressing data on individual embryos as distributions rather than mean values is emphasised especially in the context of the response of early embryos to stress and to the concept of the Developmental Origins of Health and Disease. The article concludes with a cautionary note that being “quietly efficient” may not always ensure optimal embryo survival.
Collapse
Affiliation(s)
- Henry J. Leese
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
- *Correspondence: Henry J. Leese,
| | - Daniel R. Brison
- Department of Reproductive Medicine, Old St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, St Mary’s Hospital, Medicine and Health, the University of Manchester, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Roger G. Sturmey
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, St Mary’s Hospital, Medicine and Health, the University of Manchester, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
44
|
Podolak A, Woclawek-Potocka I, Lukaszuk K. The Role of Mitochondria in Human Fertility and Early Embryo Development: What Can We Learn for Clinical Application of Assessing and Improving Mitochondrial DNA? Cells 2022; 11:797. [PMID: 35269419 PMCID: PMC8909547 DOI: 10.3390/cells11050797] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are well known as 'the powerhouses of the cell'. Indeed, their major role is cellular energy production driven by both mitochondrial and nuclear DNA. Such a feature makes these organelles essential for successful fertilisation and proper embryo implantation and development. Generally, mitochondrial DNA is exclusively maternally inherited; oocyte's mitochondrial DNA level is crucial to provide sufficient ATP content for the developing embryo until the blastocyst stage of development. Additionally, human fertility and early embryogenesis may be affected by either point mutations or deletions in mitochondrial DNA. It was suggested that their accumulation may be associated with ovarian ageing. If so, is mitochondrial dysfunction the cause or consequence of ovarian ageing? Moreover, such an obvious relationship of mitochondria and mitochondrial genome with human fertility and early embryo development gives the field of mitochondrial research a great potential to be of use in clinical application. However, even now, the area of assessing and improving DNA quantity and function in reproductive medicine drives many questions and uncertainties. This review summarises the role of mitochondria and mitochondrial DNA in human reproduction and gives an insight into the utility of their clinical use.
Collapse
Affiliation(s)
- Amira Podolak
- Invicta Research and Development Center, 81-740 Sopot, Poland;
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Krzysztof Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland;
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
45
|
Alberico HC, Woods DC. Role of Granulosa Cells in the Aging Ovarian Landscape: A Focus on Mitochondrial and Metabolic Function. Front Physiol 2022; 12:800739. [PMID: 35153812 PMCID: PMC8829508 DOI: 10.3389/fphys.2021.800739] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/29/2021] [Indexed: 01/11/2023] Open
Abstract
Mitochondria are at the intersection of aging and fertility, with research efforts centered largely on the role that these specialized organelles play in the relatively rapid decline in oocyte quality that occurs as females approach reproductive senescence. In addition to various roles in oocyte maturation, fertilization, and embryogenesis, mitochondria are critical to granulosa cell function. Herein, we provide a review of the literature pertaining to the role of mitochondria in granulosa cell function, with emphasis on how mitochondrial aging in granulosa cells may impact reproduction in female mammals.
Collapse
|
46
|
Kim SY, Chiara V, Álvarez-Quintero N, Velando A. Mitochondrial DNA content in eggs as a maternal effect. Proc Biol Sci 2022; 289:20212100. [PMID: 35042411 PMCID: PMC8767187 DOI: 10.1098/rspb.2021.2100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023] Open
Abstract
The transmission of detrimental mutations in animal mitochondrial DNA (mtDNA) to the next generation is avoided by a high level of mtDNA content in mature oocytes. Thus, this maternal genetic material has the potential to mediate adaptive maternal effects if mothers change mtDNA level in oocytes in response to their environment or body condition. Here, we show that increased mtDNA abundance in mature oocytes was associated with fast somatic growth during early development but at the cost of increased mortality in three-spined sticklebacks. We also examined whether oocyte mtDNA and sperm DNA damage levels have interacting effects because they can determine the integrity of mitochondrial and nuclear genes in offspring. The level of oxidative DNA damage in sperm negatively affected fertility, but there was no interacting effect of oocyte mtDNA abundance and sperm DNA damage. Oocyte mtDNA level increased towards the end of the breeding season, and the females exposed to warmer temperatures during winter produced eggs with increased mtDNA copies. Our results suggest that oocyte mtDNA level can vary according to the expected energy demands for offspring during embryogenesis and early growth. Thus, mothers can affect offspring development and viability through the context-dependent effects of oocyte mtDNA abundance.
Collapse
Affiliation(s)
- Sin-Yeon Kim
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Violette Chiara
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Náyade Álvarez-Quintero
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| | - Alberto Velando
- Grupo Ecoloxía Animal, Torre CACTI, Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
47
|
Moghadam ARE, Moghadam MT, Hemadi M, Saki G. Oocyte quality and aging. JBRA Assist Reprod 2022; 26:105-122. [PMID: 34338482 PMCID: PMC8769179 DOI: 10.5935/1518-0557.20210026] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/15/2021] [Indexed: 11/20/2022] Open
Abstract
It is well known that female reproduction ability decreases during the forth decade of life due to age-related changes in oocyte quality and quantity; although the number of women trying to conceive has today increased remarkably between the ages of 36 to 44. The causes of reproductive aging and physiological aspects of this phenomenon are still elusive. With increase in the women's age, during Assisted Reproductive Technologies (ART) we have perceived a significant decline in the number and quality of retrieved oocytes, as well as in ovarian follicle reserves. This is because of increased aneuploidy due to factors such as spindle apparatus disruption; oxidative stress and mitochondrial damage. The aim of this review paper is to study data on the potential role of the aging process impacting oocyte quality and female reproductive ability. We present the current evidence that show the decreased oocyte quality with age, related to reductions in female reproductive outcome. The aging process is complicated and it is caused by many factors that control cellular and organism life span. Although the factors responsible for reduced oocyte quality remain unknown, the present review focuses on the potential role of ovarian follicle environment, oocyte structure and its organelles. To find a way to optimize oocyte quality and ameliorate clinical outcomes for women with aging-related causes of infertility.
Collapse
Affiliation(s)
- Ali Reza Eftekhari Moghadam
- Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Taheri Moghadam
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Hemadi
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
48
|
Musson R, Gąsior Ł, Bisogno S, Ptak GE. DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Hum Reprod Update 2022; 28:376-399. [PMID: 35021196 PMCID: PMC9071077 DOI: 10.1093/humupd/dmab046] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND DNA damage is a hazard that affects all cells of the body. DNA-damage repair (DDR) mechanisms are in place to repair damage and restore cellular function, as are other damage-induced processes such as apoptosis, autophagy and senescence. The resilience of germ cells and embryos in response to DNA damage is less well studied compared with other cell types. Given that recent studies have described links between embryonic handling techniques and an increased likelihood of disease in post-natal life, an update is needed to summarize the sources of DNA damage in embryos and their capacity to repair it. In addition, numerous recent publications have detailed novel techniques for detecting and repairing DNA damage in embryos. This information is of interest to medical or scientific personnel who wish to obtain undamaged embryos for use in offspring generation by ART. OBJECTIVE AND RATIONALE This review aims to thoroughly discuss sources of DNA damage in male and female gametes and preimplantation embryos. Special consideration is given to current knowledge and limits in DNA damage detection and screening strategies. Finally, obstacles and future perspectives in clinical diagnosis and treatment (repair) of DNA damaged embryos are discussed. SEARCH METHODS Using PubMed and Google Scholar until May 2021, a comprehensive search for peer-reviewed original English-language articles was carried out using keywords relevant to the topic with no limits placed on time. Keywords included ‘DNA damage repair’, ‘gametes’, ‘sperm’, ‘oocyte’, ‘zygote’, ‘blastocyst’ and ‘embryo’. References from retrieved articles were also used to obtain additional articles. Literature on the sources and consequences of DNA damage on germ cells and embryos was also searched. Additional papers cited by primary references were included. Results from our own studies were included where relevant. OUTCOMES DNA damage in gametes and embryos can differ greatly based on the source and severity. This damage affects the development of the embryo and can lead to long-term health effects on offspring. DDR mechanisms can repair damage to a certain extent, but the factors that play a role in this process are numerous and altogether not well characterized. In this review, we describe the multifactorial origin of DNA damage in male and female gametes and in the embryo, and suggest screening strategies for the selection of healthy gametes and embryos. Furthermore, possible therapeutic solutions to decrease the frequency of DNA damaged gametes and embryos and eventually to repair DNA and increase mitochondrial quality in embryos before their implantation is discussed. WIDER IMPLICATIONS Understanding DNA damage in gametes and embryos is essential for the improvement of techniques that could enhance embryo implantation and pregnancy success. While our knowledge about DNA damage factors and regulatory mechanisms in cells has advanced greatly, the number of feasible practical techniques to avoid or repair damaged embryos remains scarce. Our intention is therefore to focus on strategies to obtain embryos with as little DNA damage as possible, which will impact reproductive biology research with particular significance for reproductive clinicians and embryologists.
Collapse
Affiliation(s)
- Richard Musson
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Łukasz Gąsior
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Simona Bisogno
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grażyna Ewa Ptak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
49
|
Podolak A, Liss J, Kiewisz J, Pukszta S, Cybulska C, Rychlowski M, Lukaszuk A, Jakiel G, Lukaszuk K. Mitochondrial DNA Copy Number in Cleavage Stage Human Embryos-Impact on Infertility Outcome. Curr Issues Mol Biol 2022; 44:273-287. [PMID: 35723399 PMCID: PMC8928962 DOI: 10.3390/cimb44010020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
A retrospective case control study was undertaken at the molecular biology department of a private center for reproductive medicine in order to determine whether any correlation exists between mitochondrial DNA (mtDNA) content of cleavage-stage preimplantation embryos and their developmental potential. A total of 69 couples underwent IVF treatment (averaged women age: 36.5, SD 4.9) and produced a total of 314 embryos. A single blastomere was biopsied from each embryo at the cleavage stage (day-3 post-fertilization) subjected to low-pass next generation sequencing (NGS), for the purpose of detecting aneuploidy. For each sample, the number of mtDNA reads obtained after analysis using NGS was divided by the number of reads attributable to the nuclear genome. The mtDNA copy number amount was found to be higher in aneuploid embryos than in those that were euploid (mean mtDNA ratio ± SD: 6.3 ± 7.5 versus 7.1 ± 5.8, p < 0.004; U Mann−Whitney test), whereas no statistically significant differences in mtDNA content were seen in relation to embryo morphology (6.6 ± 4.8 vs. 8.5 ± 13.6, p 0.09), sex (6.6 ± 4.1 vs. 6.2 ± 6.8, p 0.16), maternal age (6.9 ± 7.8 vs. 6.7 ± 4.5, p 0.14) or its ability to implant (7.4 ± 6.6 vs. 5.1 ± 4.6, p 0.18). The mtDNA content cannot serve as a useful biomarker at this point in development. However, further studies investigating both quantitative and qualitative aspects of mtDNA are still required to fully evaluate the relationship between mitochondrial DNA and human reproduction.
Collapse
Affiliation(s)
- Amira Podolak
- Invicta Research and Development Center, 81-740 Sopot, Poland
| | - Joanna Liss
- Invicta Research and Development Center, 81-740 Sopot, Poland
- Department of Medical Biology and Genetics, University of Gdansk, 80-308 Gdansk, Poland
| | - Jolanta Kiewisz
- Department of Human Histology and Embryology, Medical Faculty, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | | | - Celina Cybulska
- Invicta Research and Development Center, 81-740 Sopot, Poland
| | - Michal Rychlowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Aron Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland
- The Center of Postgraduate Medical Education, 1st Department of Obstetrics and Gynecology, University of Gdansk, 01-004 Warsaw, Poland
| | - Grzegorz Jakiel
- Invicta Research and Development Center, 81-740 Sopot, Poland
- The Center of Postgraduate Medical Education, 1st Department of Obstetrics and Gynecology, University of Gdansk, 01-004 Warsaw, Poland
| | - Krzysztof Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland
- Department of Obstetrics and Gynecology Nursing, Medical University of Gdansk, 80-210 Gdansk, Poland
- iYoni App by LifeBite, 10-763 Olsztyn, Poland
| |
Collapse
|
50
|
Ritu G, Veerasigamani G, Ashraf M, Singh S, Laheri S, Colaco S, Modi D. Mitochondrial DNA levels in trophectodermal cells show no association with blastocyst development and pregnancy outcomes. J Hum Reprod Sci 2022; 15:82-89. [PMID: 35494207 PMCID: PMC9053345 DOI: 10.4103/jhrs.jhrs_103_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/07/2022] Open
Abstract
Background: In patients undergoing assisted reproduction, levels of mitochondrial DNA (mtDNA) in the trophectodermal cells of the developing blastocyst are suggested to be associated with its ability to implant. However, discrepancies exist regarding the use of mtDNA levels as a reliable biomarker to predict outcomes of assisted reproduction. Aims: The aim of the study is to explore the association of trophectodermal mtDNA levels to determine blastocyst quality, implantation potential of blastocyst and clinical outcomes in couples who have undergone pre-implantation genetic testing for aneuploidy (PGT-A). Study Setting: Private fertility centre. Study Design: Retrospective analysis. Materials and Methods: We analysed mtDNA levels in the trophectodermal cells of 287 blastocysts from 61 couples undergoing PGT-A. The levels of mtDNA were estimated by next-generation sequencing method. mtDNA levels were correlated with maternal age, blastocyst morphology, ploidy status, implantation rates, miscarriage rate and live birth rate. Statistical Analysis Used: Linear regression and one-way ANOVA with Tukey's all column comparison test. Results: The trophectodermal mtDNA levels did not correlate with maternal age. There were no significant differences in their levels in grade 1 and grade 2 blastocysts. No significant differences were seen between mtDNA levels of implanted and non-implanted blastocysts or those blastocysts that resulted in miscarriage or live birth. However, significantly lower amounts of mtDNA were seen in euploid blastocysts as compared to that in aneuploid blastocysts. Conclusion: mtDNA levels in the trophectodermal cells of the blastocyst do not associate with blastocyst quality (grade 1 and grade 2), implantation potential and clinical outcomes but can differentiate between aneuploid and euploid blastocysts. Our study does not support the use of trophectodermal mtDNA levels as a biomarker for blastocyst quality and predictor of clinical outcomes.
Collapse
|